Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1389 - 1425

 

A COMPREHENSIVE REVIEW OF GRAPHENE NANOPLATELETS FOR REMOVAL AND DETECTION OF HEAVY METALS AND ENDOCRINE DISRUPTING COMPOUNDS

 

(Satu Komprehensif Kajian Semula Berkenaan Nanoplatelet Grafin untuk Penyingkiran dan Pengesanan Logam Berat dan Sebatian yang

Mengganggu Endokrin)

 

Sazlinda Kamaruzaman1, 2*, Najihah Mohammad Nasir1, Yugarani Arivalagan1, Noorfatimah Yahaya3,

Saw Hong Loh4, Nor Suhaila Mohamad Hanapi5, Wan Nazihah Wan Ibrahim5 and Ili Syazana Johari1

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

2Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia

3Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia

4Faculty of Sciences and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

5Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

 

*Corresponding author: sazlinda@upm.edu.my

 

 

Received: 29 August 2023; Accepted: 3 October 2023; Published:  29 December 2023

 

 

Abstract

Heavy metals and endocrine disrupting chemicals (EDC) have disruptive effects on an intact organism or its progeny. Due to the widespread presence of heavy metals and EDC in waterways, it is important to determine how effectively these compounds are removed from the environment. Their concentration has attained dangerous levels because of numerous anthropogenic activities such industrial operations, particularly mining, agricultural processes, and the disposal of industrial waste materials. Heavy metals and EDC have been removed using a variety of effective approaches, including chemical oxidation, biodegradation, liquid extraction, membrane techniques, chemical precipitation, ion exchange, reverse osmosis, coagulation, flocculation, etc. These methods have several drawbacks, including a high reagent requirement, unpredictable metal ion removal, the generation of toxic sludge, etc. Adsorption is a method that shows promise because of its simple design, low cost, and high efficiency. Its ability to remove hazardous and micropollutants from wastewater is what makes it the method of choice. The use of graphene nanoplatelets (GNPs) as adsorbents in the treatment of water has been established by research. A wide range of water pollutants, including but not limited to organic molecules and inorganic heavy metals, are reported to be effectively remedied by GNPs. The high surface areas and modifiable functional groups of GNPs can be used to remove various contaminants in water and wastewater treatment processes. More significantly, because GNPs are mainly made up of carbon, this characteristic makes it easier to use these carbon-based materials for adsorbing pollutants in water and wastewater treatment systems. In the present review, the mechanisms of adsorption are demonstrated by investigating the kinetics, isotherms, and thermodynamics of adsorption. Besides that, pH, contact time, adsorbent dosage, and initial analyte concentration were investigated.

                                              

Keywords: graphene nanoplatelets, endocrine disrupting compounds, heavy metals, isotherm, kinetics, thermodynamic

 

