Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1300 - 1325
(Kajian Antiviral Terbitan Vanillin
Bes-Schiff Terhadap NS2B-NS3 Protease Virus Zika Berdasarkan Pemodelan
Farmakofor dan Dok Molekul)
Woon Yi Law*, Mohd
Razip Asaruddin, and Showkat Ahmad Bhawani
Faculty of Resource Science and Technology,
Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak,
Malaysia
*Corresponding author: mendah_wylaw@hotmail.com
Received: 20 June 2023; Accepted: 24
October 2023; Published: 29 December
2023
Abstract
The
Zika virus (ZIKV) is a mosquito-borne virus spread by the bite of Aedes aegypti and Aedes albopictus mosquitoes. The outbreak of the virus resulted in
the 2015-2016 ZIKV epidemic, in which later Public Health Emergency of
International Concern was declared by the World Health Organization (WHO).
Despite the complications following the infection of ZIKV, clinically approved
therapeutic agents and vaccines are still unavailable for the treatment of
ZIKV. Schiff base vanillin derivatives, derived from vanillin and primary
amines, were reported for their potential antiviral activity against a several
viruses, including influenza virus and SARS coronaviruses. Therefore, they were
aimed to be tested for their in silico
antiviral activity against ZIKV NS2B-NS3 protease. In this research,
ligand-based pharmacophore modelling was employed to analyse the antiviral
activity of Schiff base vanillin derivatives. They were imported as test sets
in the pharmacophore model generated from a list of training sets, which are
reported drugs against ZIKV. Furthermore, structure-based molecular docking was
also performed to analyse the docking performances of the Schiff base vanillin
derivatives in the crystal structure of ZIKV NS2B-NS3 protease in a complex
with a boronate inhibitor (PDB: 5LC0). The analyses
were based on pharmacophore scores, binding affinities and matching
interactions in comparison with the 5LC0 ligand in the active site. Based on
the findings via ligand-based
pharmacophore modelling and structure-based molecular docking, it was
discovered that a number of Schiff base vanillin derivatives showed potential
antiviral activity against ZIKV, thus being promising drug candidates and
bringing futuristic in vitro and in vivo tests.
Keywords: Zika virus, Schiff base
vanillin derivatives, pharmacophore modelling, molecular docking,
computer-aided drug design
Abstrak
Virus Zika (ZIKV) adalah virus bawaan nyamuk yang disebarkan
melalui gigitan nyamuk Aedes aegypti
dan Aedes albopictus. Wabak virus ini
menyebabkan epidemik ZIKV 2015-2016, di mana kemudian Darurat Kesihatan Awam
Keprihatinan Antarabangsa telah diisytiharkan oleh Pertubuhan Kesihatan Sedunia
(WHO). Walaupun komplikasi setelah jangkitan ZIKV, agen terapeutik dan vaksin yang
diluluskan secara klinikal masih belum tersedia untuk rawatan ZIKV. Terbitan
vanillin bes-Schiff, yang diperolehi daripada vanilin dan amina primer, telah
dilaporkan aktiviti antiviral berpotensi terhadap beberapa virus, termasuk
virus influenza dan koronavirus SARS. Oleh itu, mereka akan diuji untuk
aktiviti antiviral secara in silico
terhadap protease NS2B-NS3 ZIKV. Dalam penyelidikan ini, pemodelan farmakofor
berasaskan ligan digunakan untuk menganalisis aktiviti antiviral terbitan
vanillin bes-Schiff. Mereka diimport sebagai set ujian terhadap model
farmakofor yang dihasilkan daripada senarai set latihan, iaitu ubat-ubatan
dilaporkan terhadap ZIKV. Selain itu, dok molekul berasaskan struktur juga
dilakukan untuk menganalisis prestasi dok terbitan vanillin bes-Schiff di dalam
struktur kristal ZIKV NS2B-NS3 protease dalam kompleks dengan perencat boronat
(PDB: 5LC0). Analisis dijalankan berdasarkan skor farmakofor, afiniti dok, dan
interaksi yang sepadan dengan ligan 5LC0 di tapak aktif. Berdasarkan hasil
pemodelan farmakofor berasaskan ligan dan dok molekul berasaskan struktur,
adalah didapati bahawa beberapa terbitan vanillin bes-Schiff menunjukkan
aktiviti antiviral yang berpotensi terhadap ZIKV, oleh itu menjadi calon ubat
yang menjanjikan dan mampu membawa ujian in
vitro dan in vivo pada masa
depan.
Kata kunci: Virus Zika, terbitan vanillin bes-Schiff, pemodelan farmakofor, dok molekul, reka bentuk ubat bantuan komputer
References
1. Sikka,
V., Chattu, V. K., Popli, R. K., Galwankar,
S. C., Kelkar, D., Sawicki, S. G., Stawicki, S. P. and Papadimos,
T. J. (2016). The emergence of Zika virus as a global health security threat: A
review and a consensus statement of the INDUSEM Joint Working Group (JWG). Journal
of Global Infectious Diseases, 8
(1): 3-15.
