Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1326 – 1336

 

PHOTOCATALYTIC DEGRADATION OF OFLOXACIN ANTIBIOTIC BY g-C3N4/ZnO NANOCOMPOSITE UNDER VISIBLE LIGHT IRRADIATION

 

(Fotokatalitik Degradasi Ofloksasin Antibiotik oleh Nanokomposit g-C3N4/ZnO di Bawah Penyinaran Cahaya Tampak) 

 

Nor Fadilah Chayed1,2, Salma Izati Sinar Mashuri1,2, Izzati Shafiqah Zainal Abidin1,2, Muhd Firdaus Kasim1,2, Noor Haida Mohd Kaus4, Mohd Sufri Mastuli1,2, Umer Rashid5, and Mohd Lokman Ibrahim1,2,3*

 

1Centre for Functional Materials and Nanotechnology,

Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Industrial Waste Conversion Technology,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Penang, Malaysia

5Institute of Nanoscience and Nanotechnology,

Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia

 

*Corresponding author: mohd_lokman@uitm.edu.my

 

 

Received: 15 September 2023; Accepted: 29 October 2023; Published:  29 December 2023

 

 

Abstract

A critical global environmental crisis has emerged due to the use of synthetic organic pollutants in industry, which resulted in the pollution of water. Recently, photocatalysis has attracted much attention for its potential to effectively, economically, and environmentally friendly remove organic pollutants from wastewater. ZnO is known as a potential photocatalyst for the degradation of wastewater in the UV region. However, ZnO has limited light absorption within the UV region and exhibits fast recombination of electron-hole pairs, which reduces its efficiency. To overcome this issue, a g-C3N4/ZnO photocatalyst for organic pollutant degradation in wastewater was developed to extend the light absorption towards the visible region. This research aims to investigate the performance of g-C3N4/ZnO nanocomposites in the degradation of ofloxacin (OFL). The ZnO was prepared using the sol-gel method, while the g-C3N4 was prepared using thermal decomposition. The composite catalyst of g-C3N4/ZnO was prepared by mixing g-C3N4 and ZnO. The prepared catalysts were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Vis NIR spectrophotometer, high-resolution transmission electron microscopy (HRTEM), and Brunauer Emmet Teller (BET). As a result of the composite photocatalyst combining ZnO and g-C3N4, the band gap decreased from 3.30 eV to 2.92 eV. The degradation of OFL using g-C3N4/ZnO nanocomposite is 11 times higher than that of pristine ZnO and double than that of pristine g-C3N4.

 

Keywords: g-C3N4/ZnO, ofloxacin, degradation, photocatalysis, wastewater treatment

 

Abstrak

Krisis alam sekitar global yang kritikal telah muncul akibat penggunaan bahan pencemar organik sintetik di dalam industri, mengakibatkan pencemaran air. Baru-baru ini, fotokatalisis telah menarik banyak perhatian kerana potensinya untuk merawat bahan organik daripada air sisa tercemar secara berkesan, ekonomikal dan mesra alam. ZnO dikenali sebagai fotomangkin berpotensi untuk degradasi air sisa tercemar di kawasan UV. Walau bagaimanapun, ZnO mempunyai penyerapan cahaya yang terhad dalam kawasan UV hanya disebabkan oleh tenaga jurang jalur yang besar (3.37 eV) dan mempamerkan penggabungan semula pantas pasangan lubang elektron, yang mengurangkan kecekapannya. Untuk mengatasi isu ini, fotomangkin g-C3N4/ZnO untuk degradasi bahan organik dalam rawatan air sisa telah dihasilkan untuk meningkatkan penyerapan cahaya ke arah cahaya tampak. Matlamat penyelidikan ini adalah untuk menyiasat prestasi nanokomposit g-C3N4/ZnO dalam degradasi ofloksasin (OFL). ZnO disediakan menggunakan kaedah sol-gel, manakala g-C3N4 disediakan menggunakan penguraian terma. Mangkin komposit g-C3N4/ZnO disediakan dengan mencampurkan g-C3N4 dan ZnO. Pemangkin yang disediakan telah dicirikan menggunakan pembelauan sinar-X-(XRD), mikroskopi imbasan elektron pancaran medan (FESEM), spektrofotometer UV-Vis NIR, mikroskopi transmisi elektron resolusi tinggi (HRTEM), dan Brunauer Emmet Teller (BET). Hasil daripada fotomangkin komposit yang menggabungkan ZnO dan g-C3N4, jurang jalur menurun daripada 3.30 eV kepada 2.92 eV. Degradasi ofloksasin menggunakan nanokomposit g-C3N4/ZnO adalah 11 kali lebih tinggi daripada ZnO dan 2 kali lebih tinggi daripada g-C3N4 tulen.

