Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1389 - 1425
A
COMPREHENSIVE REVIEW OF GRAPHENE NANOPLATELETS FOR REMOVAL AND DETECTION OF
HEAVY METALS AND ENDOCRINE DISRUPTING COMPOUNDS
(Satu Komprehensif Kajian Semula Berkenaan Nanoplatelet
Grafin untuk Penyingkiran dan Pengesanan Logam Berat dan Sebatian yang
Mengganggu Endokrin)
Sazlinda
Kamaruzaman1, 2*, Najihah Mohammad Nasir1, Yugarani
Arivalagan1, Noorfatimah Yahaya3,
Saw Hong Loh4, Nor Suhaila Mohamad Hanapi5,
Wan Nazihah Wan Ibrahim5 and Ili Syazana Johari1
1Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
2Natural Medicines and Product
Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti
Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
3Department of
Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains
Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia
4Faculty of Sciences and Marine
Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
5Faculty of
Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor,
Malaysia
*Corresponding author: sazlinda@upm.edu.my
Received: 29 August 2023; Accepted: 3
October 2023; Published: 29 December
2023
Abstract
Heavy metals and endocrine
disrupting chemicals (EDC) have disruptive effects on an intact organism or its
progeny. Due to the widespread presence of heavy metals
and EDC in waterways, it is important to determine how effectively these
compounds are removed from the environment. Their concentration has attained
dangerous levels because of numerous anthropogenic activities such industrial
operations, particularly mining, agricultural processes, and the disposal of
industrial waste materials. Heavy metals and EDC have been removed using a
variety of effective approaches, including chemical oxidation, biodegradation,
liquid extraction, membrane techniques, chemical precipitation, ion exchange,
reverse osmosis, coagulation, flocculation, etc. These methods have several
drawbacks, including a high reagent requirement, unpredictable metal ion
removal, the generation of toxic sludge, etc. Adsorption is a method that shows
promise because of its simple design, low cost, and high efficiency. Its
ability to remove hazardous and micropollutants from wastewater is what makes
it the method of choice. The use of graphene nanoplatelets (GNPs) as adsorbents
in the treatment of water has been established by research. A wide range of
water pollutants, including but not limited to organic molecules and inorganic
heavy metals, are reported to be effectively remedied by GNPs. The high surface
areas and modifiable functional groups of GNPs can be used to remove various
contaminants in water and wastewater treatment processes. More significantly,
because GNPs are mainly made up of carbon, this characteristic makes it easier
to use these carbon-based materials for adsorbing pollutants in water and
wastewater treatment systems. In the present review, the mechanisms of
adsorption are demonstrated by investigating the kinetics, isotherms, and
thermodynamics of adsorption. Besides that, pH, contact time, adsorbent dosage,
and initial analyte concentration were investigated.
Keywords: graphene nanoplatelets,
endocrine disrupting compounds, heavy metals, isotherm, kinetics, thermodynamic
Abstrak
Logam
berat dan bahan kimia pengganggu endokrin (EDC) mempunyai kesan yang mengganggu
pada organisma yang utuh atau keturunannya. Disebabkan kehadiran meluas logam
berat dan EDC dalam laluan air, adalah penting untuk menentukan keberkesanan
sebatian ini dikeluarkan dari alam sekitar. Kepekatan mereka telah mencapai
tahap berbahaya kerana banyak aktiviti antropogenik
seperti operasi perindustrian, terutamanya perlombongan, proses pertanian, dan
pelupusan bahan buangan industri. Logam berat dan EDC telah dialih keluar
menggunakan pelbagai pendekatan yang berkesan, termasuk pengoksidaan kimia, biodegradasi, pengekstrakan cecair, teknik membran,
pemendakan kimia, pertukaran ion, osmosis songsang, pembekuan, pemberbukuan, dll. Kaedah ini
mempunyai beberapa kelemahan, termasuk yang tinggi. keperluan reagen,
penyingkiran ion logam yang tidak dapat diramalkan, penjanaan enap cemar
toksik, dsb. Penjerapan ialah kaedah yang menjanjikan
kerana reka bentuknya yang ringkas, kos rendah dan kecekapan tinggi.