Abstrak

Logam berat dan bahan kimia pengganggu endokrin (EDC) mempunyai kesan yang mengganggu pada organisma yang utuh atau keturunannya. Disebabkan kehadiran meluas logam berat dan EDC dalam laluan air, adalah penting untuk menentukan keberkesanan sebatian ini dikeluarkan dari alam sekitar. Kepekatan mereka telah mencapai tahap berbahaya kerana banyak aktiviti antropogenik seperti operasi perindustrian, terutamanya perlombongan, proses pertanian, dan pelupusan bahan buangan industri. Logam berat dan EDC telah dialih keluar menggunakan pelbagai pendekatan yang berkesan, termasuk pengoksidaan kimia, biodegradasi, pengekstrakan cecair, teknik membran, pemendakan kimia, pertukaran ion, osmosis songsang, pembekuan, pemberbukuan, dll. Kaedah ini mempunyai beberapa kelemahan, termasuk yang tinggi. keperluan reagen, penyingkiran ion logam yang tidak dapat diramalkan, penjanaan enap cemar toksik, dsb. Penjerapan ialah kaedah yang menjanjikan kerana reka bentuknya yang ringkas, kos rendah dan kecekapan tinggi. Keupayaannya untuk membuang bahan pencemar berbahaya dan mikro daripada air sisa adalah yang menjadikannya kaedah pilihan. Penggunaan graphene nanoplatelets (GNPs) sebagai penjerap dalam rawatan air telah ditubuhkan oleh penyelidikan. Pelbagai bahan pencemar air, termasuk tetapi tidak terhad kepada molekul organik dan logam berat bukan organik, dilaporkan akan dipulihkan dengan berkesan oleh KNK. Kawasan permukaan yang tinggi dan kumpulan fungsi GNP yang boleh diubah suai boleh digunakan untuk membuang pelbagai bahan cemar dalam air dan proses rawatan air sisa. Lebih ketara, kerana KNK kebanyakannya terdiri daripada karbon, ciri ini memudahkan penggunaan bahan berasaskan karbon ini untuk menjerap bahan pencemar dalam sistem rawatan air dan air sisa. Dalam kajian ini, mekanisme penjerapan ditunjukkan dengan menyiasat kinetik, isoterma, dan termodinamik penjerapan. Selain itu, pH, masa sentuhan, dos penjerap, dan kepekatan analit awal telah disiasat.

 

Kata kunci: kepingan nano grafit, sebatian mengendala endokrin, logam berat, isoterma, kinetik, termodinamik

 


References

1.       Badhei, S., & Mitra, J. C. Efficient use of graphene nano platelets for removal of antibiotic drug from aqueous solution.

2.       Sarmah, A. K., Northcott, G. L., Leusch, F. D. L. and Tremblay, L. A. (2006). A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Science of the Total Environment, 355(1-3): 135-144.

3.       Lyssimachou, A., Bachmann, J. and Porte, C. (2008). Short-term exposure to the organotin compound triphenyltin modulates esterified steroid levels in females of Marisa cornuarietis. Aquatic Toxicology, 89(2): 129-135.

4.       Kavlock, R. J. (1999). Overview of endocrine disruptor research activity in the United States. Chemosphere, 39(8): 1227-1236.

5.       Rusu, C., Preda, C., Sireteanu, A. and Vulpoi, C. (2015). Risk factors in autism spectrum disorders: the role of genetic, epigenetic, immune and environmental interactions. Environmental Engineering & Management Journal, 14(4): 901-907.

6.       Apul, O. G., Wang, Q., Zhou, Y. and Karanfil, T. (2013). Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Research, 47(4): 1648-1654.

7.       Ji, L., Chen, W., Duan, L. and Zhu, D. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environmental Science & Technology, 43(7): 2322-2327.

8.       Maliyekkal, S. M., Sreeprasad, T. S., Krishnan, D., Kouser, S., Mishra, A. K., Waghmare, U. V. and Pradeep, T. (2013). Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small, 9(2): 273-283.

9.       Pavagadhi, S., Tang, A. L. L., Sathishkumar, M., Loh, K. P. and Balasubramanian, R. (2013). Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. Water Research, 47(13): 4621-4629.

10.    Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3): 183-191.

11.    Stoller, M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10): 3498-3502.

12.    Afsahi, S., Lerner, M. B., Goldstein, J. M., Lee, J., Tang, X., Bagarozzi Jr, D. A., ... and Goldsmith, B. R. (2018). Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors and Bioelectronics, 100: 85-88.

13.    Nayak, G. S., Zybala, R., Kozinski, R., Woluntarski, M., Telle, R. and Schickle, K. (2018). Immobilization of reduced graphene oxide nano-flakes on inert ceramic surfaces using self-assembled monolayer technique. Materials Letters, 225: 109-112.

14.    Bai, R. G., Ninan, N., Muthoosamy, K. and Manickam, S. (2018). Graphene: A versatile platform for nanotheranostics and tissue engineering. Progress in Materials Science, 91: 24-69.

