Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1326 – 1336
PHOTOCATALYTIC DEGRADATION OF OFLOXACIN ANTIBIOTIC BY g-C3N4/ZnO
NANOCOMPOSITE UNDER VISIBLE LIGHT IRRADIATION
(Fotokatalitik
Degradasi Ofloksasin Antibiotik oleh Nanokomposit g-C3N4/ZnO
di Bawah Penyinaran Cahaya Tampak)
Nor Fadilah Chayed1,2, Salma Izati Sinar Mashuri1,2,
Izzati Shafiqah Zainal Abidin1,2, Muhd Firdaus Kasim1,2, Noor
Haida Mohd Kaus4, Mohd Sufri Mastuli1,2, Umer Rashid5,
and Mohd Lokman Ibrahim1,2,3*
1Centre for Functional Materials and Nanotechnology,
Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
2School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Industrial Waste Conversion Technology,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
4School of Chemical Sciences,
Universiti Sains Malaysia, 11800 Penang, Malaysia
5Institute of Nanoscience and Nanotechnology,
Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
*Corresponding author: mohd_lokman@uitm.edu.my
Received: 15 September
2023; Accepted: 29 October 2023; Published:
29 December 2023
Abstract
A critical global environmental
crisis has emerged due to the use of synthetic organic pollutants in industry, which
resulted in the pollution of water. Recently, photocatalysis has attracted much
attention for its potential to effectively, economically, and environmentally
friendly remove organic pollutants from wastewater. ZnO is known as a potential
photocatalyst for the degradation of wastewater in the UV region. However, ZnO
has limited light absorption within the UV region and exhibits fast
recombination of electron-hole pairs, which reduces its efficiency. To overcome
this issue, a g-C3N4/ZnO photocatalyst for organic pollutant
degradation in wastewater was developed to extend the light absorption towards
the visible region. This research aims to investigate the performance of g-C3N4/ZnO
nanocomposites in the degradation of ofloxacin (OFL). The ZnO was prepared
using the sol-gel method, while the g-C3N4 was prepared
using thermal decomposition. The composite catalyst of g-C3N4/ZnO
was prepared by mixing g-C3N4 and ZnO. The prepared
catalysts were characterized using X-ray diffraction (XRD), field emission
scanning electron microscopy (FESEM), UV-Vis NIR spectrophotometer,
high-resolution transmission electron microscopy (HRTEM), and Brunauer Emmet
Teller (BET). As a result of the composite photocatalyst combining ZnO and g-C3N4,
the band gap decreased from 3.30 eV to 2.92 eV. The degradation of OFL using
g-C3N4/ZnO nanocomposite is 11 times higher than that of pristine
ZnO and double than that of pristine g-C3N4.
Keywords: g-C3N4/ZnO,
ofloxacin, degradation, photocatalysis, wastewater treatment
Abstrak
Krisis alam sekitar
global yang kritikal telah muncul akibat penggunaan bahan pencemar organik
sintetik di dalam industri, mengakibatkan pencemaran air. Baru-baru ini, fotokatalisis
telah menarik banyak perhatian kerana potensinya untuk merawat bahan organik
daripada air sisa tercemar secara berkesan, ekonomikal dan mesra alam. ZnO
dikenali sebagai fotomangkin berpotensi untuk degradasi air sisa tercemar di
kawasan UV. Walau bagaimanapun, ZnO mempunyai penyerapan cahaya yang terhad
dalam kawasan UV hanya disebabkan oleh tenaga jurang jalur yang besar (3.37 eV)
dan mempamerkan penggabungan semula pantas pasangan lubang elektron, yang
mengurangkan kecekapannya. Untuk mengatasi isu ini, fotomangkin g-C3N4/ZnO
untuk degradasi bahan organik dalam rawatan air sisa telah dihasilkan untuk meningkatkan
penyerapan cahaya ke arah cahaya tampak. Matlamat penyelidikan ini adalah untuk
menyiasat prestasi nanokomposit g-C3N4/ZnO dalam
degradasi ofloksasin (OFL). ZnO disediakan menggunakan kaedah sol-gel, manakala
g-C3N4 disediakan menggunakan penguraian terma. Mangkin
komposit g-C3N4/ZnO disediakan dengan mencampurkan g-C3N4
dan ZnO. Pemangkin yang disediakan telah dicirikan menggunakan pembelauan
sinar-X-(XRD), mikroskopi imbasan elektron pancaran medan (FESEM), spektrofotometer
UV-Vis NIR, mikroskopi transmisi elektron resolusi tinggi (HRTEM), dan Brunauer
Emmet Teller (BET). Hasil daripada fotomangkin komposit yang menggabungkan ZnO
dan g-C3N4, jurang jalur menurun daripada 3.30 eV kepada 2.92
eV. Degradasi ofloksasin menggunakan nanokomposit g-C3N4/ZnO
adalah 11 kali lebih tinggi daripada ZnO dan 2 kali lebih tinggi daripada g-C3N4
tulen.