2. World Health Organization
(2022). Zika virus. Access from
https://www.who.int/news-room/fact-sheets/detail/zika-virus. [Access online 3
February 2023].
3. Lanciotti,
R. S., Kosoy, O. L., Laven, J. J., Velez, J. O., Lambert, A. J., Johnson, A.
J., Stanfield, S. M. and Duffy, M. R. (2008). Genetic and serologic properties
of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerging
Infectious Diseases, 14(8):
1232-1239.
4. Oehler,
E., Watrin, L., Larre, P., Leparc-Goffart, I., Lastčre, S., Valour, F., Bandouin,
L., Mallet, H. P., Musso, D. and Ghawche, F. (2014).
Zika virus infection complicated by Guillain-Barré syndrome – case report,
French Polynesia, December 2013. Eurosurveillance, 19(9): 20720.
5. Pan American Health
Organization (n.d.) Zika. Access from
https://www.paho.org/en/topics/zika. [Access online 3 February 2023].
6. Hayes,
E. B. (2009). Zika virus outside Africa. Emerging Infectious Diseases, 15(9): 1347-1350.
7. Rehman,
H. M., Sajjad, M., Ali, M. A., Gul, R., Irfan, M., Naveed, M., Bhinder, M. A.,
Ghani, M. U., Hussain, N., Said, A. S. A., Al Haddad, A. H. I. and Saleem, M.
(2023). Identification of NS2B-NS3 protease inhibitors for therapeutic
application in ZIKV infection: A pharmacophore-based high-throughput virtual
screening and MD simulations approaches. Vaccines, 11(1): 131.
8. Pierson,
T. C., and Diamond, M. S. (2020). The continued threat of emerging
flaviviruses. Nature Microbiology, 5(6): 796-812.
9. Mirza,
M. U., Alanko, I., Vanmeert, M., Muzzarelli, K. M.,
Salo-Ahen, O. M. H., Abdullah, I., Kovari, I. A., Claes, S., Jonghe, S. D.,
Schols, D., Schinazi, R. F., Kovari, L. C., Trant, J.
F., Ahmad, S. and Froeyen, M. (2022). The discovery
of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. European Journal
of Pharmaceutical Sciences, 175:
106220.
10. Li,
H., Clum, S., You, S., Ebner, K. E., and Padmanabhan, R. (1999). The serine
protease and RNA-stimulated nucleoside triphosphatase and rna
helicase functional domains of dengue virus type 2 NS3 converge within a region
of 20 amino acids. Journal of Virology, 73 (4): 3108-3116.
11. Shiryaev,
S. A., Aleshin, A. E., Ratnikov, B. I., Smith, J. W.,
Liddington, R. C., and Strongin, A. Y. (2007). Expression and purification of a
two-component flaviviral proteinase resistant to
autocleavage at the NS2B–NS3 junction region. Protein Expression and
Purification, 52 (2):
334-339.
12. Meewan,
I., Shiryaev, S. A., Huang, C.-T., Lin, Y.-W., Chuang, C.-H., Terskikh, A. V, and Abagyan, R.
(2022). Allosteric inhibitors of Zika virus NS2B-NS3 protease targeting
protease in super-open conformation. BioRxiv.
13. National Institutes of
Health (2016). Zika virus structure revealed. Access
fromhttps://www.nih.gov/news-events/nih-research-matters/zika-virus-structure-revealed.
[Access online 27 March 2023].
14. Clain, E., Sinigaglia, L., Koishi, A.C., Gorgette, O., Gadea, G., Viranaicken,
W., Krejbich-Trotot, P., Mavingui,
P., Desprčs, P., dos Santos, C. N. D., Guiraud, P., Jouvenet, N. and Kalamouni, C, E.
(2018).. Extract from Aphloia theiformis, an edible indigenous plant
from Reunion Island, impairs Zika virus attachment to the host cell surface. Scientific
Reports, 8: 10856.
15. Takenaka, T. (2008).
Classical vs reverse pharmacology in drug discovery. BJU International, 88 (2): 7-10.
16. Pathak,
N., Kuo, Y.-P., Chang, T.-Y., Huang, C.-T., Hung, H.-C., Hsu, J. T.-A., Yu,
G.-Y. and Yang, J.-M. (2020). Zika virus NS3 protease pharmacophore anchor
model and drug discovery. Scientific Reports, 10(1): 8929.
17. Santos,
F. R. S., Nunes, D. A. F., Lima, W. G., Davyt, D.,
Santos, L. L., Taranto, A. G. and Ferreira, J. M. S. (2020). Identification of
Zika virus NS2B-NS3 Protease Inhibitors by Structure-Based Virtual Screening
and Drug Repurposing Approaches. Journal of Chemical Information and Modeling, 60
(2): 731-737.
18. Lei,
J., Hansen, G., Nitsche, C., Klein, C. D., Zhang, L., and Hilgenfeld, R.
(2016). Crystal
structure of Zika virus NS2B-NS3 protease in complex with a boronate
inhibitor. Science, 353
(6298): 503-505.