Keupayaannya untuk membuang bahan pencemar berbahaya dan mikro daripada air
sisa adalah yang menjadikannya kaedah pilihan. Penggunaan graphene
nanoplatelets (GNPs)
sebagai penjerap dalam rawatan air telah ditubuhkan
oleh penyelidikan. Pelbagai bahan pencemar air, termasuk tetapi tidak terhad
kepada molekul organik dan logam berat bukan organik, dilaporkan akan
dipulihkan dengan berkesan oleh KNK. Kawasan permukaan yang tinggi dan kumpulan
fungsi GNP yang boleh diubah suai boleh digunakan untuk membuang pelbagai bahan
cemar dalam air dan proses rawatan air sisa. Lebih ketara, kerana KNK
kebanyakannya terdiri daripada karbon, ciri ini memudahkan penggunaan bahan
berasaskan karbon ini untuk menjerap bahan pencemar dalam sistem rawatan air
dan air sisa. Dalam kajian ini, mekanisme penjerapan ditunjukkan dengan
menyiasat kinetik, isoterma, dan termodinamik
penjerapan. Selain itu, pH, masa sentuhan, dos penjerap, dan kepekatan analit
awal telah disiasat.
Kata kunci: kepingan nano grafit, sebatian mengendala endokrin,
logam berat, isoterma, kinetik, termodinamik
References
1. Badhei,
S., & Mitra, J. C. Efficient use of graphene nano platelets for removal of
antibiotic drug from aqueous solution.
2. Sarmah,
A. K., Northcott, G. L., Leusch, F. D. L. and
Tremblay, L. A. (2006). A survey of endocrine disrupting chemicals (EDCs) in
municipal sewage and animal waste effluents in the Waikato region of New
Zealand. Science of the Total Environment, 355(1-3): 135-144.
3. Lyssimachou,
A., Bachmann, J. and Porte, C. (2008). Short-term exposure to the organotin
compound triphenyltin modulates esterified steroid
levels in females of Marisa cornuarietis. Aquatic
Toxicology, 89(2): 129-135.
4. Kavlock, R.
J. (1999). Overview of endocrine disruptor research activity in the United
States. Chemosphere, 39(8): 1227-1236.
5. Rusu,
C., Preda, C., Sireteanu,
A. and Vulpoi, C. (2015). Risk factors in autism
spectrum disorders: the role of genetic, epigenetic, immune and environmental
interactions. Environmental Engineering & Management Journal, 14(4):
901-907.
6. Apul, O.
G., Wang, Q., Zhou, Y. and Karanfil, T. (2013). Adsorption of aromatic organic
contaminants by graphene nanosheets: Comparison with carbon nanotubes and
activated carbon. Water Research, 47(4): 1648-1654.
7. Ji,
L., Chen, W., Duan, L. and Zhu, D. (2009). Mechanisms for strong adsorption of
tetracycline to carbon nanotubes: a comparative study using activated carbon
and graphite as adsorbents. Environmental Science & Technology,
43(7): 2322-2327.
8. Maliyekkal, S.
M., Sreeprasad, T. S., Krishnan, D., Kouser, S., Mishra, A. K., Waghmare, U. V. and Pradeep, T.
(2013). Graphene: a reusable substrate for unprecedented adsorption of
pesticides. Small, 9(2): 273-283.
9. Pavagadhi,
S., Tang, A. L. L., Sathishkumar, M., Loh, K. P. and Balasubramanian, R.
(2013). Removal of microcystin-LR and microcystin-RR by graphene oxide:
adsorption and kinetic experiments. Water Research, 47(13): 4621-4629.
10. Geim, A.
K. and Novoselov, K. S. (2007). The rise of graphene.
Nature Materials, 6(3): 183-191.
11. Stoller,
M. D., Park, S., Zhu, Y., An, J. and Ruoff, R. S. (2008). Graphene-based
ultracapacitors. Nano Letters, 8(10): 3498-3502.
