Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1300 - 1325

 

ANTIVIRAL STUDY OF SCHIFF BASE VANILLIN DERIVATIVES AGAINST NS2B-NS3 PROTEASE OF ZIKA VIRUS BASED ON PHARMACOPHORE MODELLING AND MOLECULAR DOCKING

 

(Kajian Antiviral Terbitan Vanillin Bes-Schiff Terhadap NS2B-NS3 Protease Virus Zika Berdasarkan Pemodelan Farmakofor dan Dok Molekul)

 

Woon Yi Law*, Mohd Razip Asaruddin, and Showkat Ahmad Bhawani

 

Faculty of Resource Science and Technology,

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

*Corresponding author: mendah_wylaw@hotmail.com

 

 

Received: 20 June 2023; Accepted: 24 October 2023; Published:  29 December 2023

 

 

Abstract

The Zika virus (ZIKV) is a mosquito-borne virus spread by the bite of Aedes aegypti and Aedes albopictus mosquitoes. The outbreak of the virus resulted in the 2015-2016 ZIKV epidemic, in which later Public Health Emergency of International Concern was declared by the World Health Organization (WHO). Despite the complications following the infection of ZIKV, clinically approved therapeutic agents and vaccines are still unavailable for the treatment of ZIKV. Schiff base vanillin derivatives, derived from vanillin and primary amines, were reported for their potential antiviral activity against a several viruses, including influenza virus and SARS coronaviruses. Therefore, they were aimed to be tested for their in silico antiviral activity against ZIKV NS2B-NS3 protease. In this research, ligand-based pharmacophore modelling was employed to analyse the antiviral activity of Schiff base vanillin derivatives. They were imported as test sets in the pharmacophore model generated from a list of training sets, which are reported drugs against ZIKV. Furthermore, structure-based molecular docking was also performed to analyse the docking performances of the Schiff base vanillin derivatives in the crystal structure of ZIKV NS2B-NS3 protease in a complex with a boronate inhibitor (PDB: 5LC0). The analyses were based on pharmacophore scores, binding affinities and matching interactions in comparison with the 5LC0 ligand in the active site. Based on the findings via ligand-based pharmacophore modelling and structure-based molecular docking, it was discovered that a number of Schiff base vanillin derivatives showed potential antiviral activity against ZIKV, thus being promising drug candidates and bringing futuristic in vitro and in vivo tests.

 

Keywords: Zika virus, Schiff base vanillin derivatives, pharmacophore modelling, molecular docking, computer-aided drug design

 

Abstrak

Virus Zika (ZIKV) adalah virus bawaan nyamuk yang disebarkan melalui gigitan nyamuk Aedes aegypti dan Aedes albopictus. Wabak virus ini menyebabkan epidemik ZIKV 2015-2016, di mana kemudian Darurat Kesihatan Awam Keprihatinan Antarabangsa telah diisytiharkan oleh Pertubuhan Kesihatan Sedunia (WHO). Walaupun komplikasi setelah jangkitan ZIKV, agen terapeutik dan vaksin yang diluluskan secara klinikal masih belum tersedia untuk rawatan ZIKV. Terbitan vanillin bes-Schiff, yang diperolehi daripada vanilin dan amina primer, telah dilaporkan aktiviti antiviral berpotensi terhadap beberapa virus, termasuk virus influenza dan koronavirus SARS. Oleh itu, mereka akan diuji untuk aktiviti antiviral secara in silico terhadap protease NS2B-NS3 ZIKV. Dalam penyelidikan ini, pemodelan farmakofor berasaskan ligan digunakan untuk menganalisis aktiviti antiviral terbitan vanillin bes-Schiff. Mereka diimport sebagai set ujian terhadap model farmakofor yang dihasilkan daripada senarai set latihan, iaitu ubat-ubatan dilaporkan terhadap ZIKV. Selain itu, dok molekul berasaskan struktur juga dilakukan untuk menganalisis prestasi dok terbitan vanillin bes-Schiff di dalam struktur kristal ZIKV NS2B-NS3 protease dalam kompleks dengan perencat boronat (PDB: 5LC0). Analisis dijalankan berdasarkan skor farmakofor, afiniti dok, dan interaksi yang sepadan dengan ligan 5LC0 di tapak aktif. Berdasarkan hasil pemodelan farmakofor berasaskan ligan dan dok molekul berasaskan struktur, adalah didapati bahawa beberapa terbitan vanillin bes-Schiff menunjukkan aktiviti antiviral yang berpotensi terhadap ZIKV, oleh itu menjadi calon ubat yang menjanjikan dan mampu membawa ujian in vitro dan in vivo pada masa depan.