15.    Chan, K. K., Yap, S. H. K. and Yong, K. T. (2018). Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Letters, 10: 1-46.

16.    Partoens, B. and Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B, 74(7): 075404.

17.    Wan, Q., Cai, H., Liu, Y., Song, H., Liao, H., Liu, S. and Yang, N. (2013). Graphene nanoplatelets: Electrochemical properties and applications for oxidation of endocrinedisrupting chemicals. ChemistryA European Journal, 19(10): 3483-3489.

18.    Choi, W., Lahiri, I., Seelaboyina, R. and Kang, Y. S. (2010). Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences, 35(1): 52-71.

19.    Pumera, M. (2009). Electrochemistry of graphene: New horizons for sensing and energy storage. The Chemical Record, 9(4): 211-223.

20.    Sadanala, K. C. and Chung, B. C. (2013). Graphene nanoplatelets as a solid phase extraction sorbent for analysis of chlorophenols in water. Journal of the Korean Society for Applied Biological Chemistry, 56: 673-678.

21.    Geng, Y., Wang, S. J. and Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 336(2): 592-598.

22.    Kumar, R., Pandey, K. K., Islam, A. and Keshri, A. K. (2019). Graphene nanoplatelets: A promising corrosion inhibitor and toughening inclusion in plasma sprayed cerium oxide coating. Journal of Alloys and Compounds, 809: 151819.

23.    Liu, J., Dong, J., Zhang, T. and Peng, Q. (2018). Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of Controlled Release, 286: 64-73.

24.    de Assis, L. K., Damasceno, B. S., Carvalho, M. N., Oliveira, E. H. and Ghislandi, M. G. (2019). Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. Environmental Technology, 41: 2360-2371.

25.    Cataldi, P., Athanassiou, A. and Bayer, I. S. (2018). Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Applied Sciences, 8(9): 1438.

26.    An, J. C., Lee, E. J., Yoon, S. Y., Lee, S. Y. and Kim, Y. J. (2018). Comparative study on the morphological properties of graphene nanoplatelets prepared by an oxidative and non-oxidative route. Carbon Letters, 26: 81-87.

27.    Huang, Z. H., Zheng, X., Lv, W., Wang, M., Yang, Q. H. and Kang, F. (2011). Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir, 27(12): 7558-7562.

28.    Ion, A. C., Ion, I. and Culetu, A. (2011). Lead adsorption onto exfoliated graphitic nanoplatelets in aqueous solutions. Materials Science and Engineering: B, 176(6): 504-509.

29.    Radu, E., Catrinel Ion, A., Sirbu, F. and Ion, I. (2015). Adsorption of endocrine disruptors on exfoliated graphene nanoplatelets. Environmental Engineering & Management Journal, 14(3): 551-558.

30.    Ahmad, H., Laini, V. V., Qian, T. Z., Jelani, R. M., Rosli, F. A. and Kamaruzaman, S. (2020). Efficient removal of lead from aqueous using hybrid graphite nanoflakes/mesoporous silica nanoparticles, amine functionalized mesoporous silica and graphite nanoflakes as adsorbents. Malaysian Journal Analytical Sciences, 24: 236-246.

31.    Briffa, J., Sinagra, E. and Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9): 04691.

32.    Ali, H., Khan, E. and Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019: 6730305.

33.    Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Efremova Aaron, S. and Aaron, J. J. (2020). Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research, 27: 29927-29942.

34.    Nguyen, P. Y., Silva, A. F., Reis, A. C., Nunes, O. C., Rodrigues, A. M., Rodrigues, J. E., ... and Carvalho, G. (2019). Bioaugmentation of membrane bioreactor with Achromobacter denitrificans strain PR1 for enhanced sulfamethoxazole removal in wastewater. Science of the Total Environment, 648: 44-55.

35.    Sharma, G., Gupta, V. K., Agarwal, S., Bhogal, S., Naushad, M., Kumar, A. and Stadler, F. J. (2018). Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. Journal of Molecular Liquids, 260: 342-350.