12. Afsahi,
S., Lerner, M. B., Goldstein, J. M., Lee, J., Tang, X., Bagarozzi
Jr, D. A., ... and Goldsmith, B. R. (2018). Novel graphene-based biosensor for
early detection of Zika virus infection. Biosensors and Bioelectronics,
100: 85-88.
13. Nayak,
G. S., Zybala, R., Kozinski, R., Woluntarski,
M., Telle, R. and Schickle, K. (2018). Immobilization
of reduced graphene oxide nano-flakes on inert ceramic surfaces using
self-assembled monolayer technique. Materials Letters, 225: 109-112.
14. Bai,
R. G., Ninan, N., Muthoosamy, K. and Manickam, S.
(2018). Graphene: A versatile platform for nanotheranostics
and tissue engineering. Progress in Materials Science, 91: 24-69.
15. Chan,
K. K., Yap, S. H. K. and Yong, K. T. (2018). Biogreen
synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro
Letters, 10: 1-46.
16. Partoens, B.
and Peeters, F. M. (2006). From graphene to graphite: Electronic structure
around the K point. Physical Review B, 74(7): 075404.
17. Wan,
Q., Cai, H., Liu, Y., Song, H., Liao, H., Liu, S. and Yang, N. (2013). Graphene
nanoplatelets: Electrochemical properties and applications for oxidation of
endocrine‐disrupting
chemicals. Chemistry–A European Journal,
19(10): 3483-3489.
18. Choi,
W., Lahiri, I., Seelaboyina, R. and Kang, Y. S.
(2010). Synthesis of graphene and its applications: a review. Critical
Reviews in Solid State and Materials Sciences, 35(1): 52-71.
19. Pumera, M.
(2009). Electrochemistry of graphene: New horizons for sensing and energy
storage. The Chemical Record, 9(4): 211-223.
20. Sadanala, K.
C. and Chung, B. C. (2013). Graphene nanoplatelets as a solid phase extraction
sorbent for analysis of chlorophenols in water. Journal of the Korean
Society for Applied Biological Chemistry, 56: 673-678.
21. Geng,
Y., Wang, S. J. and Kim, J. K. (2009). Preparation of graphite nanoplatelets
and graphene sheets. Journal of Colloid and Interface Science, 336(2):
592-598.
22. Kumar,
R., Pandey, K. K., Islam, A. and Keshri, A. K.
(2019). Graphene nanoplatelets: A promising corrosion inhibitor and toughening
inclusion in plasma sprayed cerium oxide coating. Journal of Alloys and
Compounds, 809: 151819.
23. Liu,
J., Dong, J., Zhang, T. and Peng, Q. (2018). Graphene-based nanomaterials and
their potentials in advanced drug delivery and cancer therapy. Journal of
Controlled Release, 286: 64-73.
24. de
Assis, L. K., Damasceno, B. S., Carvalho, M. N., Oliveira, E. H. and Ghislandi, M. G. (2019). Adsorption capacity comparison
between graphene oxide and graphene nanoplatelets for the removal of coloured
textile dyes from wastewater. Environmental Technology, 41: 2360-2371.
25. Cataldi,
P., Athanassiou, A. and Bayer, I. S. (2018). Graphene
nanoplatelets-based advanced materials and recent progress in sustainable
applications. Applied Sciences, 8(9): 1438.
26. An,
J. C., Lee, E. J., Yoon, S. Y., Lee, S. Y. and Kim, Y. J. (2018). Comparative
study on the morphological properties of graphene nanoplatelets prepared by an
oxidative and non-oxidative route. Carbon Letters, 26: 81-87.
27. Huang,
Z. H., Zheng, X., Lv, W., Wang, M., Yang, Q. H. and
Kang, F. (2011). Adsorption of lead (II) ions from aqueous solution on
low-temperature exfoliated graphene nanosheets. Langmuir, 27(12):
7558-7562.
28. Ion,
A. C., Ion, I. and Culetu, A. (2011). Lead adsorption
onto exfoliated graphitic nanoplatelets in aqueous solutions. Materials
Science and Engineering: B, 176(6): 504-509.
