Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1357 - 1372

 

HEAVY METAL DETERMINATION OF SHARK Scoliodon laticaudus

IN JOHOR WATERS

 

(Penentuan Logam Berat daripada Ikan Yu Scoliodon laticaudus dalam Perairan Johor)

 

Ng Yenlin Erin1, Adiana Ghazali1, 2, Lavannia Ravikumar1, Yap Chee Kong3, Noverita Dian Takarina4,

and Ong Meng Chuan1, 2, 5*

 

1 Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2 Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3 Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor

4 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia

5 Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: ong@umt.edu.my

 

 

Received: 22 September 2023; Accepted: 26 October 2023; Published:  29 December 2023

 

 

Abstract

The sharks from Johor waters were investigated to evaluate certain heavy metal concentrations and their potential human health concerns. This study obtained 25 Scoliodon laticaudus as bycatches from the local fishermen’s market in Johor and stored them at a low temperature before further analysis. The sharks were divided into gill, muscle, fin, stomach, and liver samples with oven drying at 60°C. Certain heavy metals (As, Cd, Cr, Cu, Fe, Hg, Pb, and Zn) were then evaluated using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) after the digestion process using nitric acid (HNO3). This study presented the ascending metal concentration sequences as Fe > Cd > Hg > Pb > Cr > As > Cu > Zn for livers, Cd > Hg > Fe > Pb > Cr > As > Cu > Zn for stomach linings, Cd < Hg < Pb < Fe < Cr < Cu < As < Zn for fins, Hg < Cd < Fe < Pb < Cr < Cu < As < Zn for gills, and  Cd < Hg < Fe < Pb < Cr < Cu < As < Zn for muscles. Therefore, the average pollutant load indexes (PLIs) (contamination levels) for livers, stomach linings, fins, gills, and muscles were 3.31, 2.23, 3.15, 2.47, and 3.35, respectively. Based on the PLI values, this study successfully indicated a moderately polluted contamination level.

 

Keywords: inductively coupled plasma mass spectrometer, pollution load index, pollution, organisms, Straits of Malacca

 

Abstrak

Ikan yu dari perairan Johor telah dianalisis untuk menilai jumlah logam berat tertentu dan potensi risiko kesihatan terhadap manusia. Kajian ini memperoleh 25 Scoliodon laticaudus sebagai tangkapan sampingan dari pasar nelayan tempatan di Johor dan disimpan pada suhu rendah sebelum dianalisis selanjutnya. Ikan yu dibahagikan kepada sampel insang, otot, sirip, perut, hati, dan dikeringkan di dalam ketuhar pada suhu 60°C. Logam berat tertentu (As, Cd, Cr, Cu, Fe, Hg, Pb, dan Zn) dinilai menggunakan spektrometri jisim plasma gadingan aruhan (ICP-MS) selepas proses pencernaan dengan asid nitrik (HNO3). Kajian ini menunjukkan kepekatan logam menaik iaitu Fe > Cd > Hg > Pb > Cr > As > Cu > Zn untuk hati, Cd > Hg > Fe > Pb > Cr > As > Cu > Zn untuk perut, Cd < Hg < Pb < Fe < Cr < Cu < As < Zn untuk sirip, Hg < Cd < Fe < Pb < Cr < Cu < As < Zn untuk insang, dan Cd < Hg < Fe < Pb < Cr < Cu < As < Zn untuk otot. Oleh itu, purata indeks bebanan pencemaran (PLIs) (tahap pencemaran) untuk hati, perut, sirip, insang, dan otot ialah 3.31, 2.23, 3.15, 2.47, dan 3.35. Kajian ini berjaya menunjukkan tahap pencemaran sederhana berdasarkan nilai PLI.

 

Kata kunci: spektrometri jisim plasma gadingan aruhan, indeks bebanan pencemaran, pencemaran, organisma, Selat Melaka


 

References

1.       Nordin, R. (2022). Growing agriculture sector for food security, income. Retrieved October 18, 2022, from https://www.thestar.com.my/metro/metro-news/2022/09/06/growing-agriculture-sector-for-food-security-income.