36.    Kumar, A., Kumar, A., Sharma, G., Ala'a, H., Naushad, M., Ghfar, A. A. and Stadler, F. J. (2018). Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chemical Engineering Journal, 334: 462-478.

37.    Thakur, A., Kumar, P., Kaur, D., Devunuri, N., Sinha, R. K. and Devi, P. (2020). TiO2 nanofibres decorated with green-synthesized P Au/Ag@CQDs for the efficient photocatalytic degradation of organic dyes and pharmaceutical drugs. RSC Advances, 10(15): 8941-8948.

38.    Hemmat, K., Khodabakhshi, M. R. and Zeraatkar Moghaddam, A. (2021). Synthesis of nanoscale zerovalent iron modified graphene oxide nanosheets and its application for removing tetracycline antibiotic: Response surface methodology. Applied Organometallic Chemistry, 35(1): e6059.

39.    Liu, Q., Li, L., Jin, X., Wang, C. and Wang, T. (2018). Influence of graphene oxide sheets on the pore structure and filtration performance of a novel graphene oxide/silica/polyacrylonitrile mixed matrix membrane. Journal of Materials Science, 53(9): 6505-6518.

40.    de Matos Rodrigues, M. H., de Sousa, P. A. R., Borges, K. C. M., de Melo Coelho, L., de Fátima Gonçalves, R., Teodoro, M. D., ... and Júnior, M. G. (2019). Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0, 8Gd0, 2O2-δ/TiO2 particles. Journal of Alloys and Compounds, 808: 151711.

41.    Hu, L., Zhang, Y., Lu, W., Lu, Y. and Hu, H. (2019). Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation. Journal of Materials Science, 54: 6238-6257.

42.    Tang, J. and Wang, J. (2020). Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions. Chemosphere, 241: 125002.

43.    Zhuan, R. and Wang, J. (2020). Enhanced degradation and mineralization of sulfamethoxazole by integrating gamma radiation with Fenton-like processes. Radiation Physics and Chemistry, 166: 108457.

44.    Xu, J., Xu, W., Wang, D., Sang, G. and Yang, X. (2016). Evaluation of enhanced coagulation coupled with magnetic ion exchange (MIEX) in natural organic matter and sulfamethoxazole removals: the role of Al-based coagulant characteristic. Separation and Purification Technology, 167: 70-78.

45.    Delgado, N., Capparelli, A., Navarro, A. and Marino, D. (2019). Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. Journal of Environmental Management, 236: 301-308.

46.    Xiao, F. Z., Wang, C., Yu, L. M., Pu, Y. Q., Xu, Y. L., Zhang, K., ... and He, S. Y. (2019). Fabrication of magnetic functionalised calix [4] arene composite for highly efficient and selective adsorption towards uranium (VI). Environmental Chemistry, 16(8): 577-586.

47.    Moghaddam, A. Z., Esmaeilkhanian, E. and Shakourian-Fard, M. (2019). Immobilizing magnetic glutaraldehyde cross-linked chitosan on graphene oxide and nitrogen-doped graphene oxide as well-dispersible adsorbents for chromate removal from aqueous solutions. International Journal of Biological Macromolecules, 128: 61-73.

48.    Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U. and Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6): 3510-3673.

49.    Carmalin Sophia, A., Lima, E. C., Allaudeen, N. and Rajan, S. (2016). Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater-a review. Desalination and Water Treatment, 57(57): 27573-27586.

50.    Kucherova, A., Burakova, I. and Burakov, A. (2017). Graphene materials for lead(II) extraction: an equilibrium study. In MATEC Web of Conferences. EDP Sciences, 129: 06022.

51.    Mishra, A. K. and Ramaprabhu, S. (2011). Removal of metals from aqueous solution and sea water by functionalized graphite nanoplatelets based electrodes. Journal of Hazardous Materials, 185(1): 322-328.