 

Kata kunci: g-C3N4/ZnO, ofloksasin, degradasi, fotokatalisis, rawatan air tercemar


References

1.     Gupta, G., Kansal, S. K., Umar, A. and Akbar, S. (2023). Visible-light driven excellent photocatalytic degradation of ofloxacin antibiotic using BiFeO3 nanoparticles. Chemosphere, 314: 137611.

2.     Meng, X., Wang, Z., Li, K., Liu, Y., Zhao, D. and Fu, Y. (2023). Degradation of ofloxacin by lanthanum cerate perovskite activated bisulfite. Environmental Technology & Innovation, 32: 103370.

3.     Zhou, G., Meng, L., Ning, X., Yin, W., Hou, J., Xu, Q., ... and Wang, X. (2022). Switching charge transfer of g-C3N4/BiVO4 heterojunction from type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis. International Journal of Hydrogen Energy, 47(14): 8749-8760.

4.     Cipagauta-Díaz, S., Estrella-González, A., Navarrete-Magaña, M. and Gómez, R. (2022). N doped-TiO2 coupled to BiVO4 with high performance in photodegradation of Ofloxacin antibiotic and Rhodamine B dye under visible light. Catalysis Today, 394: 445-457.

5.     Ding, C., Guo, J., Chen, P., Gan, W., Yin, Z., Qi, S., ... and Sun, Z. (2022). All-solid-state Z-scheme In2S3/CQDs/TiO2 heterojunction for highly efficient degradation of ofloxacin. Applied Surface Science, 596: 153629.

6.     Su, Q., Li, J., Yuan, H., Wang, B., Wang, Y., Li, Y. and Xing, Y. (2022). Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B (Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution. Chemical Engineering Journal, 427: 131594.

7.     Zhang, M., Xu, J. and Chen, M. (2022). Novel Z-scheme LaVO4/Bi3O4Cl heterojunctions for highly efficient degradation of ofloxacin under visible light irradiation. Journal of Alloys and Compounds, 925: 166653.

8.     Sharan, S., Khare, P. and Shankar, R. (2023). Electrochemical degradation of ofloxacin using PbO2/Pb-based lead acid battery electrode: Parametric optimization and kinetics study. Materials Today: Proceedings, 78: 128-137.

9.     Cai, H., Wang, J., Du, Z., Zhao, Z., Gu, Y., Guo, Z., ... and Fang, Y. (2023). Construction of novel ternary MoSe2/ZnO/p-BN photocatalyst for efficient ofloxacin degradation under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 663: 131050.

10. Radjenović, J., Petrović, M. and Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3): 831-841.

11. Zhang, S., Wang, Y., Cao, Z., Xu, J., Hu, J., Huang, Y., ... and Wang, H. (2020). Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation. Chemical Engineering Journal, 381: 122771.

12. Ding, P., Li, J., Guo, M., Ji, H., Li, P., Liu, W., ... and Chen, S. (2023). Visible light-driven degradation of ofloxacin by graphene oxide-supported titania/zirconia ternary nanocomposites. Inorganic Chemistry Communications, 155: 111001.

13. Wen, Y., Wang, Z., Cai, Y., Song, M., Qi, K. and Xie, X. (2022). S-scheme BiVO4/CQDs/β-FeOOH photocatalyst for efficient degradation of ofloxacin: Reactive oxygen species transformation mechanism insight. Chemosphere, 295: 133784.

14.      He, S., Chen, Q., Chen, G., Shi, G., Ruan, C., Feng, M., ... and Cao, C. (2022). N-doped activated carbon for high-efficiency ofloxacin adsorption. Microporous and Mesoporous Materials, 335: 111848.

15. Wang, X., Li, Y., Li, R., Yang, H., Zhou, B., Wang, X. and Xie, Y. (2019). Comparison of chlorination behaviors between norfloxacin and ofloxacin: reaction kinetics, oxidation products and reaction pathways. Chemosphere, 215: 124-132.

16. Sun, Q., Sun, Y., Zhou, M., Cheng, H., Chen, H., Dorus, B., ... and Le, T. (2022). A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation. Ceramics International, 48(5): 7283-7290.

17. Sharma, G., Kumar, A., Kumar, P. S., Alodhayb, A., ALOthman, Z. A., Dhiman, P. and Stadler, F. J. (2022). Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin. Journal of Water Process Engineering, 48: 102853.

18. Singh, R. and Dutta, S. (2019). The role of pH and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst. Nano-Structures & Nano-Objects, 18: 100250.

19. Pirhashemi, M., Habibi-Yangjeh, A. and Pouran, S. R. (2018). Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 62: 1-25.