29. Radu,
E., Catrinel Ion, A., Sirbu, F. and Ion, I. (2015). Adsorption of endocrine
disruptors on exfoliated graphene nanoplatelets. Environmental Engineering
& Management Journal, 14(3): 551-558.
30. Ahmad,
H., Laini, V. V., Qian, T. Z., Jelani, R. M., Rosli, F. A. and Kamaruzaman, S.
(2020). Efficient removal of lead from aqueous using hybrid graphite
nanoflakes/mesoporous silica nanoparticles, amine functionalized mesoporous
silica and graphite nanoflakes as adsorbents. Malaysian Journal Analytical
Sciences, 24: 236-246.
31. Briffa,
J., Sinagra, E. and Blundell, R. (2020). Heavy metal pollution in the
environment and their toxicological effects on humans. Heliyon,
6(9): 04691.
32. Ali,
H., Khan, E. and Ilahi, I. (2019). Environmental chemistry and ecotoxicology of
hazardous heavy metals: environmental persistence, toxicity, and
bioaccumulation. Journal of Chemistry, 2019: 6730305.
33. Sall,
M. L., Diaw, A. K. D., Gningue-Sall, D., Efremova Aaron, S. and Aaron, J. J.
(2020). Toxic heavy metals: Impact on the environment and human health, and
treatment with conducting organic polymers, a review. Environmental Science
and Pollution Research, 27: 29927-29942.
34. Nguyen,
P. Y., Silva, A. F., Reis, A. C., Nunes, O. C., Rodrigues, A. M., Rodrigues, J.
E., ... and Carvalho, G. (2019). Bioaugmentation of membrane bioreactor with Achromobacter denitrificans
strain PR1 for enhanced sulfamethoxazole removal in wastewater. Science of
the Total Environment, 648: 44-55.
35. Sharma,
G., Gupta, V. K., Agarwal, S., Bhogal, S., Naushad, M., Kumar, A. and Stadler,
F. J. (2018). Fabrication and characterization of trimetallic
nano-photocatalyst for remediation of ampicillin antibiotic. Journal of
Molecular Liquids, 260: 342-350.
36. Kumar,
A., Kumar, A., Sharma, G., Ala'a, H., Naushad, M., Ghfar,
A. A. and Stadler, F. J. (2018). Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4
nano-junction for visible light and solar powered degradation of
sulfamethoxazole from aqueous environment. Chemical Engineering Journal,
334: 462-478.
37. Thakur,
A., Kumar, P., Kaur, D., Devunuri, N., Sinha, R. K.
and Devi, P. (2020). TiO2 nanofibres
decorated with green-synthesized P Au/Ag@CQDs for the
efficient photocatalytic degradation of organic dyes and pharmaceutical drugs. RSC
Advances, 10(15): 8941-8948.
38. Hemmat,
K., Khodabakhshi, M. R. and Zeraatkar
Moghaddam, A. (2021). Synthesis of nanoscale zerovalent iron modified graphene
oxide nanosheets and its application for removing tetracycline antibiotic:
Response surface methodology. Applied Organometallic Chemistry, 35(1):
e6059.
39. Liu,
Q., Li, L., Jin, X., Wang, C. and Wang, T. (2018). Influence of graphene oxide
sheets on the pore structure and filtration performance of a novel graphene
oxide/silica/polyacrylonitrile mixed matrix membrane. Journal of Materials
Science, 53(9): 6505-6518.
40. de Matos Rodrigues, M. H., de
Sousa, P. A. R., Borges, K. C. M., de Melo Coelho, L., de Fátima Gonçalves, R.,
Teodoro, M. D., ... and Júnior,
M. G. (2019). Enhanced degradation of the antibiotic sulfamethoxazole
by heterogeneous photocatalysis using Ce0, 8Gd0, 2O2-δ/TiO2
particles. Journal of Alloys and Compounds, 808: 151711.