 

Kata kunci: Virus Zika, terbitan vanillin bes-Schiff, pemodelan farmakofor, dok molekul, reka bentuk ubat bantuan komputerTop of Form



References

1.       Sikka, V., Chattu, V. K., Popli, R. K., Galwankar, S. C., Kelkar, D., Sawicki, S. G., Stawicki, S. P. and Papadimos, T. J. (2016). The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint Working Group (JWG). Journal of Global Infectious Diseases, 8 (1): 3-15.

2.       World Health Organization (2022). Zika virus. Access from https://www.who.int/news-room/fact-sheets/detail/zika-virus. [Access online 3 February 2023].

3.       Lanciotti, R. S., Kosoy, O. L., Laven, J. J., Velez, J. O., Lambert, A. J., Johnson, A. J., Stanfield, S. M. and Duffy, M. R. (2008). Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerging Infectious Diseases, 14(8): 1232-1239.

4.       Oehler, E., Watrin, L., Larre, P., Leparc-Goffart, I., Lastčre, S., Valour, F., Bandouin, L., Mallet, H. P., Musso, D. and Ghawche, F. (2014). Zika virus infection complicated by Guillain-Barré syndrome – case report, French Polynesia, December 2013. Eurosurveillance, 19(9): 20720.

5.       Pan American Health Organization (n.d.) Zika. Access from https://www.paho.org/en/topics/zika. [Access online 3 February 2023].

6.       Hayes, E. B. (2009). Zika virus outside Africa. Emerging Infectious Diseases, 15(9): 1347-1350.

7.       Rehman, H. M., Sajjad, M., Ali, M. A., Gul, R., Irfan, M., Naveed, M., Bhinder, M. A., Ghani, M. U., Hussain, N., Said, A. S. A., Al Haddad, A. H. I. and Saleem, M. (2023). Identification of NS2B-NS3 protease inhibitors for therapeutic application in ZIKV infection: A pharmacophore-based high-throughput virtual screening and MD simulations approaches. Vaccines, 11(1): 131.

8.       Pierson, T. C., and Diamond, M. S. (2020). The continued threat of emerging flaviviruses. Nature Microbiology, 5(6): 796-812.

9.       Mirza, M. U., Alanko, I., Vanmeert, M., Muzzarelli, K. M., Salo-Ahen, O. M. H., Abdullah, I., Kovari, I. A., Claes, S., Jonghe, S. D., Schols, D., Schinazi, R. F., Kovari, L. C., Trant, J. F., Ahmad, S. and Froeyen, M. (2022). The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. European Journal of Pharmaceutical Sciences, 175: 106220.

10.    Li, H., Clum, S., You, S., Ebner, K. E., and Padmanabhan, R. (1999). The serine protease and RNA-stimulated nucleoside triphosphatase and rna helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of Virology, 73 (4): 3108-3116.

11.    Shiryaev, S. A., Aleshin, A. E., Ratnikov, B. I., Smith, J. W., Liddington, R. C., and Strongin, A. Y. (2007). Expression and purification of a two-component flaviviral proteinase resistant to autocleavage at the NS2B–NS3 junction region. Protein Expression and Purification, 52 (2): 334-339.

12.    Meewan, I., Shiryaev, S. A., Huang, C.-T., Lin, Y.-W., Chuang, C.-H., Terskikh, A. V, and Abagyan, R. (2022). Allosteric inhibitors of Zika virus NS2B-NS3 protease targeting protease in super-open conformation. BioRxiv.

13.    National Institutes of Health (2016). Zika virus structure revealed. Access fromhttps://www.nih.gov/news-events/nih-research-matters/zika-virus-structure-revealed. [Access online 27 March 2023].

14.    Clain, E., Sinigaglia, L., Koishi, A.C., Gorgette, O., Gadea, G., Viranaicken, W., Krejbich-Trotot, P., Mavingui, P., Desprčs, P., dos Santos, C. N. D., Guiraud, P., Jouvenet, N. and Kalamouni, C, E. (2018).. Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Scientific Reports, 8: 10856.

15.    Takenaka, T. (2008). Classical vs reverse pharmacology in drug discovery. BJU International, 88 (2): 7-10.

16.    Pathak, N., Kuo, Y.-P., Chang, T.-Y., Huang, C.-T., Hung, H.-C., Hsu, J. T.-A., Yu, G.-Y. and Yang, J.-M. (2020). Zika virus NS3 protease pharmacophore anchor model and drug discovery. Scientific Reports, 10(1): 8929.

17.    Santos, F. R. S., Nunes, D. A. F., Lima, W. G., Davyt, D., Santos, L. L., Taranto, A. G. and Ferreira, J. M. S. (2020). Identification of Zika virus NS2B-NS3 Protease Inhibitors by Structure-Based Virtual Screening and Drug Repurposing Approaches. Journal of Chemical Information and Modeling, 60 (2): 731-737.

