Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1288 - 1299

 

PREPARATION AND COMPUTATIONAL STUDY OF BIMETALLIC COBALT-IRON SUPPORTED ON ALUMINA CATALYST IN CATALYTIC OXIDATIVE DESULFURIZATION

 

(Penyediaan dan Kajian Pengiraan bagi Mangkin Dwilogam Kobalt-Ferum yang Disokong pada Mangkin Alumina dalam Penyahsulfuran Oksida Bermangkin)

 

Maryam Solehah Zulkefli1, Wan Nazwanie Wan Abdullah1*, Nor Atiq Syakila Mohd Nazmi1,

and Fazira Ilyana Abdul Razak2

 

1School of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

2Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia

 

*Corresponding author: wanazwanie@usm.my

 

 

Received: 6 August 2023; Accepted: 28 November 2023; Published:  29 December 2023

 

Abstract

Catalytic oxidative desulfurization (Cat-ODS) is utilized to remove the sulfur content in diesel fuel. Bimetallic catalysts are introduced in the desulfurization process of model diesel fuel, which includes components like n-octane, thiophene (Th), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The presence of dopants was confirmed by atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF). It was found that the addition dopants toward Fe/Al2O3 catalyst significantly increased the selectivity of catalytic performance. Using the optimized condition, 98% sulfur removal was achieved. The catalyst's reproducibility test demonstrated that it could be utilized repeatedly for up to five cycles. In addition, mechanism pathways of bimetallic catalysts, both with and without the presence of catalyst have been thoroughly optimized using density functional theory (DFT).

 

Keywords: desulfurization, catalyst, density functional theory, diesel model, sulfur

 

Abstrak

Penyahsulfuran oksida bermangkin (Cat-ODS) digunakan untuk menyingkir kandungan sulfur dalam bahan api diesel. Mangkin dwilogam diperkenalkan dalam proses penyahsulfuran bahan api diesel model, yang merangkumi komponen seperti n-oktana, thiofen (Th), dibenzothiofen (DBT), dan 4,6-dimetildibenzothiofen (4,6-DMDBT). Kehadiran dopan telah disahkan oleh spektroskopi penyerapan atom (AAS) dan analisis sinar-X pendaflour (XRF). Didapati bahawa penambahan dopan ke arah mangkin Fe/Al2O3 meningkatkan selektiviti prestasi mangkin dengan ketara. Menggunakan keadaan optimum, 98% penyingkiran sulfur telah dicapai. Ujian kebolehulangan mangkin menunjukkan bahawa ia boleh digunakan berulang kali sehingga lima kitaran. Di samping itu, laluan mekanisma mangkin dwilogam, dengan penggunaan mangkin dan tanpa mangkin telah dioptimumkan secara menyeluruh menggunakan teori ketumpatan fungsi (DFT).

 

Kata kunci: penyahsulfuran, mangkin, teori ketumpatan fungsi, model diesel, sulfur

 


 

References

1.       Jha, D., Haider, M. B., Kumar, R., and Balathanigaimani, M. S. (2016). Extractive desulfurization of dibenzothiophene using phosphonium-based ionic liquid: Modeling of batch extraction experimental data and simulation of continuous extraction process. Chemical Engineering Research and Design, 111: 218-222.

2.       Xie, Y., Posada, F., and Minjares, R. (2020). Diesel sulfur content impacts on Euro VI soot-free vehicles: Considerations for emerging markets. Frontiers Environmental Science. Eng, 2020: 10.

3.       Betiha, M. A., Rabie, A. M., Ahmed, H. S., Abdelrahman, A. A., and El-Shahat, M. F. (2018). Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egyptian Journal of Petroleum, 27(4): 715-730. 

4.       Subhan, S., Rahman, A. U., Yaseen, M., Rashid, H. U., Ishaq, M., Sahibzada, M., and Tong, Z. (2019). Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant. Fuel, 237: 793-805.

5.       Muhammad, Y., Shoukat, A., Rahman, A. U., Rashid, H. U., and Ahmad, W. (2018). Oxidative desulfurization of dibenzothiophene over Fe promoted Co-Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants. Chinese Journal of Chemical Engineering, 26(3): 593-600.

6.       Haruna, A., Merican, Z. M. A. and Musa, S. G. (2022). Recent advances in catalytic oxidative desulfurization of fuel oil–A review. Journal of Industrial and Engineering Chemistry, 112: 20-36.

7.       Moslemi, A., Chermahini, A. N., Sarpiri, J. N., Rezaei, S., and Barati, M. (2019). VOHPO4.5H2O/KIT-6 composites: Preparation and their application in extractive and catalytic oxidation desulfurization of benzothiophene and dibenzothiphene. Journal of the Taiwan Institute of Chemical Engineers, 97: 237-246.

8.       Wang, L., Wu, S., Liu, S., Cui, S., Liu, J., and Zhang, S. (2018). Cobalt impregnated porous catalyst promoting ammonium sulfate recovery in an ammonia-based desulfurization process. Chemical Engineering Journal, 331: 416-424.

