Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1373 - 1388

 

METHYLENE BLUE AND METHYL RED FROM PINEAPPLE PEEL–BASED BIOSORBENT FOR MASS TRANSFER SIMULATION AND STATISTICAL APPROACH

 

(Penggunaan Metilena Biru dan Metil Merah sebagai Biosorben Berbahan Kulit Nanas dalam Simulasi Pemindahan Jisim dan Pendekatan Statistik)

 

Nur Ayshah Rosli1*, Mohd Azmier Ahmad1, and Teh Ubaidah Noh2

 

1School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia

2Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

 

*Corresponding author: chnurayshah@usm.my

 

 

Received: 11 August 2023; Accepted: 3 October 2023; Published:  29 December 2023

 

 

Abstract

The study focused on the utilization of pineapple peel activated carbon (PineAC) biosorbent, produced through a low–cost and environmentally friendly method, for the adsorption of methylene blue (MB) and methyl red (MR) dyes. PineAC was characterized using various techniques such as surface analysis, scanning electron microscopy (SEM), energy–dispersive X–ray (EDX), and Fourier–transform infrared (FTIR) spectroscopy. ANOVA analysis was conducted to assess the significance of different factors, with p–values below 0.05 considered statistically significant. The obtained F–values, compared to F–crit values, indicated the overall significance of the tests. The kinetic data agreed with the Polymath Mass Transfer (PMT) model, which accurately captured the adsorption behaviour. The PMT model precisely predicted the adsorption surface area (am) as 612.60 m2/g, closely aligning with the actual mesopores surface area of 547.85 m2/g for the MB dye. Conversely, the PMT model for the MR dye failed to match the actual calculation, suggesting that the MR dye exhibited unfavourable adsorption characteristics towards PineAC. This demonstrated the reliability and robustness of the PMT model in describing the adsorption process. Exploring the potential functionalization of PineAC could offer opportunities for enhanced performance and broader applications in sustainable wastewater treatment.

 

Keywords: polymath mass transfer, activated carbon, mass transfer, methylene blue, methyl red

 

Abstrak

Kajian ini memberi tumpuan kepada penggunaan karbon teraktif kulit nanas (PineAC), dihasilkan melalui kaedah yang murah dan mesra alam, untuk penjerapan pewarna metilena biru (MB) dan metil merah (MR). PineAC telah dicirikan menggunakan pelbagai teknik seperti analisis permukaan, mikroskopi imbasan elektron (SEM), sinar–X tersebar tenaga (EDX), dan spektroskopi inframerah transformasi Fourier (FTIR). Analisis ANOVA telah dijalankan untuk menilai kepentingan faktor–faktor berbeza, dengan nilai p yang kurang daripada 0.05 dianggap signifikan secara statistik. Nilai F yang diperoleh, berbanding dengan nilai F–kritikal, menunjukkan kepentingan keseluruhan ujian tersebut. Data kinetik selari dengan model pemindahan jisim polimat (PMT), yang menggambarkan dengan tepat tingkah laku penjerapan. Selain itu, model PMT secara tepat meramalkan kawasan permukaan penjerapan (am) sebagai 612.60 m2/g, hampir seiring dengan kawasan permukaan mesopor sebenar 547.85 m2/g bagi pewarna MB. Sebaliknya, model PMT bagi pewarna MR gagal sejajar dengan perhitungan sebenar, menunjukkan bahawa pewarna MR menunjukkan ciri–ciri penjerapan yang tidak menguntungkan terhadap PineAC. Ini membuktikan kebolehpercayaan dan ketahanan model PMT dalam menggambarkan proses penjerapan. Meneroka potensi pemekaan PineAC boleh memberi peluang untuk prestasi yang lebih baik dan aplikasi yang lebih luas dalam rawatan air sisa lestari.

