Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1288 - 1299
(Penyediaan dan Kajian Pengiraan bagi Mangkin Dwilogam
Kobalt-Ferum yang Disokong pada Mangkin Alumina dalam Penyahsulfuran Oksida
Bermangkin)
Maryam
Solehah Zulkefli1, Wan Nazwanie Wan Abdullah1*, Nor Atiq
Syakila Mohd Nazmi1,
and Fazira
Ilyana Abdul Razak2
1School of Chemical Sciences,
Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
2Department of Chemistry, Faculty of
Science, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
*Corresponding
author: wanazwanie@usm.my
Received: 6 August 2023; Accepted: 28
November 2023; Published: 29 December
2023
Abstract
Catalytic oxidative desulfurization (Cat-ODS) is
utilized to remove the sulfur content in diesel fuel. Bimetallic catalysts are
introduced in the desulfurization process of model diesel fuel, which includes
components like n-octane, thiophene (Th), dibenzothiophene (DBT), and
4,6-dimethyldibenzothiophene (4,6-DMDBT). The presence of dopants was confirmed
by atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF). It was
found that the addition dopants toward Fe/Al2O3 catalyst
significantly increased the selectivity of catalytic performance. Using the
optimized condition, 98% sulfur removal was achieved. The catalyst's
reproducibility test demonstrated that it could be utilized repeatedly for up
to five cycles. In addition, mechanism pathways of bimetallic catalysts, both
with and without the presence of catalyst have been thoroughly optimized using
density functional theory (DFT).
Keywords: desulfurization,
catalyst, density functional theory, diesel model, sulfur
Abstrak
Penyahsulfuran
oksida bermangkin (Cat-ODS) digunakan untuk menyingkir kandungan sulfur dalam
bahan api diesel. Mangkin dwilogam diperkenalkan dalam proses penyahsulfuran
bahan api diesel model, yang merangkumi komponen seperti n-oktana, thiofen
(Th), dibenzothiofen (DBT), dan 4,6-dimetildibenzothiofen (4,6-DMDBT).
Kehadiran dopan telah disahkan oleh spektroskopi penyerapan atom (AAS) dan
analisis sinar-X pendaflour (XRF). Didapati bahawa penambahan dopan ke arah
mangkin Fe/Al2O3 meningkatkan selektiviti prestasi
mangkin dengan ketara. Menggunakan keadaan optimum, 98% penyingkiran sulfur
telah dicapai. Ujian kebolehulangan mangkin menunjukkan bahawa ia boleh
digunakan berulang kali sehingga lima kitaran. Di samping itu, laluan mekanisma
mangkin dwilogam, dengan penggunaan mangkin dan tanpa mangkin telah
dioptimumkan secara menyeluruh menggunakan teori ketumpatan fungsi (DFT).
Kata kunci: penyahsulfuran, mangkin, teori ketumpatan fungsi, model diesel, sulfur
References
1. Jha,
D., Haider, M. B., Kumar, R., and Balathanigaimani,
M. S. (2016). Extractive desulfurization of dibenzothiophene using
phosphonium-based ionic liquid: Modeling of batch
extraction experimental data and simulation of continuous extraction process. Chemical
Engineering Research and Design, 111: 218-222.
2. Xie,
Y., Posada, F., and Minjares, R. (2020). Diesel sulfur
content impacts on Euro VI soot-free vehicles: Considerations for emerging
markets. Frontiers Environmental Science. Eng, 2020: 10.
3. Betiha, M.
A., Rabie, A. M., Ahmed, H. S., Abdelrahman, A. A., and El-Shahat,
M. F. (2018). Oxidative desulfurization using graphene and its composites for
fuel containing thiophene and its derivatives: An update review. Egyptian
Journal of Petroleum, 27(4): 715-730.
4. Subhan,
S., Rahman, A. U., Yaseen, M., Rashid, H. U., Ishaq, M., Sahibzada, M., and
Tong, Z. (2019). Ultra-fast and highly efficient catalytic oxidative
desulfurization of dibenzothiophene at ambient temperature over low Mn loaded
Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts
using NaClO as oxidant. Fuel, 237: 793-805.
5. Muhammad,
Y., Shoukat, A., Rahman, A. U., Rashid, H. U., and
Ahmad, W. (2018). Oxidative desulfurization of dibenzothiophene over Fe
promoted Co-Mo/Al2O3 and Ni–Mo/Al2O3
catalysts using hydrogen peroxide and formic acid as oxidants. Chinese
Journal of Chemical Engineering, 26(3): 593-600.
6. Haruna,
A., Merican, Z. M. A. and Musa, S. G. (2022). Recent
advances in catalytic oxidative desulfurization of fuel oil–A review. Journal
of Industrial and Engineering Chemistry, 112: 20-36.
7. Moslemi,
A., Chermahini, A. N., Sarpiri,
J. N., Rezaei, S., and Barati, M. (2019). VOHPO4.5H2O/KIT-6
composites: Preparation and their application in extractive and catalytic
oxidation desulfurization of benzothiophene and dibenzothiphene. Journal of the Taiwan Institute of
Chemical Engineers, 97: 237-246.
8. Wang,
L., Wu, S., Liu, S., Cui, S., Liu, J., and Zhang, S. (2018). Cobalt impregnated
porous catalyst promoting ammonium sulfate recovery
in an ammonia-based desulfurization process. Chemical Engineering Journal,
331: 416-424.
9. Yaseen,
M., Khattak, S., Ullah, S., Subhan, F., Ahmad, W., Shakir, M., and Tong, Z.
(2022). Oxidative desulfurization of model and real petroleum distillates using
cu or ni impregnated banana peels derived activated
carbon-NaClO catalyst-oxidant system. Chemical
Engineering Research and Design, 179: 107-118.
