Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1349 - 1356

 

LATENT FINGERPRINTS TECHNIQUES AND THE USE OF STARCH TO IDENTIFY THE PRINTS: A MINI-REVIEW

 

(Teknik Cap Jari Tidak Kelihatan dan Penggunaan Kanji Sebagai Bahan Asas untuk Mengenal Pasti Cap Jari: Ulasan Ringkas)

 

Anis Iryani Ahmad Shukri1, Norlaily Ahmad2, and NorulNazilah Ab’lah2*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA , 40500 Shah Alam, Selangor, Malaysia

2Centre of Foundation Studies,

Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43800 Dengkil,

Selangor, Malaysia

 

*Corresponding author: nazlila24@uitm.edu.my

 

 

Received: 11 August 2023; Accepted: 24 October 2023; Published:  29 December 2023

 

Abstract

Early techniques to develop latent fingerprints have shown many drawbacks such as being costly, time-consuming, less stable, highly toxic, low selectivity, low sensitivity, and low contrast.  Numerous studies have been introduced to improve the identification of latent fingerprint techniques. The application of starch as a based material or binding agent offers advantages since this biomaterial is nontoxic, easily available, abundant, and cost-saving. Studies show that starch-based materials have good potential in the detection of latent fingerprints. However, studies related to the use of starch-based material in the development of latent fingerprints are still limited. Therefore, this mini-review highlights the techniques used in the detection of latent fingerprints and the potential alternative in detecting latent fingerprints using starch particularly as coating and coated materials. 

 

Keywords: latent fingerprints, powder dusting, quantum dots, carbon nanoparticles, starch


 

Abstrak

Kajian terdahulu berkaitan kaedah untuk mengesan cap jari tidak kelihatan mempunyai banyak kelemahan seperti mahal, kurang stabil, bertoksid, tahap selektiviti yang rendah, kepekaan yang rendah, serta kontras yang juga rendah. Terdapat banyak penyelidikan yang telah dilakukan bagi mengkaji pelbagai kaedah untuk meningkatkan pengenalpastian cap jari tidak kelihatan. Penggunaan kanji sebagai bahan asas menawarkan beberapa kelebihan seperti tidak bertoksid, mudah didapati, banyak, dan dapat menjimatkan kos. Kajian menunjukkan penggunaan kanji adalah berpotensi dalam pengesanan cap jari tidak kelihatan. Walaubagaimanapun, kajian berkenaan penggunaan kanji sebagai bahan asas dalam teknik pengesanan cap jari tidak kelihatan masih terhad. Sehubungan itu, ulasan ringkas ini memfokuskan kepada kaedah-kaedah yang digunakan dalam mengesan cap jari tidak kelihatan dan kaedah alternatif yang berpotensi dengan menggunakan kanji dalam pengesanan cap jari tidak kelihatan terutamanya sebagai bahan salutan atau bahan bersalut. 

 

Kata kunci: cap jari tidak kelihatan, debu serbuk, titik kuantum, nanopartikel karbon, kanji   


References

1.       Li, H., Guo, X., Liu, J. and Li, F. (2016). A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection. Optical Materials, 60: 404-410.

2.       Nugroho, D., Oh, W.C., Chanthai, S., and Benchawattananon, R. (2022). Improving minutiae image of latent fingerprint detection on non-porous surface materials under UV light using sulfur doped carbon quantum dots from Magnolia grandiflora flower. Nanomaterials, 12(19): 3277. 

3.       Peng, D., Liu, X., Huang, M., Wang, D. and Liu, R. (2018). A novel monodisperse SiO2@C-dot for the rapid and facile identification of latent fingermarks using self-quenching resistant solid-state fluorescence. Dalton Transactions, 47(16): 5823-5830.

4.       Prabakaran, E., and Pillay, K. (2021). Nanomaterials for latent fingerprint detection: A review. Journal of Materials Research and Technology, 12: 1856-1885.

5.       Vadivel, R., Nirmala, M. and Anbukumaran, K. (2021). Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints. Forensic Chemistry, 24: 100339.

6.       Zhao, Y. B., Ma, Y. J., Song, D., Liu, Y., Luo, Y., Lin, S., and Liu, C. Y. (2017). New luminescent nanoparticles based on carbon dots/SiO2 for the detection of latent fingermarks. Analytical Methods, 9 (33): 4770-4775.

7.       Dong, X. Y., Niu, X. Q., Zhang, Z. Y., Wei, J. S. and Xiong, H. M. (2020). Red fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program. ACS Applied Materials and Interfaces, 12(26): 29549-29555.

8.       Prasad, V., Lukose, S., Agarwal, P. and Prasad, L. (2020). Role of nanomaterials for forensic investigation and latent fingerprinting - a review. Journal of Forensic Sciences, 65(1): 26-36.

9.       Wang, M., Li, M., Yu, A., Zhu, Y.,  Yang, M., and Mao, C. (2017). Fluorescent nanomaterials for the development of latent fingerprints in forensic sciences. Advanced Functional Materials, 27(14): 1606243. 

10.    Li, F., Wang, X., Liu, W., Wang, L. and Wang, G. (2018). One-step solvothermal synthesis of red emissive carbonized polymer dots for latent fingerprint imaging. Optical Materials, 86: 79-86.

11.    Friesen, J. B. (2015).   Forensic chemistry: The revelation of latent fingerprints. Journal of Chemical Education, 92(3): 497-504.

