Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1373 - 1388
METHYLENE BLUE AND METHYL RED
FROM PINEAPPLE PEEL–BASED BIOSORBENT FOR MASS TRANSFER SIMULATION AND
STATISTICAL APPROACH
(Penggunaan
Metilena Biru dan Metil Merah sebagai Biosorben Berbahan Kulit Nanas dalam
Simulasi Pemindahan Jisim dan Pendekatan Statistik)
Nur Ayshah Rosli1*, Mohd Azmier Ahmad1,
and Teh Ubaidah Noh2
1School of
Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300,
Nibong Tebal, Penang, Malaysia
2Institute of Bioproduct
Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
*Corresponding author: chnurayshah@usm.my
Received: 11 August 2023; Accepted: 3
October 2023; Published: 29 December
2023
Abstract
The
study focused on the utilization of pineapple peel activated carbon (PineAC) biosorbent, produced through a low–cost and
environmentally friendly method, for the adsorption of methylene blue (MB) and
methyl red (MR) dyes. PineAC was characterized using
various techniques such as surface analysis, scanning electron microscopy
(SEM), energy–dispersive X–ray (EDX), and Fourier–transform infrared (FTIR)
spectroscopy. ANOVA analysis was conducted to assess the significance of different
factors, with p–values below 0.05
considered statistically significant. The obtained F–values, compared to F–crit
values, indicated the overall significance of the tests. The kinetic data
agreed with the Polymath Mass Transfer (PMT) model, which accurately captured
the adsorption behaviour. The PMT model precisely predicted the adsorption
surface area (am) as 612.60 m2/g, closely aligning with
the actual mesopores surface area of 547.85 m2/g for the MB dye.
Conversely, the PMT model for the MR dye failed to match the actual
calculation, suggesting that the MR dye exhibited unfavourable adsorption
characteristics towards PineAC. This demonstrated the
reliability and robustness of the PMT model in describing the adsorption
process. Exploring the potential functionalization of PineAC
could offer opportunities for enhanced performance and broader applications in
sustainable wastewater treatment.
Keywords: polymath
mass transfer, activated carbon, mass
transfer, methylene blue, methyl red
Abstrak
Kajian ini memberi tumpuan kepada
penggunaan karbon teraktif kulit nanas (PineAC), dihasilkan melalui kaedah yang
murah dan mesra alam, untuk penjerapan pewarna metilena biru (MB) dan metil
merah (MR). PineAC telah dicirikan menggunakan pelbagai teknik seperti analisis
permukaan, mikroskopi imbasan elektron (SEM), sinar–X tersebar tenaga (EDX),
dan spektroskopi inframerah transformasi Fourier (FTIR). Analisis ANOVA telah
dijalankan untuk menilai kepentingan faktor–faktor berbeza, dengan nilai p yang
kurang daripada 0.05 dianggap signifikan secara statistik. Nilai F yang
diperoleh, berbanding dengan nilai F–kritikal,
menunjukkan kepentingan keseluruhan ujian tersebut. Data kinetik selari dengan
model pemindahan jisim polimat (PMT), yang menggambarkan dengan tepat tingkah
laku penjerapan. Selain itu, model PMT secara tepat meramalkan kawasan
permukaan penjerapan (am) sebagai 612.60 m2/g, hampir
seiring dengan kawasan permukaan mesopor sebenar 547.85 m2/g bagi
pewarna MB. Sebaliknya, model PMT bagi pewarna MR gagal sejajar dengan
perhitungan sebenar, menunjukkan bahawa pewarna MR menunjukkan ciri–ciri
penjerapan yang tidak menguntungkan terhadap PineAC. Ini membuktikan
kebolehpercayaan dan ketahanan model PMT dalam menggambarkan proses penjerapan.
Meneroka potensi pemekaan PineAC boleh memberi peluang untuk prestasi yang
lebih baik dan aplikasi yang lebih luas dalam rawatan air sisa lestari.
Kata kunci: pemindahan
jisim polimat, karbon teraktif, pemindahan jisim, metilena biru, metil merah
References
1.
Bilal, M., Ali, J., Bibi, K., Khan, S. B.,
Saqib, M., Saeed, R., Javeria, R., H. Khan, H., Akhtar, K. and Bakhsh, E. M.
