Malaysian Journal of Analytical
Sciences, Vol 27
No 6 (2023): 1172 - 1182
PRECONCENTRATION AND
DETERMINATION OF NICOTINE IN TOBACCO SAMPLES BY DISPERSIVE MICRO-SOLID PHASE
EXTRACTION AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY
(Pemekatan dan Penentuan Nikotin dalam Sampel Tembakau oleh
Pengekstrakan Fasa Pepejal-Mikro Dispersif
dan Gas Kromatografi-Spektrometri Jisim)
Nur Ainaa
Syaza Mat Yatim1, Nor Suhaila Mohamad Hanapi1,2*,
Nurzaimah Zaini1, Ahmad Lutfi Anis3, Reena Abd Rashid1,
Noor Najmi Bonnia1 and Wan Nazihah Wan Ibrahim1,2
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Trace Analysis Research Group,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Faculty of Applied Sciences,
Universiti Teknologi MARA, 94300 Kota Samarahan,
Sarawak, Malaysia
*Corresponding
author: norsuhaila979@uitm.edu.my
Received: 26 July 2023; Accepted: 26
September 2023; Published: 29 December
2023
Abstract
In this study, the dispersive
micro-solid phase extraction (D-µ-SPE) method was optimised and validated for
preconcentration and determination of nicotine in tobacco samples, with the use
of C18 as sorbent, coupled with gas chromatography-mass spectrometry
(GC-MS). The optimisation of three extraction parameters, namely extraction
time (min), mass of sorbent (mg), and desorption volume (mL), were investigated
to provide better insight into its reliability as a low-consumption sorbent and
rapid operation. The obtained parameters suitable for nicotine extraction were
10 min of extraction time, 50 mg of C18 sorbent, and 1.0 mL of
desorption solvent. Nicotine was successfully extracted from tobacco samples
with good linearity in the range of 0.1 – 500 mg/L, with a coefficient of
determination (R2) of 0.9997. The calculated LOD resulted in a value
of 0.0983 mg/L, with the calculated LOQ being
0.2978 mg/L. The precision of the method revealed a percent relative standard
deviation (% RSD) of 2.6%. In addition, good relative recovery (%) of nicotine
in real samples was also achieved in the 75.5 – 96.4% range, with % RSD ranging
from 3.1 - 5.7%. Hence, this study proposed an improvement to the green method
towards nicotine analysis with low consumption of organic solvent, good sorbent
absorptivity, and rapid and high selectivity for separation.
Keywords:
Dispersive micro-solid-phase extraction, nicotine, tobacco samples, green
method, C18 sorbent
Abstrak
Dalam
kajian ini, kaedah pengekstrakan fasa pepejal-mikro dispersif (D-µ-SPE) telah
dioptimumkan dan disahkan untuk pemekatan dan penentuan nikotin dalam sampel
tembakau, dengan menggunakan C18 sebagai penjerap serta dicantumkan
dengan kromatografi gas-spektrometri jisim (GC-MS). Pengoptimuman tiga
parameter pengekstrakan, iaitu masa pengekstrakan (min), jisim penjerap (mg),
dan isipadu penyaherapan (mL) turut dijalankan untuk memberikan gambaran yang
lebih baik tentang kebolehpercayaannya sebagai penjerap yang dapat digunakan
dalam kuantiti yang rendah serta operasi pengekstrakan yang pantas. Parameter
yang diperoleh yang sesuai untuk pengekstrakan nikotin daripada sampel tembakau
ialah 10 min masa pengekstrakan, dengan penggunaan sebanyak 50 mg penjerap C18,
dan isipadu penyaherapan sebanyak 1.0 mL. Nikotin berjaya diekstrak
daripada sampel tembakau dengan kelinearan yang baik dalam julat 0.1 – 500
mg/L, dengan pekali penentuan (R2) sebanyak 0.9997. Had pengesanan
(LOD) yang dikira memberikan nilai 0.0983 mg/L, dengan had kuantitatif (LOQ)
sebanyak 0.2978 mg/L. Ketepatan kaedah tersebut menghasilkan peratus sisihan
piawai relatif (%RSD) sebanyak 2.6%. Di samping itu, pemulihan relatif (%) yang
baik terhadap nikotin dalam sampel sebenar juga dicapai dalam julat 75.5 –
96.4%, dengan % RSD berjumlah dalam julat 3.1 - 5.7%. Oleh itu, kajian ini
dapat mencadangkan penambahbaikan kepada kaedah hijau untuk analisis nikotin
dengan penggunaan pelarut organik yang rendah, dapat memberikan penyerapan
penjerap yang baik, kaedah yang pantas, dan kebolehasingan yang tinggi.
Kata kunci: Pengekstrakan fasa pepejal-mikro
dispersif, nikotin, sampel tembakau, kaedah
hijau, penjerap C18
References
1.
Yildiz, D. (2004).
Nicotine, its metabolism and an overview of its biological effects. Toxicon,
43(6): 619-632.
2.
Mahpishanian, S. and
Sereshti, H. (2014). Graphene oxide-based dispersive micro-solid phase
extraction for separation and preconcentration of nicotine from biological and
environmental water samples followed by gas chromatography-flame ionization
detection. Talanta, 130: 71-77.
3.
Tayoub, G., Sulaiman, H.
and Alorfi, M. (2015). Determination of nicotine levels in the leaves of some
Nicotiana tabacum varieties cultivated in Syria. Herba Polonica, 61(4):
23-30.
4.
Mishra, A.,
Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P. and Garg, A. (2015). Harmful
effects of nicotine. Indian Journal of Medical and Paediatric Oncology,
36(1): 24-31.
5.
Grando, S. A. (2014).