Kata kunci: g-C3N4/ZnO,
ofloksasin, degradasi, fotokatalisis, rawatan air tercemar
References
1. Gupta, G., Kansal, S. K., Umar, A.
and Akbar, S. (2023). Visible-light driven excellent photocatalytic degradation
of ofloxacin antibiotic using BiFeO3 nanoparticles. Chemosphere,
314: 137611.
2. Meng, X., Wang, Z., Li, K., Liu,
Y., Zhao, D. and Fu, Y. (2023). Degradation of ofloxacin by lanthanum cerate
perovskite activated bisulfite. Environmental Technology & Innovation,
32: 103370.
3. Zhou, G., Meng, L., Ning, X., Yin,
W., Hou, J., Xu, Q., ... and Wang, X. (2022). Switching charge transfer of g-C3N4/BiVO4
heterojunction from type II to Z-scheme via interfacial vacancy engineering for
improved photocatalysis. International Journal of Hydrogen Energy,
47(14): 8749-8760.
4. Cipagauta-Díaz, S.,
Estrella-González, A., Navarrete-Magaña, M. and Gómez, R. (2022). N doped-TiO2
coupled to BiVO4 with high performance in photodegradation of
Ofloxacin antibiotic and Rhodamine B dye under visible light. Catalysis
Today, 394: 445-457.
5. Ding, C., Guo, J., Chen, P., Gan,
W., Yin, Z., Qi, S., ... and Sun, Z. (2022). All-solid-state Z-scheme In2S3/CQDs/TiO2
heterojunction for highly efficient degradation of ofloxacin. Applied
Surface Science, 596: 153629.
6. Su, Q., Li, J., Yuan, H., Wang,
B., Wang, Y., Li, Y. and Xing, Y. (2022). Visible-light-driven photocatalytic
degradation of ofloxacin by g-C3N4/NH2-MIL-88B (Fe) heterostructure:
Mechanisms, DFT calculation, degradation pathway and toxicity evolution. Chemical
Engineering Journal, 427: 131594.
7. Zhang, M., Xu, J. and Chen,
M. (2022). Novel
Z-scheme LaVO4/Bi3O4Cl heterojunctions for
highly efficient degradation of ofloxacin under visible light irradiation. Journal
of Alloys and Compounds, 925: 166653.
8. Sharan, S., Khare, P. and Shankar,
R. (2023). Electrochemical degradation of ofloxacin using PbO2/Pb-based
lead acid battery electrode: Parametric optimization and kinetics study. Materials
Today: Proceedings, 78: 128-137.
9. Cai, H., Wang, J., Du, Z.,
Zhao, Z., Gu, Y., Guo, Z., ... and Fang,
Y. (2023). Construction of novel ternary MoSe2/ZnO/p-BN
photocatalyst for efficient ofloxacin degradation under visible light. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 663: 131050.
10. Radjenović, J.,
Petrović, M. and Barceló, D. (2009). Fate and distribution of pharmaceuticals in
wastewater and sewage sludge of the conventional activated sludge (CAS) and
advanced membrane bioreactor (MBR) treatment. Water Research, 43(3):
831-841.