19. Asaruddin, M. R. (2016). Modelling and syntheses of vanillin
derivatives targeting influenza virus neuraminidase. Thesis of Doctor of
Philosophy, Universiti Sains Malaysia.
20. Law,
W. Y., Asaruddin, M. R., Bhawani, S. A. and Mohamad,
S. (2020). Pharmacophore modelling of vanillin derivatives, favipiravir,
chloroquine, hydroxychloroquine, monolaurin and tetrodotoxin as MPro inhibitors of severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2). BMC Research Notes, 13(1): 527.
21. Yuan,
S., Chan, J. F.-W., den-Haan, H., Chik, K. K.-H., Zhang, A. J., Chan, C. C.-S.,
Poon, V. K.-M., Yip, C. C.-Y., Mak, W. W.-N., Zhu, Z., Zou, Z., Tee, K.-M.,
Cai, J.-P., Chan K.-H., de la Peńa, J., Pérez-Sánchez, H., Cerón-Carrasco,
J. P. and Yuen, K.-Y. (2017). Structure-based discovery of
clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that
potently inhibit Zika virus infection in
vitro and in vivo. Antiviral
Research, 145: 33-43.
22. Bullard-Feibelman,
K. M., Govero, J., Zhu, Z., Salazar, V., Veselinovic, M., Diamond, M. S., and
Geiss, B. J. (2017). The FDA-approved drug sofosbuvir inhibits Zika virus
infection. Antiviral Research, 137:
134- 140.
23. Retallack,
H., Lullo, E. Di, Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa,
C., Leon, W. R. M., Krencik, R., Ullian, E. M., Spatazza,
J., Pollen, A. A., Mandel-Brehm, C., Nowakowski, T. J., Kreigstein
A. R. and DeRisi, J. L. (2016). Zika virus cell tropism in the developing human
brain and inhibition by azithromycin. Proceedings of the National Academy of
Sciences, 113(50):
14408-14413.
24. Batista,
M. N., Braga, A. C. S., Campos, G. R. F., Souza, M. M., Matos, R. P. A. de,
Lopes, T. Z., Candido, N. M., Lima, M. L. D.,
Machado, F. C., de Andrade, S. T. Q., Bittar, C.,
Nogueira, M. L., Carneiro, B. M., Mariutti
R. B., Arni, R. K., Calmon,
M. F. and Rahal, P. (2019).
Natural Products Isolated from Oriental Medicinal Herbs Inactivate Zika Virus. Viruses,
11(1): 49.
25. Ahmed,
S. R., Banik, A., Anni, S. M. and Chowdhury, M. M. H. (2021). Inhibitory
potential of plant-derived metabolites against Zika virus: a
computational-aided approach. Phytomedicine Plus, 1(4): 100129.
26. Gao,
Y., Tai, W., Wang, N., Li, X., Jiang, S., Debnath, A. K., Du, L. and Chen, S.
(2019). Identification of novel natural products as effective and
broad-spectrum anti-Zika virus inhibitors. Viruses, 11(11): 1019.
27. Ramos,
P. R. P. da S., Mottin, M., Lima, C. S., Assis, L. R., de Oliveira, K. Z.,
Mesquita, N. C. de M. R., Cassani, N. M., Santos, I. A., Borba, J. V. V. B.,
Costa, V. A. F., Neves, B. J., Guido, R. V. C., Oliva, G., Jardim, A. C. G., Regasini, L. O. and Andrade, C. H. (2022).
Natural compounds as non-nucleoside inhibitors of Zika virus polymerase through
integration of in silico and in vitro approaches. Pharmaceuticals,
15(12): 1493.
28. Schön,
A., Madani, N., Smith, A. B., Lalonde, J. M., and Freire, E. (2011). Some
binding-related drug properties are dependent on thermodynamic signature. Chemical
Biology & Drug Design, 77(3):
161-165.
29. Shityakov,
S., and Förster, C. (2014) In silico
predictive model to determine vector-mediated transport properties for the
blood–brain barrier choline transporter. Advances and Applications in
Bioinformatics and Chemistry. 7: 23-36.
30. Phoo,
W. W., Zhang, Z., Wirawan, M., Chew, E. J. C., Chew, A. B. L., Kouretova, J., Steinmetzer, T.
and Luo, D. (2018). Structures of Zika virus NS2B-NS3 protease in complex with
peptidomimetic inhibitors. Antiviral Research, 160: 17-24.
31. Huber,
S., Braun, N. J., Schmacke, L. C., Quek, J. P.,
Murra, R., Bender, D., Hildt, E., Luo, D., Heine, A. and Steinmetzer,
T. (2022). Structure-based optimization and characterization of macrocyclic
Zika virus NS2B-NS3 protease inhibitors. Journal of Medicinal Chemistry,
65(9): 6555-6572.
32. Lipinski,
C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (2001). Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings1PII of original article:
S0169-409X(96)00423-1. Advanced Drug Delivery Reviews, 46(1): 3-26.