2.       Rainbow, P. and Furness, R. (2018). Heavy metals in the marine environment. CRC Press, pp. 2-3.

3.       Tchounwou, P., Yedjou, C., Patlolla, A. and Sutton, D. (2012). Heavy metal toxicity and the environment. Springer, Basel: pp. 133-164.

4.       Alves, L., Novais, S., Correia, J., Costa, N., Mendes, S., Nunes, M., Marchand, P. and Lemos, M. (2014). Using shark biomarkers as tools for biomonitoring the health of Atlantic Waters. Frontier Marine Science Conference, 2014: 105.

5.       Sergio, F., Newton, I., Marchesi, L. and Pedrini, P. (2006). Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology, 43(6): 1049-1055.

6.        Devadoss, P. (1989). Observations on the length-weight relationship and food and feeding habits of spade nose shark, Scoliodon laticaudus Muller and Henle. Indian Journal of Fisheries, 36(2): 169-174.

7.       Dulvy, N. K., Simpfendorfer, C., Akhilesh, K. V., Derrick, D., Elhassan, I., Fernando, D., Haque, A. B., Jabado, R. W., Maung, A., Valinassab, T. and VanderWright, W. J. (2022). Scoliodon laticaudus: IUCN red list of threatened species[ Access online 15 September 2022].

8.       Poong, J., Tee, L., Tan, E., Yip, T., Ramli, M., Rahman Ali Hassan, A., Ali, A., Chen, M., James Lam, C. and Ong, M. (2020). Levels of heavy metals in bamboo sharks (Chiloscyllium sp.) in Straits of Malacca, Malaysia. Malaysia Journal of Analytical Sciences, 24(4): 546-557.

9.       Ong, M. C, Yong, J. C., Khoo, X. Y., Tan, Y. F. and Joseph, B. (2014). Selected heavy metals and polycyclic aromatic hydrogen in commercial fishes caught from UMT enclosed lagoon, Terengganu, Malaysia. Advances in Environmental Biology, 8(14): 91-98.

10.    Norhazirah, A. A., Adiana, G., Ahmad, N. I., Shamsudin A. A. and Ong, M. C. (2022). Determination of arsenic and mercury in longtail tuna (Thunnus tonggol) collected from Terengganu waters: risk assessment of dietary exposure. Fisheries and Aquatic Sciences 25(3): 167-174.

11.    Ong, M. C., Shazili, N. A. M., Menier, D., Effendy, A. W. M. (2013). Levels of trace elements in tissue of Ostrea edulis and Crassostrea gigas from Quiberon Bay, Brittany, France. Journal of Fisheries and Aquatic Science, 8(2): 378-387.

12.    Tengku Nur Alia, T. K. A., Hing, L. S., Sim, S. F., Ahmad, A. and Ong, M. C. (2020). Comparative study of raw and cooked farmed sea bass (Lates calcarifer) in relation to metal content and its estimated human health risk. Marine Pollution Bulletin 153: 111009.

13.    Kowalska, J., Mazurek, R., Gąsiorek, M. and Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6): 2395-2420.

14.    Angulo, E. (1996). The Tomlinson pollution load index applied to heavy metal, ‘mussel-watch’ data: a useful index to assess coastal pollution. Science of the Total Environment, 187(1): 19-56.

15.    Ali, A. and Lim, A. (2012). Field guide to sharks of the Southeast Asian Region. Kuala Terengganu. Yayasan Islam, pp.5-9.

16.    Dar, S. A., Thomas, S. N., Chakraborty, S. K. and Jaiswar, A. K. (2022). Length-weight relationships for two commercially important species of Clupeidae (Sardinellalongiceps, anodontostomachacunda) from Karachi Fish Harbor, Pakistan. 2nd  International Conference on Biological Research and Applied Science, 51: 291-294.

17.    Mansor, M., Mohamad Najamuddin, A., Mohd Zawawi, M., Yahya, K. and Siti-Azizah, M. (2012). Length-weight relationships of some important estuarine fish species from Merbok Estuary, Kedah. Journal of Natural Sciences Research, 2(2): 8-17.

18.    Yap, C. and Al-Mutairi, K. (2022). Copper and zinc levels in commercial marine fish from Setiu, East Coast of Peninsular Malaysia. Toxics, 10(2): 52.