(2022). Remediation of different dyes from textile effluent using activated
carbon synthesized from Buxus Wallichiana. Industrial
Crops and Products, 187 (Part A): 115267.
2.
Jabar, J. M., Odusote,
Y. A., Ayinde, Y. T. and Yılmaz, M. (2022). African almond (Terminalia catappa L.) leaves biochar
prepared through pyrolysis using H3PO4 as chemical
activator for sequestration of methylene blue dye. Results in Engineering,
14: 100385.
3.
Mahmad A., Noh T. U.,
Khalid N.I. (2023). Eco–friendly water treatment: The role of MIL metal–organic
frameworks for the bisphenols adsorption from water. Inorganic Chemistry Communications, 152:
110643.
4.
Kuśmierek, K., Świątkowski, A., Kotkowski, T., Cherbański, R., Molga, E.
(2021). Adsorption on activated carbons from end–of–life tyre
pyrolysis for environmental applications. Part II. Adsorption from aqueous
phase. Journal of Analytical and Applied Pyrolysis, 158: 105206.
5.
Ahmad, M. A., Eusoff, M. A., Adegoke, K. A. and Bello, O. S. (2021).
Sequestration of methylene blue dye from aqueous solution using microwave
assisted dragon fruit peel as adsorbent. Environmental
Technology & Innovation, 24: 101917.
6.
Rosli, N. A., Ahmad, M. A., Noh, T. U.
(2023). Unleashing the potential of pineapple peel–based activated carbon:
response surface methodology optimization and regeneration for methylene blue
and methyl red dyes adsorption. Inorganic
Chemistry Communications, 2023: 111041.
7.
Khasri,
A. and Ahmad, M. A. (2018). Adsorption of basic and reactive dyes from aqueous
solution onto Intsia bijuga
sawdust–based activated carbon: batch and column study. Environmental Science and Pollution Research, 25: 31508-31519.
8.
Rosli, N. A., Ahmad, M. A., Noh, T. U. and Ahmad,
N. A. (2023). Pineapple peel–derived carbon for adsorptive removal of dyes. Materials Chemistry and Physics, 2023: 128094.
9.
Khasri,
A., Mohd Jamir, M. R., Ahmad, A. A. and Ahmad, M. A. (2021). Adsorption of
Remazol Brilliant Violet 5R dye from aqueous solution onto melunak
and rubberwood sawdust based activated carbon: interaction mechanism, isotherm,
kinetic and thermodynamic properties. Desalination
and Water Treatment, 216: 401-411.
10. Rosli, N. A.,
Ahmad, M. A., Noh, T. U. (2023). Nature’s waste turned saviour:
Optimizing pineapple peel–based activated carbon for effective Remazol
Brilliant Violet dye adsorption using response surface methodology. Inorganic Chemistry Communications 153:
110844.
11. Aragaw,
T. A. and Bogale, F. M. (2021). Biomass–based adsorbents for removal of dyes
from wastewater: A review. Frontiers in
Environmental Science, 9: 764958.
12. Inglezakis,
V. J., Balsamo, M. and Montagnaro, F. (2020).
Liquid–solid mass transfer in adsorption systems—an overlooked resistance?. Industrial
& Engineering Chemistry Research, 59(50): 22007-22016.
13.
Mohd Ramli, M. R., Shoparwe, N. F., Ahmad, M. A. (2022). Methylene blue
removal using activated carbon adsorbent from Jengkol
Peel: Kinetic and mass transfer studies. Arabian
Journal of Science and Engineering, 48: 8585-8594.
14. Mohamad
Yusop, M. F., Tamar Jaya, M. A., Idris, I., Abdullah, A. Z. and Ahmad, M. A.
(2023). Optimization and mass transfer simulation of remazol
brilliant blue R dye adsorption onto meranti wood based activated carbon. Arabian Journal of Chemistry, 16(5):
104683.
15. Mohamad
Yusop, M. F., Nasehir Khan, M. N., Zakaria, R.,
Abdullah, A. Z., Ahmad, M. A. (2023). Mass transfer simulation on Remazol
Brilliant Blue R dye adsorption by optimized teak wood based activated carbon. Arabian Journal of Chemistry, 16:
104780.