9.       Yaseen, M., Khattak, S., Ullah, S., Subhan, F., Ahmad, W., Shakir, M., and Tong, Z. (2022). Oxidative desulfurization of model and real petroleum distillates using cu or ni impregnated banana peels derived activated carbon-NaClO catalyst-oxidant system. Chemical Engineering Research and Design, 179: 107-118.

10.    Bakar, W. A. W. A., Ali, R., Kadir, A. A. A., and Mokhtar, W. N. A. W. (2012). Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel. Fuel Processing Technology, 101: 78-84.

11.    Cristiano, D. M., Mohedano, R. D. A., Nadaleti, W. C., de Castilhos Junior, A. B., Lourenco, V. A., Goncalves, D. F., and Belli Filho, P. (2020). H2S adsorption on nanostructured iron oxide at room temperature for biogas purification: Application of renewable energy. Renewable Energy, 154: 151-160.

12.    Hasannia, S., Kazemeini, M., Rashidi, A. and Seif, A. (2020). The oxidative desulfurization process performed upon a model fuel utilizing modified molybdenum based nanocatalysts: Experimental and density functional theory investigations under optimally prepared and operated conditions. Applied Surface Science, 527: 146798.

13.    Naseri, H., Mazloom, G., Akbari, A. and Banisharif, F. (2021). Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene. Microporous and Mesoporous Materials, 325: 111341.

14.    Luna, M. L., Alvarez-Amparán, M. A. and Cedeño-Caero, L. (2019). Performance of WOxVOx based catalysts for ODS of dibenzothiophene compounds. Journal of the Taiwan Institute of Chemical Engineers, 95: 175-184.

15.    Cao, Y., Shen, L., Hu, X., Du, Z., and Jiang, L. (2016). Low temperature desulfurization on Co-doped α-FeOOH: Tailoring the phase composition and creating the defects. Chemical Engineering Journal, 306: 124-130.

16.    Akter, N., Zhang, S., Lee, J., Kim, D. H., Boscoboinik, J. A., and Kim, T. (2020). Selective catalytic reduction of NO by ammonia and NO oxidation Over CoOx/CeO2 catalysts. Molecular Catalysis, 482: 110664.

17.    Sampanthar J. T., Xiao H., Dou J., Nah T. Y., Rong X., and Kwan W. P. (2006). A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel. Applied Catalysis B: Environmental, 63(1-2): 85-93.

18.    Correa, M. A., Franco, S. A., Gómez, L. M., Aguiar, D. and Colorado, H. A. (2023). Characterization methods of ions and metals in particulate matter pollutants on PM2.5 and PM10 samples from several emission sources. Sustainability, 15(5): 4402.

19.    Lu, J., Guo, J., Wei, Q., Tang, X., Lan, T., Hou, Y. and Zhao, X. (2022). A matrix effect correction method for portable X-ray fluorescence data. Applied Sciences, 12(2): 568.

20.    Porcaro, M., Depalmas, A., Lins, S., Bulla, C., Pischedda, M. and Brunetti, A. (2022). Nuragic working tools characterization with corrosion layer determinations. Materials, 15(11): 3879.

21.    Nazmi, N. A. S. M., Razak, F. I. A., Mokhtar, W. N. A. W., Ibrahim, M. N. M., Adam, F., Yahaya, Rosid, S. J. M., Shukri, N. M. and Abdullah, W. N. W. (2022). Catalytic oxidative desulfurisation over Co/Fe-γAl2O3 catalyst: performance, characterisation and computational study. Environmental Science and Pollution Research, 29: 1009-1020.

22.    Otsuki, S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., and Kabe, T. (2000). Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 14(6): 1232-1239.

23.    Mokhtar, W. N. A. W., Bakar, W. A. W. A., Ali, R., and Kadir, A. A. A. (2015). Optimization of oxidative desulfurization of Malaysian Euro II diesel fuel utilizing tert-butyl hydroperoxide-dimethylformamide system. Fuel, 161: 26-33.

24.    Mardwita, M., Yusmartini, E. S. and Wisudawati, N. (2020). Effects of cobalt and chromium loadings to the catalytic activities of supported metal catalysts in methane oxidation. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1): 213-220.

25.    Wei, S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L. and Zhu, C. (2017). Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel, 200: 11-21.

26.    Nejad, N. F., Shams, E., and Amini, M. K. (2015). Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization. Journal of Magnetism and Magnetic Materials, 390: 1-7.

27.    Arcibar-Orozco, J. A., Acosta-Herrera, A. A. and Rangel-Mendez, J. R. (2019). Simultaneous desulfuration and denitrogenation of model diesel fuel by Fe-Mn microwave modified activated carbon: Iron crystalline habit influence on adsorption capacity. Journal of Cleaner Production, 218: 69-82.

28.    Li, X., Qi, H., Zhou, W., Xu, W., and Sun, Y. (2019). Efficient catalytic performance of tetra-alkyl orthotitanates for the oxidative desulfurization of dibenzothiophene at room temperature. Comptes Rendus Chimie, 22(4): 321-326.