Malaysian Journal of Analytical Sciences, Vol 27 No 6 (2023): 1172 - 1182

 

PRECONCENTRATION AND DETERMINATION OF NICOTINE IN TOBACCO SAMPLES BY DISPERSIVE MICRO-SOLID PHASE EXTRACTION AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY

 

(Pemekatan dan Penentuan Nikotin dalam Sampel Tembakau oleh Pengekstrakan Fasa Pepejal-Mikro Dispersif  dan Gas Kromatografi-Spektrometri Jisim)

 

Nur Ainaa Syaza Mat Yatim1, Nor Suhaila Mohamad Hanapi1,2*, Nurzaimah Zaini1, Ahmad Lutfi Anis3, Reena Abd Rashid1, Noor Najmi Bonnia1 and Wan Nazihah Wan Ibrahim1,2

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Trace Analysis Research Group, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan,

Sarawak, Malaysia

 

*Corresponding author: norsuhaila979@uitm.edu.my

 

 

Received: 26 July 2023; Accepted: 26 September 2023; Published:  29 December 2023

 

 

Abstract

In this study, the dispersive micro-solid phase extraction (D-µ-SPE) method was optimised and validated for preconcentration and determination of nicotine in tobacco samples, with the use of C18 as sorbent, coupled with gas chromatography-mass spectrometry (GC-MS). The optimisation of three extraction parameters, namely extraction time (min), mass of sorbent (mg), and desorption volume (mL), were investigated to provide better insight into its reliability as a low-consumption sorbent and rapid operation. The obtained parameters suitable for nicotine extraction were 10 min of extraction time, 50 mg of C18 sorbent, and 1.0 mL of desorption solvent. Nicotine was successfully extracted from tobacco samples with good linearity in the range of 0.1 – 500 mg/L, with a coefficient of determination (R2) of 0.9997. The calculated LOD resulted in a value of 0.0983 mg/L, with the calculated LOQ being 0.2978 mg/L. The precision of the method revealed a percent relative standard deviation (% RSD) of 2.6%. In addition, good relative recovery (%) of nicotine in real samples was also achieved in the 75.5 – 96.4% range, with % RSD ranging from 3.1 - 5.7%. Hence, this study proposed an improvement to the green method towards nicotine analysis with low consumption of organic solvent, good sorbent absorptivity, and rapid and high selectivity for separation.

 

Keywords: Dispersive micro-solid-phase extraction, nicotine, tobacco samples, green method, C18 sorbent

 

Abstrak

Dalam kajian ini, kaedah pengekstrakan fasa pepejal-mikro dispersif (D-µ-SPE) telah dioptimumkan dan disahkan untuk pemekatan dan penentuan nikotin dalam sampel tembakau, dengan menggunakan C18 sebagai penjerap serta dicantumkan dengan kromatografi gas-spektrometri jisim (GC-MS). Pengoptimuman tiga parameter pengekstrakan, iaitu masa pengekstrakan (min), jisim penjerap (mg), dan isipadu penyaherapan (mL) turut dijalankan untuk memberikan gambaran yang lebih baik tentang kebolehpercayaannya sebagai penjerap yang dapat digunakan dalam kuantiti yang rendah serta operasi pengekstrakan yang pantas. Parameter yang diperoleh yang sesuai untuk pengekstrakan nikotin daripada sampel tembakau ialah 10 min masa pengekstrakan, dengan penggunaan sebanyak 50 mg penjerap C18, dan isipadu penyaherapan sebanyak 1.0 mL. Nikotin berjaya diekstrak daripada sampel tembakau dengan kelinearan yang baik dalam julat 0.1 – 500 mg/L, dengan pekali penentuan (R2) sebanyak 0.9997. Had pengesanan (LOD) yang dikira memberikan nilai 0.0983 mg/L, dengan had kuantitatif (LOQ) sebanyak 0.2978 mg/L. Ketepatan kaedah tersebut menghasilkan peratus sisihan piawai relatif (%RSD) sebanyak 2.6%. Di samping itu, pemulihan relatif (%) yang baik terhadap nikotin dalam sampel sebenar juga dicapai dalam julat 75.5 – 96.4%, dengan % RSD berjumlah dalam julat 3.1 - 5.7%. Oleh itu, kajian ini dapat mencadangkan penambahbaikan kepada kaedah hijau untuk analisis nikotin dengan penggunaan pelarut organik yang rendah, dapat memberikan penyerapan penjerap yang baik, kaedah yang pantas, dan kebolehasingan yang tinggi.