41. Hu,
L., Zhang, Y., Lu, W., Lu, Y. and Hu, H. (2019). Easily recyclable photocatalyst
Bi2WO6/MOF/PVDF composite film for efficient degradation
of aqueous refractory organic pollutants under visible-light irradiation. Journal
of Materials Science, 54: 6238-6257.
42. Tang,
J. and Wang, J. (2020). Iron-copper bimetallic metal-organic frameworks for
efficient Fenton-like degradation of sulfamethoxazole under mild conditions. Chemosphere,
241: 125002.
43. Zhuan,
R. and Wang, J. (2020). Enhanced degradation and mineralization of
sulfamethoxazole by integrating gamma radiation with Fenton-like processes. Radiation
Physics and Chemistry, 166: 108457.
44. Xu,
J., Xu, W., Wang, D., Sang, G. and Yang, X. (2016). Evaluation of enhanced
coagulation coupled with magnetic ion exchange (MIEX) in natural organic matter
and sulfamethoxazole removals: the role of Al-based coagulant characteristic. Separation
and Purification Technology, 167: 70-78.
45. Delgado,
N., Capparelli, A., Navarro, A. and Marino, D. (2019). Pharmaceutical emerging
pollutants removal from water using powdered activated carbon: study of
kinetics and adsorption equilibrium. Journal of Environmental Management,
236: 301-308.
46. Xiao,
F. Z., Wang, C., Yu, L. M., Pu, Y. Q., Xu, Y. L., Zhang, K., ... and He, S. Y.
(2019). Fabrication of magnetic functionalised calix [4] arene composite for
highly efficient and selective adsorption towards uranium (VI). Environmental
Chemistry, 16(8): 577-586.
47. Moghaddam,
A. Z., Esmaeilkhanian, E. and Shakourian-Fard,
M. (2019). Immobilizing magnetic glutaraldehyde cross-linked chitosan on
graphene oxide and nitrogen-doped graphene oxide as well-dispersible adsorbents
for chromate removal from aqueous solutions. International Journal of
Biological Macromolecules, 128: 61-73.
48. Patel,
M., Kumar, R., Kishor, K., Mlsna, T., Pittman Jr, C. U. and Mohan, D. (2019).
Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence,
effects, and removal methods. Chemical Reviews, 119(6): 3510-3673.
49. Carmalin
Sophia, A., Lima, E. C., Allaudeen, N. and Rajan, S.
(2016). Application of graphene based materials for
adsorption of pharmaceutical traces from water and wastewater-a review. Desalination
and Water Treatment, 57(57): 27573-27586.
50. Kucherova,
A., Burakova, I. and Burakov,
A. (2017). Graphene materials for lead(II) extraction: an equilibrium study. In
MATEC Web of Conferences. EDP Sciences, 129: 06022.
51. Mishra,
A. K. and Ramaprabhu, S. (2011). Removal of metals
from aqueous solution and sea water by functionalized graphite nanoplatelets
based electrodes. Journal of Hazardous Materials, 185(1): 322-328.
52. Sheng,
Z., Cao, M., Hong, Y., Wang, S., Fan, Z., Xiong, J., ... and Deng, C. (2018).
Preparation of functionalized graphene nano-platelets and use for adsorption of
Pb2+ from solution. Journal of Wuhan University of
Technology-Materials Science Edition, 33(6): 1395-1401.
53. Nandi,
D., Ghosh, S. K., Ghosh, A., Siengchin, S., Roy, A.,
Gupta, K., ... and Ghosh, U. C. (2021). Arsenic removal from water by graphene
nanoplatelets prepared from nail waste: A physicochemical study of adsorption
based on process optimization, kinetics, isotherm and thermodynamics. Environmental
Nanotechnology, Monitoring & Management, 16: 100564.
54. Zhu,
J., Sadu, R., Wei, S., Chen, D. H., Haldolaarachchige,
N., Luo, Z., ... and Guo, Z. (2012). Magnetic graphene nanoplatelet composites
toward arsenic removal. ECS Journal of Solid State
Science and Technology, 1(1): M1.