52.    Sheng, Z., Cao, M., Hong, Y., Wang, S., Fan, Z., Xiong, J., ... and Deng, C. (2018). Preparation of functionalized graphene nano-platelets and use for adsorption of Pb2+ from solution. Journal of Wuhan University of Technology-Materials Science Edition, 33(6): 1395-1401.

53.    Nandi, D., Ghosh, S. K., Ghosh, A., Siengchin, S., Roy, A., Gupta, K., ... and Ghosh, U. C. (2021). Arsenic removal from water by graphene nanoplatelets prepared from nail waste: A physicochemical study of adsorption based on process optimization, kinetics, isotherm and thermodynamics. Environmental Nanotechnology, Monitoring & Management, 16: 100564.

54.    Zhu, J., Sadu, R., Wei, S., Chen, D. H., Haldolaarachchige, N., Luo, Z., ... and Guo, Z. (2012). Magnetic graphene nanoplatelet composites toward arsenic removal. ECS Journal of Solid State Science and Technology, 1(1): M1.

55.    Samaraweera, H., Pittman Jr, C. U., Thirumalai, R. V. K., Perez, F. and Misna, T. (2021). Characterization of graphene/pine wood biochar hybrids: Potential to remove aqueous Cu2+. Environmental Research, 192: 110283.

56.    Rosenzweig, S., Sorial, G. A., Sahle-Demessie, E. and McAvoy, D. C. (2014). Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption. Journal of Hazardous Materials, 279: 410-417.

57.    Capra, L., Manolache, M., Ion, I., Stoica, R., Stinga, G., Doncea, S. M., ... and Ion, A. C. (2018). Adsorption of Sb(III) on oxidized exfoliated graphite nanoplatelets. Nanomaterials, 8(12): 992.

58.    Smith, D. M., Hamwi, B. and Rogers, R. E. (2022). Carbon nanomaterial-based aerogels for improved removal of copper(II), zinc(II), and lead(II) ions from water. Environmental Science: Advances, 1(2): 208-215.

59.    Bogdan, D., Rizea, G. A., Ion, I. and Ion, A. C. (2016). Ammonium adsorption on exfoliated graphite nanoplatelets. Revista de Chimie, 67: 2231-2236.

60.    Yin, Q., Zhu, Y., Ju, S., Liao, W. and Yang, Y. (2016). Rapid determination of copper and lead in Panax notoginseng by magnetic solid-phase extraction and flame atomic absorption spectrometry. Research on Chemical Intermediates, 42: 4985-4998.

61.    La, D. D., Patwari, J. M., Jones, L. A., Antolasic, F. and Bhosale, S. V. (2017). Fabrication of a GNP/Fe–Mg binary oxide composite for effective removal of arsenic from aqueous solution. ACS Omega, 2(1): 218-226.

62.    Li, B.-Q., Yuan, W., and Li, L. (2016). Adsorption of Pb2+ and Cd2+ on graphene nanosheets prepared using thermal exfoliation. Acta Physico-Chimica Sinica, 32: 997-1004.

63.    Kucherova, A. E., Romantsova, I. V., Burakov, A. E., Memetov, N. R. and Krasnyansky, M. N. (2017). Graphene-based nanocomposites for enhanced Pb2+ adsorption. Nano Hybrids and Composites, 13: 323-329.

64.    Kumar, A. K., Sarma, P. N. and Mohan, S. V. (2016). Incidence of selected endocrine disrupting estrogens in water bodies of Hyderabad and its relation to water quality parameters. Environmental Engineering Management Journal, 15: 315-325.

65.    Ternes, T. A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R. D. and Servos, M. (1999). Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Science of The Total Environment, 225(1-2): 81-90.

66.    Shi, J., Fujisawa, S., Nakai, S. and Hosomi, M. (2004). Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research, 38(9): 2323-2330.

67.    Auriol, M., Filali-Meknassi, Y., Adams, C. D. and Tyagi, R. D. (2006). Natural and synthetic hormone removal using the horseradish peroxidase enzyme: temperature and pH effects. Water research, 40(15), 2847-2856.