11. Zhang, S., Wang, Y., Cao, Z., Xu,
J., Hu, J., Huang, Y., ... and Wang, H. (2020). Simultaneous enhancements of
light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward
ofloxacin photo-degradation. Chemical Engineering Journal, 381: 122771.
12. Ding, P., Li, J., Guo, M., Ji, H.,
Li, P., Liu, W., ... and Chen, S. (2023). Visible light-driven degradation of
ofloxacin by graphene oxide-supported titania/zirconia ternary nanocomposites. Inorganic
Chemistry Communications, 155: 111001.
13. Wen, Y., Wang, Z., Cai, Y., Song,
M., Qi, K. and Xie, X. (2022). S-scheme BiVO4/CQDs/β-FeOOH photocatalyst
for efficient degradation of ofloxacin: Reactive oxygen species transformation
mechanism insight. Chemosphere, 295: 133784.
14. He, S., Chen, Q., Chen, G., Shi,
G., Ruan, C., Feng, M., ... and Cao, C. (2022). N-doped activated carbon for
high-efficiency ofloxacin adsorption. Microporous and Mesoporous Materials,
335: 111848.
15. Wang, X., Li, Y., Li, R., Yang,
H., Zhou, B., Wang, X. and Xie, Y. (2019). Comparison of chlorination behaviors
between norfloxacin and ofloxacin: reaction kinetics, oxidation products and
reaction pathways. Chemosphere, 215: 124-132.
16. Sun, Q., Sun, Y., Zhou, M.,
Cheng, H., Chen, H., Dorus, B., ... and Le, T. (2022). A 2D/3D g-C3N4/ZnO
heterojunction enhanced visible-light driven photocatalytic activity for
sulfonamides degradation. Ceramics International, 48(5): 7283-7290.
17. Sharma, G., Kumar, A., Kumar, P.
S., Alodhayb, A., ALOthman, Z. A., Dhiman, P. and Stadler, F. J. (2022). Carbon
quantum dots embedded trimetallic oxide: Characterization and photocatalytic
degradation of Ofloxacin. Journal of Water Process Engineering, 48:
102853.
18. Singh, R. and Dutta, S. (2019).
The role of pH and nitrate concentration in the wet chemical growth of
nano-rods shaped ZnO photocatalyst. Nano-Structures & Nano-Objects,
18: 100250.
19. Pirhashemi, M.,
Habibi-Yangjeh, A. and Pouran, S. R. (2018). Review on the criteria anticipated for the
fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal
of Industrial and Engineering Chemistry, 62: 1-25.
20. Sinar Mashuri, S. I., Kasim, M.
F., Mohd Kaus, N. H., Yie, H. T., Islam, A., Rashid, U., ... and Ibrahim, M. L.
(2023). Photo-response range extension of z-scheme ZnO/Cds for led-light-driven
photo-active catalyst. Renewable Sustainability Energy Review, 184:
113602.
21. Lu, S., Ma, Y. and Zhao, L.
(2022). Production
of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance
from wastewater by adsorption-photocatalysis. Journal of Molecular Liquids,
364: 119924.
22. Jin, C. Z., Yang, X. A., Zhai, X.
M., Wang, S. B. and Zhang, W. B. (2023). ZnO/Sn3O4
amorphous-crystalline heterojunctions for Cr (VI) visible photocatalysis:
Simple synthesis with excellent performance. Applied Surface Science,
608: 155263.
23. Vo, N. T. T., You, S. J., Pham, M.
T. and Van Pham, V. (2023). A green synthesis approach of p-n CuO/ZnO junctions
for multifunctional photocatalysis towards the degradation of contaminants. Environmental
Technology & Innovation, 32: 103285.
24. Akhter, P., Nawaz, S., Shafiq, I.,
Nazir, A., Shafique, S., Jamil, F., ... and Hussain, M. (2023). Efficient
visible light assisted photocatalysis using ZnO/TiO2 nanocomposites.
Molecular Catalysis, 535: 112896.
25. Mohamed, M. A., Zain, M. F. M.,
Minggu, L. J., Kassim, M. B., Jaafar, J., Amin, N. A. S., and Ng, Y. H. (2019).
Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4
grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic
activity. Journal of Industrial and Engineering Chemistry, 77: 393-407.
26. Wen, J., Xie, J., Chen, X.
and Li, X. (2017). A review
on g-C3N4-based photocatalysts. Applied Surface
Science, 391: 72-123.
27. Mishra, A., Mehta, A., Basu, S.,
Shetti, N. P., Reddy, K. R. and Aminabhavi, T. M. (2019). Graphitic carbon
nitride (g–C3N4)–based metal-free photocatalysts for
water splitting: a review. Carbon, 149: 693-721.
28. Prasad, C., Tang, H. and Bahadur,
I. (2019). Graphitic carbon nitride based ternary nanocomposites: From
synthesis to their applications in photocatalysis: A recent review. Journal
of Molecular Liquids, 281: 634-654.
29. Zhu, J., Xiao, P., Li, H. and Carabineiro,
S. A. (2014). Graphitic carbon nitride: synthesis, properties, and applications
in catalysis. ACS Applied Materials & Interfaces, 6(19): 16449-16465.
30. Naseri, A., Samadi, M.,
Pourjavadi, A., Ramakrishna, S. and Moshfegh, A. Z. (2021). Enhanced
photocatalytic activity of ZnO/g-C3N4 nanofibers
constituting carbonaceous species under simulated sunlight for organic dye
removal. Ceramics International, 47(18): 26185-26196.
31. Mohanty, L., Pattanayak, D. S. and
Dash, S. K. (2021). An efficient ternary photocatalyst Ag/ZnO/g-C3N4
for degradation of RhB and MG under solar radiation. Journal of the
Indian Chemical Society, 98(11): 100180.
32. Das, D. and Nandi, P. (2022).
ZnO/g-C3N4 heterostructures: Synthesis, characterization
and application as photoanode in dye sensitized solar cells. Solar Energy
Materials and Solar Cells, 248: 112002.
33. Zhong, Q., Lan, H., Zhang,
M., Zhu, H. and Bu, M. (2020). Preparation
of heterostructure g-C3N4/ZnO nanorods for high
photocatalytic activity on different pollutants (MB, RhB, Cr (VI) and eosin). Ceramics
International, 46(8): 12192-12199.
34. Fallahpour, M., Poursalehi,
R. and Yourdkhani, A. (2023). Highly
efficient photocatalytic removal of concentrated PEX, PAX and SIPX xanthates
collectors by an immobilized nanostructured g-C3N4/ZnO
low power backlighted module. Minerals Engineering, 204: 108416.
35. Tran, D. A., Pham, C. T. N.,
Ngoc, T. N., Phi, H. N., Ta, Q. T. H., Truong, D. H., and Vo, V. (2021). One-step synthesis of oxygen
doped g-C3N4 for enhanced visible-light photodegradation
of Rhodamine B. Journal of Physics and Chemistry of Solids, 151: 109900.
36. Kamarulzaman, N., Kasim, M. F. and
Chayed, N. F. (2016). Elucidation of the highest valence band and lowest
conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes. Results
in Physics, 6: 217-230.
37. Mao, N., Jiao, Y. and Duan, X.
(2022). g-C3N4/ZnO heterojunction as Fenton-like catalyst
for degradation of organic pollution. Materials Research Bulletin, 151:
111818.
38. Garg, R., Gupta, R. and Bansal, A.
(2021). Synthesis of g-C3N4/ZnO nanocomposite for
photocatalytic degradation of a refractory organic endocrine disrupter. Materials
Today: Proceedings, 44: 855-859.
39. Paul, D. R., Gautam, S., Panchal,
P., Nehra, S. P., Choudhary, P. and Sharma, A. (2020). ZnO-modified g-C3N4:
A potential photocatalyst for environmental application. ACS Omega, 5(8):
3828-3838.
40. Portillo-Cortez,
K., Romero-Ibarra, J. E., Dominguez, D., Alonso-Nuñez, G. and Caudillo-Flores, U. (2023). Photodegradation of ceftriaxone
using g-C3N4-ZnO nanocomposite as an efficient
photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry,
445: 115090.