19.    Yanong, R. P. (2010). Use of copper in marine aquaculture and aquarium systems: FA165/FA165, 12/2009. EDIS, 2010(2).

20.    Akram, Z., Fatima, M., Shah, S., Afzal, M., Hussain, S. and Hussain, M. (2019). Dietary zinc requirement of Labeo rohita juveniles fed practical diets. Journal of Applied Animal Research, 47(1): 223-229.

21.    Skidmore, J. (1964). Toxicity of zinc compounds to aquatic animals, with special reference to fish. The Quarterly Review of Biology, 39(3): 227-248.

22.    FAO (n.d). Food safety and quality: Chemical risks and JECFA. Retrieved from: https://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/en/ [Accessed online 18 November, 2022].

23.    Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. and Beeregowda, K. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2): 60-72.

24.    Yap, C., Ismail, A. and Tan, S. (2003). Cd and Zn concentrations in the Straits of Malacca and intertidal sediments of the west coast of Peninsular Malaysia. Marine Pollution Bulletin, 46(10): 1349-1353.

25.    Wang, M., Chen, C., Chen, C., Tsai, W. and Dong, C. (2022). Assessment of trace metal concentrations in Indian Ocean silky sharks Carcharhinus falciformis and their toxicological concerns. Marine Pollution Bulletin, 178: 113571.

26.    Alves, L., Nunes, M., Marchand, P., Le Bizec, B., Mendes, S. and Correia, J. (2016). Blue sharks (Prionace glauca) as bioindicators of pollution and health in the Atlantic Ocean: Contamination levels and biochemical stress responses. Science of Total Environment, 563-564 (2016): 282-292.

27.    Farkas, A., Salánki, J. and Varanka, I. (2000). Heavy metal concentrations in fish of Lake Balaton. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 5(4): 271-279.

28.    Bełdowska, M., and Falkowska, L. (2016). Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the southern Baltic. Water, Air, Soil Pollution, 227(2): 52.

29.    Suhendrayatna, S., Arahman, N., Sipahutar, L., Rinidar, R. and Elvitriana, E. (2019). Toxicity and organ distribution of mercury in freshwater fish (Oreochromis niloticus) after exposure to water contaminated mercury. Toxics7(4): 58.

30.    Havelková, M., Dušek, L., Némethová, D., Poleszczuk, G. and Svobodová, Z. (2008). Comparison of mercury distribution between liver and muscle – a biomonitoring of fish from lightly and heavily contaminated localities. Sensors8(7), 4095-4109.

31.    Salam, M., Paul, S., Noor, S., Siddiqua, S., Aka, T. and Aweng, E. (2019). Contamination profile of heavy metals in marine fish and shellfish. Global Journal of Environmental Science and Management, 5(2): 225-236.

32.    Beiras, R. (2018). Trace metals and organometallic compounds. Marine Pollution, Elsevier. pp: 137-164.

33.    Mukaka, M. (2012). A guide to appropriate use of Correlation coefficient in medical research. Malawi Medical Journal, 24(3): 69-71.

34.    Schober, P., Boer, C. and Schwarte, L. A. (2018). Correlation coefficients. Anesthesia & Analgesia, 126(5): 1763-1768.

35.    Bosch, A., O’Neill, B., Sigge, G., Kerwath, S. and Hoffman, L. (2015). Heavy metals in marine fish meat and consumer health: a review. Journal of the Science of Food and Agriculture, 96(1): 32-48.

36.    Ansari, T., Marr, I., and Tariq, N. (2003). Heavy metals in marine pollution perspective–a mini review. Journal of Applied Sciences, 4(1): 1-20.

37.    Ahmad, N., Noh, M., Mahiyuddin, W., Jaafar, H., Ishak, I. and Azmi, W. (2014). Mercury levels of marine fish commonly consumed in Peninsular Malaysia. Environmental Science and Pollution Research, 22(5): 3672-3686.

38.    Hashim, R., Tan, H., Noor Zuhartini, M. and Tan, P. (2014). Determination of heavy metal levels in fishes from the lower reach of the Kelantan River, Kelantan, Malaysia. Tropical Life Sciences Research, 25(2): 21-39.