68.    Filali-Meknassi, Y., Tyagi, R. D., Surampalli, R. Y., Barata, C. and Riva, M. C. (2004). Endocrine-disrupting compounds in wastewater, sludge-treatment processes, and receiving waters: Overview. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 8(1): 39-56.

69.    Jobling, S., Nolan, M., Tyler, C. R., Brighty, G. and Sumpter, J. P. (1998). Widespread sexual disruption in wild fish. Environmental Science & Technology, 32(17): 2498-2506.

70.    Kumar, A. K. and Mohan, S. V. (2012). Removal of natural and synthetic endocrine disrupting estrogens by multi-walled carbon nanotubes (MWCNT) as adsorbent: kinetic and mechanistic evaluation. Separation and Purification Technology, 87: 22-30.

71.    Pojana, G., Gomiero, A., Jonkers, N. and Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 33(7): 929-936.

72.    Routledge, E. J. and Sumpter, J. P. (1996). Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry: An International Journal, 15(3): 241-248.

73.    Snyder, S. A., Villeneuve, D. L., Snyder, E. M. and Giesy, J. P. (2001). Identification and quantification of estrogen receptor agonists in wastewater effluents. Environmental Science & Technology, 35(18): 3620-3625.

74.    Ion, A. C., Alpatova, A., Ion, I. and Culetu, A. (2011). Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering: B, 176(7): 588-595.

75.    Zakaa, A., Ibrahima, T. H., Khamisb, M. I. and Samarab, F. (2020). Adsorption characteristics of diclofenac sodium onto graphene nanoplatelets. Desalination and Water Treatment, 206: 331-339.

76.    Al-Khateeb, L. A., Almotiry, S. and Salam, M. A. (2014). Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical Engineering Journal, 248: 191-199.

77.    Zakaa, A., Ibrahima, T. H., Khamisb, M. I. and Jabbara, N. A. (2019). Experimental design modelling and optimization of levofloxacin removal with graphene nanoplatelets using response surface method. Pharmaceuticals, 16(18): 19.

78.    Kerkez-Kuyumcu, Ö., Bayazit, Ş. S. and Salam, M. A. (2016). Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. Journal of Industrial and Engineering Chemistry, 36: 198-205.

79.    Banerjee, P., Das, P., Zaman, A. and Das, P. (2016). Application of graphene oxide nanoplatelets for adsorption of ibuprofen from aqueous solutions: evaluation of process kinetics and thermodynamics. Process Safety and Environmental Protection, 101: 45-53.

80.    Rosli, F. A., Ahmad, H., Jumbri, K., Abdullah, A. H., Kamaruzaman, S. and Fathihah Abdullah, N. A. (2021). Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. Royal Society Open Science, 8(1): 201076.

81.    ElHussein, E. A. A., Şahin, S. and Bayazit, Ş. S. (2020). Removal of carbamazepine using UiO-66 and UiO-66/graphene nanoplatelet composite. Journal of Environmental Chemical Engineering, 8(4): 103898.

82.    Luo, X., Zhang, F., Ji, S., Yang, B. and Liang, X. (2014). Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution. Talanta, 120: 71-75.

83.    Al-Khateeb, L. A., Hakami, W. and Salam, M. A. (2017). Removal of non-steroidal anti-inflammatory drugs from water using high surface area nanographene: kinetic and thermodynamic studies. Journal of Molecular Liquids, 241: 733-741.

84.    Bhattacharya, S., Banerjee, P., Das, P., Bhowal, A., Majumder, S. K. and Ghosh, P. (2020). Removal of aqueous carbamazepine using graphene oxide nanoplatelets: Process modelling and optimization. Sustainable Environment Research, 30(1): 1-12.

85.    Khalil, A. M., Memon, F. A., Tabish, T. A., Salmon, D., Zhang, S. and Butler, D. (2020). Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal, 398: 125440.