55. Samaraweera,
H., Pittman Jr, C. U., Thirumalai, R. V. K., Perez, F. and Misna,
T. (2021). Characterization of graphene/pine wood biochar hybrids: Potential to
remove aqueous Cu2+. Environmental Research, 192: 110283.
56. Rosenzweig,
S., Sorial, G. A., Sahle-Demessie, E. and McAvoy, D. C. (2014). Optimizing the
physical-chemical properties of carbon nanotubes (CNT) and graphene
nanoplatelets (GNP) on Cu(II) adsorption. Journal of Hazardous Materials,
279: 410-417.
57. Capra,
L., Manolache, M., Ion, I., Stoica, R., Stinga, G., Doncea,
S. M., ... and Ion, A. C. (2018). Adsorption of Sb(III) on oxidized exfoliated
graphite nanoplatelets. Nanomaterials, 8(12): 992.
58. Smith,
D. M., Hamwi, B. and Rogers, R. E. (2022). Carbon nanomaterial-based aerogels
for improved removal of copper(II), zinc(II), and lead(II) ions from water. Environmental
Science: Advances, 1(2): 208-215.
59. Bogdan,
D., Rizea, G. A., Ion, I. and Ion, A. C. (2016). Ammonium adsorption on
exfoliated graphite nanoplatelets. Revista
de Chimie, 67: 2231-2236.
60. Yin,
Q., Zhu, Y., Ju, S., Liao, W. and Yang, Y. (2016). Rapid determination of
copper and lead in Panax notoginseng by
magnetic solid-phase extraction and flame atomic absorption spectrometry. Research
on Chemical Intermediates, 42: 4985-4998.
61. La,
D. D., Patwari, J. M., Jones, L. A., Antolasic, F.
and Bhosale, S. V. (2017). Fabrication of a GNP/Fe–Mg binary oxide composite
for effective removal of arsenic from aqueous solution. ACS Omega, 2(1):
218-226.
62. Li,
B.-Q., Yuan, W., and Li, L. (2016). Adsorption of Pb2+ and Cd2+
on graphene nanosheets prepared using thermal exfoliation. Acta
Physico-Chimica Sinica, 32: 997-1004.
63. Kucherova, A.
E., Romantsova, I. V., Burakov,
A. E., Memetov, N. R. and Krasnyansky, M. N. (2017). Graphene-based
nanocomposites for enhanced Pb2+ adsorption. Nano Hybrids and
Composites, 13: 323-329.
64. Kumar,
A. K., Sarma, P. N. and Mohan, S. V. (2016). Incidence of selected endocrine
disrupting estrogens in water bodies of Hyderabad and
its relation to water quality parameters. Environmental Engineering
Management Journal, 15: 315-325.
65. Ternes,
T. A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R. D. and Servos, M.
(1999). Behavior and occurrence of estrogens in municipal sewage treatment plants—I.
Investigations in Germany, Canada and Brazil. Science of The Total
Environment, 225(1-2): 81-90.
66. Shi,
J., Fujisawa, S., Nakai, S. and Hosomi, M. (2004).
Biodegradation of natural and synthetic estrogens by
nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas
europaea. Water Research, 38(9): 2323-2330.
67. Auriol,
M., Filali-Meknassi, Y., Adams, C. D. and Tyagi, R.
D. (2006). Natural and synthetic hormone removal using the horseradish
peroxidase enzyme: temperature and pH effects. Water research, 40(15),
2847-2856.
68. Filali-Meknassi, Y., Tyagi, R. D., Surampalli,
R. Y., Barata, C. and Riva, M. C. (2004). Endocrine-disrupting compounds in
wastewater, sludge-treatment processes, and receiving waters: Overview. Practice
Periodical of Hazardous, Toxic, and Radioactive Waste Management, 8(1):
39-56.
69. Jobling,
S., Nolan, M., Tyler, C. R., Brighty, G. and Sumpter,
J. P. (1998). Widespread sexual disruption in wild fish. Environmental
Science & Technology, 32(17): 2498-2506.