16. Mohamad
Yusop, M. F., Abdullah, A. Z. and Ahmad, M. A. (2023). Malachite green dye
adsorption by jackfruit based activated carbon: Optimization, mass transfer
simulation, and surface area prediction. Diamond
and Related Materials, 136: 109991.
17. Nandiyanto, A. B. D., Girsanga, G. C. S., Maryanti, R.,
Ragadhitaa, R., Anggraenia,
S., Fauzia, F. M., Sakinaha, P., Astutia,
A. P., Usdiyana, D., Fiandinia,
M., Dewi, M. W. and Al–Obaidi, A. S. M. (2020).
Isotherm adsorption characteristics of carbon microparticles prepared from
pineapple peel waste. Communications in Science and Technology, 5(1): 31-39.
18. Iamsaard,
K., Weng, C.H., Yen, L.T., Tzeng, J.H., Poonpakdee,
C. and Lin, Y.T. (2022). Adsorption of metal on pineapple leaf biochar: Key
affecting factors, mechanism identification, and regeneration evaluation. Bioresource Technology, 344: 126131.
19. Ahmad,
M. A., Eusoff, M. A., Oladoye,
P. O., Adegoke, K. A. and Bello, O. S. (2021b). Optimization and batch studies
on adsorption of Methylene blue dye using pomegranate fruit peel–based
adsorbent. Chemical Data Collections, 32:
100676.
20. Thi, H. T., Le Hoang, A., Huu, T.
P., Dinh, T. N., Chang, S. W., Chung, W. J., Nguyen, D. D. (2020). Adsorption
isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science
of The Total Environment, 725:138325.
21. Srivastava,
A., Gupta, B., Majumder, A., Gupta, A. K. and Nimbhorkar, S. K. (2021). A
comprehensive review on the synthesis, performance, modifications, and
regeneration of activated carbon for the adsorptive removal of various water
pollutants. Journal of Environmental
Chemical Engineering, 9(5): 106177.
22. Agnihotri, S.,
Sillu, D., Sharma, G. and Arya, R. K. (2018).
Photocatalytic and antibacterial potential of silver nanoparticles derived from
pineapple waste: Process optimization and modelling kinetics for dye removal. Applied Nanoscience, 8: 2077-2092.
23. Mahmad,
A., Shaharun, M. S., Noh, T. U., Zango, Z. U. and Taha,
M. F. (2022). Experimental and molecular modelling approach for rapid
adsorption of Bisphenol A using Zr and Fe based metal–organic frameworks. Inorganic Chemistry Communications, 142:
109604.
24. Ugbe,
F. A., Anebi, P. O. and Ikudayisi,
V. A. (2018). Biosorption of an anionic dye, eosin yellow onto pineapple peels:
isotherm and thermodynamic study. International
Annals of Science, 4(1): 14-19.
25. Chaiyaraksa,
C., Ruenroeng, C., Buaphuan,
B. and Choksakul, S. (2019). Adsorption of cationic
and anionic dye using modified pineapple peel. Songklanakarin Journal of Science and Technology,
41(1): 199-206.
26. Dai, H., Huang, Y., Zhang, H., Ma, L., Huang, H., Wu,
J. and Zhang, Y. (2019). Direct fabrication of
hierarchically processed pineapple peel hydrogels for efficient Congo red
adsorption. Carbohydrate Polymers, 2019:
115599.
27. Turkmen, K. S.
N., Kipcak, A. S., Moroydor
Derun, E. and Tugrul, N. (2021).
Removal of zinc from wastewater using orange, pineapple and pomegranate peels. International Journal Environmental Science
and Technology, 18: 2781-2792.
28. Shakya,
A., T. and Agarwal, T. (2019). Removal of Cr (VI) from water using pineapple
peel derived biochars: Adsorption potential and
re–usability assessment. Journal of
Molecular Liquids, 293: 111497.
29.
Yusoff, A. H., Mohammad, R., Mohamad, M.,
Sulaiman, A.Z., Che Zaudin, N. A., Rosmadi, N., Aqsa, F., Yusoff, M. and Teo, P. (2020).
Potential of agricultural waste material (Ananas cosmos) as biosorbent
for heavy metal removal in polluted water. Material
Science Forum, 1010: 489-494.