 

Kata kunci: Pengekstrakan fasa pepejal-mikro dispersif, nikotin, sampel tembakau, kaedah hijau, penjerap C18

 


References

1.       Yildiz, D. (2004). Nicotine, its metabolism and an overview of its biological effects. Toxicon, 43(6): 619-632.

2.       Mahpishanian, S. and Sereshti, H. (2014). Graphene oxide-based dispersive micro-solid phase extraction for separation and preconcentration of nicotine from biological and environmental water samples followed by gas chromatography-flame ionization detection. Talanta, 130: 71-77.

3.       Tayoub, G., Sulaiman, H. and Alorfi, M. (2015). Determination of nicotine levels in the leaves of some Nicotiana tabacum varieties cultivated in Syria. Herba Polonica, 61(4): 23-30.

4.       Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P. and  Garg, A. (2015). Harmful effects of nicotine. Indian Journal of Medical and Paediatric Oncology, 36(1): 24-31.

5.       Grando, S. A. (2014). Connections of nicotine to cancer. Nature Reviews Cancer, 14(6): 419-429.

6.       Vlase, L., Filip, L., Mîndruţău, I. and Leucuţa, S. E. (2005). Determination of nicotine from tobacco by LC-MS-MS. Studia Universitatis Babes-Bolyai Physica, 4: 19-24.

7.       Al-Dahhan, W. H., Kadhom, M., Yousif, E., Mohammed, S. A. and Alkaim, A. (2022). Extraction and determination of nicotine in tobacco from selected local cigarettes brands in Iraq. Letters in Applied NanoBioScience, 11(1): 3278-3290.

8.       Urkude, R., Dhurvey, V. and Kochhar, S. (2019). Pesticide residues in beverages. In Quality Control in the Beverage Industry: Volume 17: The Science of Beverages (pp. 529–560). Elsevier.

9.       Kyle, P. B. (2017). Toxicology: GCMS. In Mass Spectrometry for the Clinical Laboratory (pp. 131–163). Elsevier Inc.

10.    Khezeli, T. and Daneshfar, A. (2017). Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC - Trends in Analytical Chemistry, 89: 99-118.

11.    Sajid, M., Nazal, M. K. and Ihsanullah, I. (2021). Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Analytica Chimica Acta, 1141: 246-262.

12.    Chisvert, A., Cárdenas, S. and Lucena, R. (2019). Dispersive micro-solid phase extraction. TrAC - Trends in Analytical Chemistry, 112: 226-233.

13.    Yang, J., Hu, Y., Cai, J. B., Zhu, X. L., Su, Q. D., Hu, Y. Q. and Liang, F. X. (2007). Selective hair analysis of nicotine by molecular imprinted solid-phase extraction: An application for evaluating tobacco smoke exposure. Food and Chemical Toxicology, 45(6): 896-903.

14.    Liang, F., and Zhang, Z. (2008). Determination of polyphenols in tobaccos by high performance liquid chromatography with matrix solid-phase dispersion extraction and clean-up. Asian Journal of Chemistry, 20(7): 4980-4986.

15.    Owaid, S. J., Yahaya, N., Rahim, N. Y., Mohammad, R. A. E., Jajuli, M. N. and Miskam, M. (2020). Development of dispersive micro-solid phase extraction for the analysis of ofloxacin and sparfloxacin in human plasma. Malaysian Journal of Analytical Sciences, 24(6): 893-905.

16.    Galán-Cano, F., Lucena, R., Cárdenas, S., and Valcárcel, M. (2011). Direct coupling of dispersive micro-solid phase extraction and thermal desorption for sensitive gas chromatographic analysis. Analytical Methods, 3(4): 991-995.