70. Kumar,
A. K. and Mohan, S. V. (2012). Removal of natural and synthetic endocrine
disrupting estrogens by multi-walled carbon nanotubes
(MWCNT) as adsorbent: kinetic and mechanistic evaluation. Separation and
Purification Technology, 87: 22-30.
71. Pojana,
G., Gomiero, A., Jonkers, N. and Marcomini, A.
(2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water,
sediment and biota of a coastal lagoon. Environment International,
33(7): 929-936.
72. Routledge,
E. J. and Sumpter, J. P. (1996). Estrogenic activity of surfactants and some of
their degradation products assessed using a recombinant yeast screen. Environmental
Toxicology and Chemistry: An International Journal, 15(3): 241-248.
73. Snyder,
S. A., Villeneuve, D. L., Snyder, E. M. and Giesy, J. P. (2001). Identification
and quantification of estrogen receptor agonists in
wastewater effluents. Environmental Science & Technology, 35(18):
3620-3625.
74. Ion,
A. C., Alpatova, A., Ion, I. and Culetu,
A. (2011). Study on phenol adsorption from aqueous solutions on exfoliated
graphitic nanoplatelets. Materials Science and Engineering: B, 176(7):
588-595.
75. Zakaa,
A., Ibrahima, T. H., Khamisb, M. I. and Samarab, F. (2020). Adsorption characteristics of
diclofenac sodium onto graphene nanoplatelets. Desalination and Water
Treatment, 206: 331-339.
76. Al-Khateeb,
L. A., Almotiry, S. and Salam, M. A. (2014).
Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chemical
Engineering Journal, 248: 191-199.
77. Zakaa,
A., Ibrahima, T. H., Khamisb, M. I. and Jabbara, N.
A. (2019). Experimental design modelling and optimization of levofloxacin
removal with graphene nanoplatelets using response surface method. Pharmaceuticals,
16(18): 19.
78. Kerkez-Kuyumcu,
Ö., Bayazit, Ş. S. and Salam, M. A. (2016). Antibiotic amoxicillin removal
from aqueous solution using magnetically modified graphene nanoplatelets. Journal
of Industrial and Engineering Chemistry, 36: 198-205.
79. Banerjee,
P., Das, P., Zaman, A. and Das, P. (2016). Application of graphene oxide
nanoplatelets for adsorption of ibuprofen from aqueous solutions: evaluation of
process kinetics and thermodynamics. Process Safety and Environmental
Protection, 101: 45-53.
80. Rosli,
F. A., Ahmad, H., Jumbri, K., Abdullah, A. H.,
Kamaruzaman, S. and Fathihah Abdullah, N. A. (2021).
Efficient removal of pharmaceuticals from water using graphene nanoplatelets as
adsorbent. Royal Society Open Science, 8(1): 201076.
81. ElHussein, E.
A. A., Şahin, S. and Bayazit, Ş. S. (2020). Removal of carbamazepine
using UiO-66 and UiO-66/graphene nanoplatelet composite. Journal of
Environmental Chemical Engineering, 8(4): 103898.
82. Luo,
X., Zhang, F., Ji, S., Yang, B. and Liang, X. (2014). Graphene nanoplatelets as
a highly efficient solid-phase extraction sorbent for determination of
phthalate esters in aqueous solution. Talanta,
120: 71-75.
83. Al-Khateeb,
L. A., Hakami, W. and Salam, M. A. (2017). Removal of non-steroidal
anti-inflammatory drugs from water using high surface area nanographene:
kinetic and thermodynamic studies. Journal of Molecular Liquids, 241:
733-741.
84. Bhattacharya,
S., Banerjee, P., Das, P., Bhowal, A., Majumder, S. K. and Ghosh, P. (2020).
Removal of aqueous carbamazepine using graphene oxide nanoplatelets: Process
modelling and optimization. Sustainable Environment Research, 30(1):
1-12.
85. Khalil,
A. M., Memon, F. A., Tabish, T. A., Salmon, D., Zhang, S. and Butler, D.
(2020). Nanostructured porous graphene for efficient removal of emerging
contaminants (pharmaceuticals) from water. Chemical Engineering Journal,
398: 125440.