10. Bakar,
W. A. W. A., Ali, R., Kadir, A. A. A., and Mokhtar, W. N. A. W. (2012). Effect
of transition metal oxides catalysts on oxidative desulfurization of model
diesel. Fuel Processing Technology, 101: 78-84.
11. Cristiano,
D. M., Mohedano, R. D. A., Nadaleti, W. C., de
Castilhos Junior, A. B., Lourenco, V. A., Goncalves, D. F., and Belli Filho, P.
(2020). H2S adsorption on nanostructured iron oxide at room
temperature for biogas purification: Application of renewable energy. Renewable
Energy, 154: 151-160.
12. Hasannia,
S., Kazemeini, M., Rashidi, A. and Seif, A. (2020). The
oxidative desulfurization process performed upon a model fuel utilizing
modified molybdenum based nanocatalysts: Experimental
and density functional theory investigations under optimally prepared and
operated conditions. Applied Surface Science, 527: 146798.
13. Naseri,
H., Mazloom, G., Akbari, A. and Banisharif, F.
(2021). Investigation of Ni, Co, and Zn promoters on Mo/HY modified zeolite for
developing an efficient bimetallic catalyst for oxidative desulfurization of
dibenzothiophene. Microporous and Mesoporous Materials, 325: 111341.
14. Luna,
M. L., Alvarez-Amparán, M. A. and Cedeño-Caero, L.
(2019). Performance of WOx–VOx
based catalysts for ODS of dibenzothiophene compounds. Journal of the Taiwan
Institute of Chemical Engineers, 95: 175-184.
15. Cao,
Y., Shen, L., Hu, X., Du, Z., and Jiang, L. (2016). Low temperature
desulfurization on Co-doped α-FeOOH: Tailoring
the phase composition and creating the defects. Chemical Engineering Journal,
306: 124-130.
16. Akter,
N., Zhang, S., Lee, J., Kim, D. H., Boscoboinik, J.
A., and Kim, T. (2020). Selective catalytic reduction of NO by ammonia and NO
oxidation Over CoOx/CeO2 catalysts.
Molecular Catalysis, 482: 110664.
17. Sampanthar J.
T., Xiao H., Dou J., Nah T. Y., Rong X., and Kwan W. P. (2006). A novel
oxidative desulfurization process to remove refractory sulfur
compounds from diesel fuel. Applied Catalysis B: Environmental, 63(1-2):
85-93.
18. Correa,
M. A., Franco, S. A., Gómez, L. M., Aguiar, D. and Colorado, H. A. (2023).
Characterization methods of ions and metals in particulate matter pollutants on
PM2.5 and PM10 samples from several emission sources. Sustainability,
15(5): 4402.
19. Lu,
J., Guo, J., Wei, Q., Tang, X., Lan, T., Hou, Y. and Zhao, X. (2022). A matrix
effect correction method for portable X-ray fluorescence data. Applied
Sciences, 12(2): 568.
20. Porcaro,
M., Depalmas, A., Lins, S., Bulla, C., Pischedda, M. and Brunetti, A. (2022). Nuragic working
tools characterization with corrosion layer determinations. Materials,
15(11): 3879.
21. Nazmi,
N. A. S. M., Razak, F. I. A., Mokhtar, W. N. A. W., Ibrahim, M. N. M., Adam,
F., Yahaya, Rosid, S. J. M., Shukri, N. M. and Abdullah, W. N. W.
(2022). Catalytic oxidative desulfurisation over
Co/Fe-γAl2O3 catalyst: performance, characterisation
and computational study. Environmental Science and Pollution Research,
29: 1009-1020.
22. Otsuki,
S., Nonaka, T., Takashima, N., Qian, W., Ishihara, A., Imai, T., and Kabe, T.
(2000). Oxidative desulfurization of light gas oil and vacuum gas oil by
oxidation and solvent extraction. Energy & Fuels, 14(6): 1232-1239.
23. Mokhtar,
W. N. A. W., Bakar, W. A. W. A., Ali, R., and Kadir, A. A. A. (2015).
Optimization of oxidative desulfurization of Malaysian Euro II diesel fuel
utilizing tert-butyl hydroperoxide-dimethylformamide system. Fuel, 161:
26-33.
24. Mardwita,
M., Yusmartini, E. S. and Wisudawati,
N. (2020). Effects of cobalt and chromium loadings to the catalytic activities
of supported metal catalysts in methane oxidation. Bulletin of Chemical
Reaction Engineering & Catalysis, 15(1): 213-220.
25. Wei,
S., He, H., Cheng, Y., Yang, C., Zeng, G., Kang, L. and Zhu, C. (2017).
Preparation, characterization, and catalytic performances of cobalt catalysts
supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel,
200: 11-21.
26. Nejad,
N. F., Shams, E., and Amini, M. K. (2015). Synthesis of magnetic ordered
mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel
desulfurization. Journal of Magnetism and Magnetic Materials, 390: 1-7.
27. Arcibar-Orozco,
J. A., Acosta-Herrera, A. A. and Rangel-Mendez, J. R. (2019). Simultaneous desulfuration and denitrogenation
of model diesel fuel by Fe-Mn microwave modified activated carbon: Iron
crystalline habit influence on adsorption capacity. Journal of Cleaner
Production, 218: 69-82.
28. Li,
X., Qi, H., Zhou, W., Xu, W., and Sun, Y. (2019). Efficient catalytic
performance of tetra-alkyl orthotitanates for the
oxidative desulfurization of dibenzothiophene at room temperature. Comptes Rendus Chimie,
22(4): 321-326.