12.    Abdollahi, A., Dashti, A., Rahmanidoust, M. and Hanaei, N. (2022). Metal-free and ecofriendly photoluminescent nanoparticles for visualization of latent fingerprints, anticounterfeiting, and information encryption. Sensors and Actuators B: Chemical, 372: 132649.

13.    Dhaneshwar, R., Kaur, M., and Kaur, M. (2021).  An investigation of latent fingerprinting techniques. Egyptian Journal of Forensic Sciences, 11(1): 33.

14.    Lian, J., Meng, F., Wang, W. and Zhang, Z. (2020). Recent trends in fluorescent organic materials for latent fingerprint imaging. Frontiers in Chemistry, 8: 1-8.

15.    Bumbrah, G. S. (2017). Cyanoacrylate fuming method for detection of latent fingermarks: A review. Egyptian Journal of Forensic Sciences, 7: 1-8. 

16.    Kanodarwala, F. K., Leśniewski, A., Olszowska-Łoś, I., Spindler, X., Pieta, I. S., Lennard, C., Niedziółka-Jönsson, J., Moret, S. and Roux, C. (2021). Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming. Forensic Science International, 326: 110915.

17.    Schulz, M. M., Wehner, H. D., Reichert, W., and Graw, M. (2004).  Ninhydrin-dyed latent fingerprints as a DNA source in a murder case. Journal of Clinical Forensic Medicine, 11(4): 202-204.

18.    Lennard, C. (2013). Forensic sciences: Fingerprint techniques. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2013: 1-10.

19.    Yang, R. and Lian, J. (2014).     Studies on the development of latent fingerprints by the method of solid-medium ninhydrin. Forensic Science International, 242: 123-126.

20.    Loh, C. N., Chia, W. L. K., Foo, S. C. S., Xu, X. and Tan, W. L. S. (2020).    Evaluation of the performance of IND/Zn and DFO on various porous substrates in Singapore context. Forensic Science International, 315: 110440.

21.    D’Elia, V., Materazzi, S., Iuliano, G. and Niola, L. (2015). Evaluation and comparison of 1,2-indanedione and 1,8-diazafluoren-9-one solutions for the enhancement of latent fingerprints on porous surfaces. Forensic Science International, 254: 205-214.

22.    Marriott, C., Lee, R., Wilkes, Z., Comber, B., Spindler, X., Roux, C., and Lennard, C. (2014). Evaluation of fingermark detection sequences on paper substrates. Forensic Science International, 236: 30-37.

23.    Schwarz, L., and Hermanowski, M. L. (2011). Detection of latent fingerprints by the use of silver nitrate. Archiv Fur Kriminologie, 227 (3-4): 111-123.

24.    Sodhi, G. S. and Kaur, J. (2001). Powder method for detecting latent fingerprints: A review. Forensic Science International, 120(3): 172-176.

25.    Xia, C., Zhu, S., Feng, T., Yang, M. and Yang, B. (2019). Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Advanced Science, 6(23): 1901316.

26.    Shabashini, A., Panja, S. K., and Nandi, G. C. (2021). Applications of carbon dots (CDs) in latent fingerprints imaging. Chemistry - An Asian Journal, 16(9): 1057-1072.

 

27.    Xu, L., Li, Y., Wu, S., Liu, X. and Su, B. (2012). Imaging latent fingerprints by electrochemiluminescence. Angewandte Chemie,  32(124): 8192-8196.

28.    Barros, H. L., Tavares, L. and Stefani, V. (2020). Dye-doped starch microparticles as a novel fluorescent agent for the visualization of latent fingermarks on porous and non-porous substrates. Forensic Chemistry, 20: 100264.

29.    Barros, H. L. and Stefani, V. (2021). Synthesis and photophysical behavior of fluorescent benzazole dyes and fluorescent microparticles: Their use as fingerprint developer. Journal of Photochemistry and Photobiology A: Chemistry, 420:113494.

30.    Rajan, R., Zakaria, Y., Shamsuddin, S. and Nik Hassan, N. F. (2019). Fluorescent variant of silica nanoparticle powder synthesised from rice husk for latent fingerprint development. Egyptian Journal of Forensic Sciences, 9: 1-9.

31.    Valverde-Aguilar, G. (2006). Photostability of laser dyes incorporated in formamide SiO2 ORMOSILs. Optical Materials, 28(10): 1209-1215.

32.    Mary, S. K., Koshy, R. R., Arunima, R., Thomas, S. and Pothen, L. A. (2022). A review of recent advances in starch-based materials: bionanocomposites, pH sensitive films, aerogels and carbon dots. Carbohydrate Polymer Technologies and Applications, 3: 100190.

33.    Lv, Z., Man, Z., Xu, Z., Li, S., Liao, Q. and Fu, H. (2021). Highly emissive near-infrared solid organic fluorophores for visualization of latent fingerprints based on the powder dusting method. Journal of Materials Chemistry C, 9(23): 7345-7350.

34.    Wang, M., Zhu, Y. and Mao, C. (2015). Synthesis of NIR-Responsive NaYF4:Yb,Er upconversion fluorescent nanoparticles using an optimized solvothermal method and  their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir, 31(25): 7084-7090.

35.    Ran, C., Xu, Z., He, J., Man, Z., Lv, Z., Wang, P. and Fu, H. (2022). Starch-based near-infrared organic fluorophores for the imaging of latent fingerprints. Journal of Materials Chemistry C, 10(43):16347-16352.