 

Kata kunci: pemindahan jisim polimat, karbon teraktif, pemindahan jisim, metilena biru, metil merah

 


 

References

1.         Bilal, M., Ali, J., Bibi, K., Khan, S. B., Saqib, M., Saeed, R., Javeria, R., H. Khan, H., Akhtar, K. and Bakhsh, E. M. (2022). Remediation of different dyes from textile effluent using activated carbon synthesized from Buxus Wallichiana. Industrial Crops and Products, 187 (Part A): 115267.

2.         Jabar, J. M., Odusote, Y. A., Ayinde, Y. T. and Yılmaz, M. (2022). African almond (Terminalia catappa L.) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye. Results in Engineering, 14: 100385.

3.         Mahmad A., Noh T. U., Khalid N.I. (2023). Eco–friendly water treatment: The role of MIL metal–organic frameworks for the bisphenols adsorption from water. Inorganic Chemistry Communications, 152: 110643.

4.         Kuśmierek, K., Świątkowski, A., Kotkowski, T., Cherbański, R., Molga, E. (2021). Adsorption on activated carbons from end–of–life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. Journal of Analytical and Applied Pyrolysis, 158: 105206.

5.         Ahmad, M. A., Eusoff, M. A., Adegoke, K. A. and Bello, O. S. (2021). Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent. Environmental Technology & Innovation, 24: 101917.

6.         Rosli, N. A., Ahmad, M. A., Noh, T. U. (2023). Unleashing the potential of pineapple peel–based activated carbon: response surface methodology optimization and regeneration for methylene blue and methyl red dyes adsorption. Inorganic Chemistry Communications, 2023: 111041.

7.         Khasri, A. and Ahmad, M. A. (2018). Adsorption of basic and reactive dyes from aqueous solution onto Intsia bijuga sawdust–based activated carbon: batch and column study. Environmental Science and Pollution Research, 25: 31508-31519.

8.         Rosli, N. A., Ahmad, M. A., Noh, T. U. and Ahmad, N. A. (2023). Pineapple peel–derived carbon for adsorptive removal of dyes. Materials Chemistry and Physics, 2023: 128094.

9.         Khasri, A., Mohd Jamir, M. R., Ahmad, A. A. and Ahmad, M. A. (2021). Adsorption of Remazol Brilliant Violet 5R dye from aqueous solution onto melunak and rubberwood sawdust based activated carbon: interaction mechanism, isotherm, kinetic and thermodynamic properties. Desalination and Water Treatment, 216: 401-411.

10.      Rosli, N. A., Ahmad, M. A., Noh, T. U. (2023). Nature’s waste turned saviour: Optimizing pineapple peel–based activated carbon for effective Remazol Brilliant Violet dye adsorption using response surface methodology. Inorganic Chemistry Communications 153: 110844.

11.      Aragaw, T. A. and Bogale, F. M. (2021). Biomass–based adsorbents for removal of dyes from wastewater: A review. Frontiers in Environmental Science, 9: 764958.

12.      Inglezakis, V. J., Balsamo, M. and Montagnaro, F. (2020). Liquid–solid mass transfer in adsorption systems—an overlooked resistance?. Industrial & Engineering Chemistry Research, 59(50): 22007-22016.

13.      Mohd Ramli, M. R., Shoparwe, N. F., Ahmad, M. A. (2022). Methylene blue removal using activated carbon adsorbent from Jengkol Peel: Kinetic and mass transfer studies. Arabian Journal of Science and Engineering, 48: 8585-8594.

14.      Mohamad Yusop, M. F., Tamar Jaya, M. A., Idris, I., Abdullah, A. Z. and Ahmad, M. A. (2023). Optimization and mass transfer simulation of remazol brilliant blue R dye adsorption onto meranti wood based activated carbon. Arabian Journal of Chemistry, 16(5): 104683.

15.      Mohamad Yusop, M. F., Nasehir Khan, M. N., Zakaria, R., Abdullah, A. Z., Ahmad, M. A. (2023). Mass transfer simulation on Remazol Brilliant Blue R dye adsorption by optimized teak wood based activated carbon. Arabian Journal of Chemistry, 16: 104780.