17.    Liu, W., Zhao, R., Li, B., Wu, G. and Xue, Y. (2013). Determination of the nicotine content in solanaceae vegetables by solid-phase extraction coupled with ultra high-performance liquid chromatography-tandem mass spectrometry. Food Analytical Methods, 6(2): 643-647.

18.    GL Sciences. (n.d.). InertSearch for GC: Tobacco. https://www.glsciences.com/viewfile/?p=GA143. [Accessed online 18 October 2022].

19.    Mohebbi, A., Nemati, M., Afshar Mogaddam, M. R., Farajzadeh, M. A. and Lotfipour, F. (2022). Dispersive micro–solid–phase extraction of aflatoxins from commercial soy milk samples using a green vitamin–based metal–organic framework as an efficient sorbent followed by high performance liquid chromatography–tandem mass spectrometry determination. Journal of Chromatography A, 1673: 463099.

20.    Maranata, G. J., Surya, N. O. and Hasanah, A. N. (2021). Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. Heliyon, 7(1): e05934.

21.    Xu, Y., Yu, X., Gui, J., Wan, Y., Chen, J., Tan, T., Liu, F. and Guo, L. (2022). Ultrasonic solvent extraction followed by dispersive solid phase extraction (d‐SPE) cleanup for the simultaneous determination of five anthraquinones in Polygonum multiflorum by UHPLC‐PDA. Foods, 11(3): 386.

22.    Loh, S. H., Neoh, P. E., Tai, C. T. and Kamaruzaman, S. (2018). Simple µ-Solid Phase Extraction using C18 film for the extraction of polycyclic aromatic hydrocarbons in coffee beverage. Malaysian Journal of Analytical Sciences, 22(1): 1-7.

23.    Xing, J. M., Li, F. F. and Ping, J. (2009). Recovery and purification of nicotine from waste tobacco by aqueous two-phase system/reverse extraction. Natural Product Communications, 4(8): 1093-1094.

24.    Tang, L., Yang, H., He, L., Wang, M., Zhu, B. and Liao, T. (2019). Direct analysis of free-base nicotine in tobacco leaf by headspace solid-phase micro-extraction combined with gas chromatography/mass spectrometry. Accreditation and Quality Assurance, 24(5): 341-349.

25.    Chen, M., Qin, Y., Wang, S., Liu, S., Zhao, G., Lu, H., Cui, H., Cai, J., Wang, X., Yan, Q., Hua, C., Xie, F. and Wan, L. (2022). Electromembrane extraction of nicotine in inhaled aerosols from tobacco cigarettes, electronic cigarettes, and heated tobacco products. Journal of Chromatography B, 1208: 123391.

26.    Lin, B., Chen, J., Zeng, Y., Li, L., Qiu, B., Lin, Z. and Guo, L. (2019). A facile approach for on-site evaluation of nicotine in tobacco and environmental tobacco smoke. ACS Sensors, 4(7): 1844-1850.

27.    Qayyum, I., Fazal-ur-Rehman, M. and Ibrahim, M. S. (2018). Extraction of nicotine (3-(1-methyl-2-pyrrolidinyl) pyridine) from tobacco leaves separated from Gold Live Classic BrandTM cigarettes by solvent extraction approach and characterization via IR analysis. Biosciences Biotechnology Research Asia, 15(4): 799-804.

28.    Sheng, L. Q., Ding, L., Tong, H. W., Yong, G. P., Zhou, X. Z. and Liu, S. M. (2005). Determination of nicotine-related alkaloids in tobacco and cigarette smoke by GC-FID. Chromatographia, 62(1-2): 63-68.

29.    Ikhsanov, Y. S., Nauryzbaev, M., Musabekova, A., Alimzhanova, M. and Burashev, E. (2019). Study of Nicotiana tabacum L extraction, by methods of liquid and supercritical fluid extraction. Journal of Applied Engineering Science, 17(3): 338-353.