18.    Lei, J., Hansen, G., Nitsche, C., Klein, C. D., Zhang, L., and Hilgenfeld, R. (2016). Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 353 (6298): 503-505.

19.    Asaruddin, M. R. (2016). Modelling and syntheses of vanillin derivatives targeting influenza virus neuraminidase. Thesis of Doctor of Philosophy, Universiti Sains Malaysia.

20.    Law, W. Y., Asaruddin, M. R., Bhawani, S. A. and Mohamad, S. (2020). Pharmacophore modelling of vanillin derivatives, favipiravir, chloroquine, hydroxychloroquine, monolaurin and tetrodotoxin as MPro inhibitors of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Research Notes, 13(1): 527.

21.    Yuan, S., Chan, J. F.-W., den-Haan, H., Chik, K. K.-H., Zhang, A. J., Chan, C. C.-S., Poon, V. K.-M., Yip, C. C.-Y., Mak, W. W.-N., Zhu, Z., Zou, Z., Tee, K.-M., Cai, J.-P., Chan K.-H., de la Peńa, J., Pérez-Sánchez, H., Cerón-Carrasco, J. P. and Yuen, K.-Y. (2017). Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Research, 145: 33-43.

22.    Bullard-Feibelman, K. M., Govero, J., Zhu, Z., Salazar, V., Veselinovic, M., Diamond, M. S., and Geiss, B. J. (2017). The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Research, 137: 134- 140.

23.    Retallack, H., Lullo, E. Di, Arias, C., Knopp, K. A., Laurie, M. T., Sandoval-Espinosa, C., Leon, W. R. M., Krencik, R., Ullian, E. M., Spatazza, J., Pollen, A. A., Mandel-Brehm, C., Nowakowski, T. J., Kreigstein A. R. and DeRisi, J. L. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences, 113(50): 14408-14413.

24.    Batista, M. N., Braga, A. C. S., Campos, G. R. F., Souza, M. M., Matos, R. P. A. de, Lopes, T. Z., Candido, N. M., Lima, M. L. D., Machado, F. C., de Andrade, S. T. Q., Bittar, C., Nogueira, M. L., Carneiro, B. M., Mariutti R. B., Arni, R. K., Calmon, M.  F. and Rahal, P. (2019). Natural Products Isolated from Oriental Medicinal Herbs Inactivate Zika Virus. Viruses, 11(1): 49.

25.    Ahmed, S. R., Banik, A., Anni, S. M. and Chowdhury, M. M. H. (2021). Inhibitory potential of plant-derived metabolites against Zika virus: a computational-aided approach. Phytomedicine Plus, 1(4): 100129.

26.    Gao, Y., Tai, W., Wang, N., Li, X., Jiang, S., Debnath, A. K., Du, L. and Chen, S. (2019). Identification of novel natural products as effective and broad-spectrum anti-Zika virus inhibitors. Viruses, 11(11): 1019.

27.    Ramos, P. R. P. da S., Mottin, M., Lima, C. S., Assis, L. R., de Oliveira, K. Z., Mesquita, N. C. de M. R., Cassani, N. M., Santos, I. A., Borba, J. V. V. B., Costa, V. A. F., Neves, B. J., Guido, R. V. C., Oliva, G., Jardim, A. C. G., Regasini, L. O. and Andrade, C. H. (2022). Natural compounds as non-nucleoside inhibitors of Zika virus polymerase through integration of in silico and in vitro approaches. Pharmaceuticals, 15(12): 1493.

28.    Schön, A., Madani, N., Smith, A. B., Lalonde, J. M., and Freire, E. (2011). Some binding-related drug properties are dependent on thermodynamic signature. Chemical Biology & Drug Design, 77(3): 161-165.

29.    Shityakov, S., and Förster, C. (2014) In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Advances and Applications in Bioinformatics and Chemistry. 7: 23-36.

30.    Phoo, W. W., Zhang, Z., Wirawan, M., Chew, E. J. C., Chew, A. B. L., Kouretova, J., Steinmetzer, T. and Luo, D. (2018). Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Research, 160: 17-24.

31.    Huber, S., Braun, N. J., Schmacke, L. C., Quek, J. P., Murra, R., Bender, D., Hildt, E., Luo, D., Heine, A. and Steinmetzer, T. (2022). Structure-based optimization and characterization of macrocyclic Zika virus NS2B-NS3 protease inhibitors. Journal of Medicinal Chemistry, 65(9): 6555-6572.

32.    Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. Advanced Drug Delivery Reviews, 46(1): 3-26.