16.      Mohamad Yusop, M. F., Abdullah, A. Z. and Ahmad, M. A. (2023). Malachite green dye adsorption by jackfruit based activated carbon: Optimization, mass transfer simulation, and surface area prediction. Diamond and Related Materials, 136: 109991.

17.      Nandiyanto, A. B. D., Girsanga, G. C. S., Maryanti, R., Ragadhitaa, R., Anggraenia, S., Fauzia, F. M., Sakinaha, P., Astutia, A. P., Usdiyana, D., Fiandinia, M., Dewi, M. W. and Al–Obaidi, A. S. M. (2020). Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste. Communications in Science and Technology, 5(1): 31-39.

18.      Iamsaard, K., Weng, C.H., Yen, L.T., Tzeng, J.H., Poonpakdee, C. and Lin, Y.T. (2022). Adsorption of metal on pineapple leaf biochar: Key affecting factors, mechanism identification, and regeneration evaluation. Bioresource Technology, 344: 126131.

19.      Ahmad, M. A., Eusoff, M. A., Oladoye, P. O., Adegoke, K. A. and Bello, O. S. (2021b). Optimization and batch studies on adsorption of Methylene blue dye using pomegranate fruit peel–based adsorbent. Chemical Data Collections, 32: 100676.

20.      Thi, H. T., Le Hoang, A., Huu, T. P., Dinh, T. N., Chang, S. W., Chung, W. J., Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of The Total Environment, 725:138325.

21.      Srivastava, A., Gupta, B., Majumder, A., Gupta, A. K. and Nimbhorkar, S. K. (2021). A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants. Journal of Environmental Chemical Engineering, 9(5): 106177.

22.      Agnihotri, S., Sillu, D., Sharma, G. and Arya, R. K. (2018). Photocatalytic and antibacterial potential of silver nanoparticles derived from pineapple waste: Process optimization and modelling kinetics for dye removal. Applied Nanoscience, 8: 2077-2092.

23.      Mahmad, A., Shaharun, M. S., Noh, T. U., Zango, Z. U. and Taha, M. F. (2022). Experimental and molecular modelling approach for rapid adsorption of Bisphenol A using Zr and Fe based metal–organic frameworks. Inorganic Chemistry Communications, 142: 109604.

24.      Ugbe, F. A., Anebi, P. O. and Ikudayisi, V. A. (2018). Biosorption of an anionic dye, eosin yellow onto pineapple peels: isotherm and thermodynamic study. International Annals of Science, 4(1): 14-19.

25.      Chaiyaraksa, C., Ruenroeng, C., Buaphuan, B. and Choksakul, S. (2019). Adsorption of cationic and anionic dye using modified pineapple peel. Songklanakarin Journal of Science and Technology, 41(1): 199-206.

26.      Dai, H., Huang, Y., Zhang, H., Ma, L., Huang, H., Wu, J. and Zhang, Y. (2019). Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption. Carbohydrate Polymers, 2019: 115599.

27.      Turkmen, K. S. N., Kipcak, A. S., Moroydor Derun, E. and Tugrul, N. (2021). Removal of zinc from wastewater using orange, pineapple and pomegranate peels. International Journal Environmental Science and Technology, 18: 2781-2792.

28.      Shakya, A., T. and Agarwal, T. (2019). Removal of Cr (VI) from water using pineapple peel derived biochars: Adsorption potential and re–usability assessment. Journal of Molecular Liquids, 293: 111497.

29.      Yusoff, A. H., Mohammad, R., Mohamad, M., Sulaiman, A.Z., Che Zaudin, N. A., Rosmadi, N., Aqsa, F., Yusoff, M. and Teo, P. (2020). Potential of agricultural waste material (Ananas cosmos) as biosorbent for heavy metal removal in polluted water. Material Science Forum, 1010: 489-494.