20. Sinar Mashuri, S. I., Kasim, M. F., Mohd Kaus, N. H., Yie, H. T., Islam, A., Rashid, U., ... and Ibrahim, M. L. (2023). Photo-response range extension of z-scheme ZnO/Cds for led-light-driven photo-active catalyst. Renewable Sustainability Energy Review, 184: 113602.

21. Lu, S., Ma, Y. and Zhao, L. (2022). Production of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance from wastewater by adsorption-photocatalysis. Journal of Molecular Liquids, 364: 119924.

22. Jin, C. Z., Yang, X. A., Zhai, X. M., Wang, S. B. and Zhang, W. B. (2023). ZnO/Sn3O4 amorphous-crystalline heterojunctions for Cr (VI) visible photocatalysis: Simple synthesis with excellent performance. Applied Surface Science, 608: 155263.

23. Vo, N. T. T., You, S. J., Pham, M. T. and Van Pham, V. (2023). A green synthesis approach of p-n CuO/ZnO junctions for multifunctional photocatalysis towards the degradation of contaminants. Environmental Technology & Innovation, 32: 103285.

24. Akhter, P., Nawaz, S., Shafiq, I., Nazir, A., Shafique, S., Jamil, F., ... and Hussain, M. (2023). Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Molecular Catalysis, 535: 112896.

25. Mohamed, M. A., Zain, M. F. M., Minggu, L. J., Kassim, M. B., Jaafar, J., Amin, N. A. S., and Ng, Y. H. (2019). Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic activity. Journal of Industrial and Engineering Chemistry, 77: 393-407.

26. Wen, J., Xie, J., Chen, X. and Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391: 72-123.

27. Mishra, A., Mehta, A., Basu, S., Shetti, N. P., Reddy, K. R. and Aminabhavi, T. M. (2019). Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review. Carbon, 149: 693-721.

28. Prasad, C., Tang, H. and Bahadur, I. (2019). Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review. Journal of Molecular Liquids, 281: 634-654.

29. Zhu, J., Xiao, P., Li, H. and Carabineiro, S. A. (2014). Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 6(19): 16449-16465.

30. Naseri, A., Samadi, M., Pourjavadi, A., Ramakrishna, S. and Moshfegh, A. Z. (2021). Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal. Ceramics International, 47(18): 26185-26196.

31. Mohanty, L., Pattanayak, D. S. and Dash, S. K. (2021). An efficient ternary photocatalyst Ag/ZnO/g-C3N4 for degradation of RhB and MG under solar radiation. Journal of the Indian Chemical Society, 98(11): 100180.

32. Das, D. and Nandi, P. (2022). ZnO/g-C3N4 heterostructures: Synthesis, characterization and application as photoanode in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 248: 112002.

33. Zhong, Q., Lan, H., Zhang, M., Zhu, H. and Bu, M. (2020). Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr (VI) and eosin). Ceramics International, 46(8): 12192-12199.

34. Fallahpour, M., Poursalehi, R. and Yourdkhani, A. (2023). Highly efficient photocatalytic removal of concentrated PEX, PAX and SIPX xanthates collectors by an immobilized nanostructured g-C3N4/ZnO low power backlighted module. Minerals Engineering, 204: 108416.

35. Tran, D. A., Pham, C. T. N., Ngoc, T. N., Phi, H. N., Ta, Q. T. H., Truong, D. H., and Vo, V. (2021). One-step synthesis of oxygen doped g-C3N4 for enhanced visible-light photodegradation of Rhodamine B. Journal of Physics and Chemistry of Solids, 151: 109900.

36. Kamarulzaman, N., Kasim, M. F. and Chayed, N. F. (2016). Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes. Results in Physics, 6: 217-230.

37. Mao, N., Jiao, Y. and Duan, X. (2022). g-C3N4/ZnO heterojunction as Fenton-like catalyst for degradation of organic pollution. Materials Research Bulletin, 151: 111818.

38. Garg, R., Gupta, R. and Bansal, A. (2021). Synthesis of g-C3N4/ZnO nanocomposite for photocatalytic degradation of a refractory organic endocrine disrupter. Materials Today: Proceedings, 44: 855-859.

39. Paul, D. R., Gautam, S., Panchal, P., Nehra, S. P., Choudhary, P. and Sharma, A. (2020). ZnO-modified g-C3N4: A potential photocatalyst for environmental application. ACS Omega, 5(8): 3828-3838.

40. Portillo-Cortez, K., Romero-Ibarra, J. E., Dominguez, D., Alonso-Nuñez, G. and Caudillo-Flores, U. (2023). Photodegradation of ceftriaxone using g-C3N4-ZnO nanocomposite as an efficient photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 445: 115090.