Connections of nicotine to cancer. Nature Reviews Cancer, 14(6):
419-429.
6.
Vlase, L., Filip, L.,
Mîndruţău, I. and Leucuţa, S. E. (2005). Determination of
nicotine from tobacco by LC-MS-MS. Studia Universitatis Babes-Bolyai Physica,
4: 19-24.
7.
Al-Dahhan, W. H., Kadhom,
M., Yousif, E., Mohammed, S. A. and Alkaim, A. (2022). Extraction and
determination of nicotine in tobacco from selected local cigarettes brands in
Iraq. Letters in Applied NanoBioScience, 11(1): 3278-3290.
8.
Urkude, R., Dhurvey, V.
and Kochhar, S. (2019). Pesticide residues in beverages. In Quality Control
in the Beverage Industry: Volume 17: The Science of Beverages (pp.
529–560). Elsevier.
9.
Kyle, P. B. (2017).
Toxicology: GCMS. In Mass Spectrometry for the Clinical Laboratory (pp.
131–163). Elsevier Inc.
10.
Khezeli, T. and
Daneshfar, A. (2017). Development of dispersive micro-solid phase extraction
based on micro and nano sorbents. TrAC - Trends in Analytical Chemistry,
89: 99-118.
11.
Sajid, M., Nazal, M. K.
and Ihsanullah, I. (2021). Novel materials for dispersive (micro) solid-phase
extraction of polycyclic aromatic hydrocarbons in environmental water samples:
A review. Analytica Chimica Acta, 1141: 246-262.
12.
Chisvert, A., Cárdenas,
S. and Lucena, R. (2019). Dispersive micro-solid phase extraction. TrAC -
Trends in Analytical Chemistry, 112: 226-233.
13.
Yang,
J., Hu, Y., Cai, J. B., Zhu, X. L., Su, Q. D., Hu, Y. Q. and Liang, F. X.
(2007). Selective hair analysis of nicotine by
molecular imprinted solid-phase extraction: An application for evaluating
tobacco smoke exposure. Food and Chemical Toxicology, 45(6): 896-903.
14.
Liang, F., and Zhang, Z.
(2008). Determination of polyphenols in tobaccos by high performance liquid
chromatography with matrix solid-phase dispersion extraction and clean-up. Asian
Journal of Chemistry, 20(7): 4980-4986.
15.
Owaid, S. J., Yahaya, N.,
Rahim, N. Y., Mohammad, R. A. E., Jajuli, M. N. and Miskam, M. (2020).
Development of dispersive micro-solid phase extraction for the analysis of
ofloxacin and sparfloxacin in human plasma. Malaysian Journal of Analytical
Sciences, 24(6): 893-905.
16.
Galán-Cano, F.,
Lucena, R., Cárdenas, S., and Valcárcel, M. (2011). Direct
coupling of dispersive micro-solid phase extraction and thermal desorption for
sensitive gas chromatographic analysis. Analytical Methods, 3(4):
991-995.
17.
Liu, W., Zhao, R., Li,
B., Wu, G. and Xue, Y. (2013). Determination of the nicotine content in
solanaceae vegetables by solid-phase extraction coupled with ultra
high-performance liquid chromatography-tandem mass spectrometry. Food
Analytical Methods, 6(2): 643-647.
18.
GL Sciences. (n.d.). InertSearch
for GC: Tobacco. https://www.glsciences.com/viewfile/?p=GA143. [Accessed
online 18 October 2022].
19.
Mohebbi, A., Nemati, M.,
Afshar Mogaddam, M. R., Farajzadeh, M. A. and Lotfipour, F. (2022). Dispersive
micro–solid–phase extraction of aflatoxins from commercial soy milk samples
using a green vitamin–based metal–organic framework as an efficient sorbent
followed by high performance liquid chromatography–tandem mass spectrometry
determination. Journal of Chromatography A, 1673: 463099.
20.
Maranata, G. J., Surya,
N. O. and Hasanah, A. N. (2021). Optimising factors affecting solid phase
extraction performances of molecular imprinted polymer as recent sample
preparation technique. Heliyon, 7(1): e05934.
21.
Xu, Y., Yu, X., Gui, J.,
Wan, Y., Chen, J., Tan, T., Liu, F. and Guo, L. (2022). Ultrasonic solvent
extraction followed by dispersive solid phase extraction (d‐SPE) cleanup
for the simultaneous determination of five anthraquinones in Polygonum
multiflorum by UHPLC‐PDA. Foods, 11(3): 386.
22.
Loh, S. H., Neoh, P. E.,
Tai, C. T. and Kamaruzaman, S. (2018). Simple µ-Solid Phase Extraction using C18
film for the extraction of polycyclic aromatic hydrocarbons in coffee beverage.
Malaysian Journal of Analytical Sciences, 22(1): 1-7.
23.
Xing, J. M., Li, F. F.
and Ping, J. (2009). Recovery and purification of nicotine from waste tobacco
by aqueous two-phase system/reverse extraction. Natural Product
Communications, 4(8): 1093-1094.
24.
Tang, L., Yang, H., He,
L., Wang, M., Zhu, B. and Liao, T. (2019). Direct analysis of free-base
nicotine in tobacco leaf by headspace solid-phase micro-extraction combined
with gas chromatography/mass spectrometry. Accreditation and Quality
Assurance, 24(5): 341-349.
25.
Chen, M., Qin, Y., Wang,
S., Liu, S., Zhao, G., Lu, H., Cui, H., Cai, J., Wang, X., Yan, Q., Hua, C.,
Xie, F. and Wan, L. (2022). Electromembrane extraction of nicotine in inhaled
aerosols from tobacco cigarettes, electronic cigarettes, and heated tobacco
products. Journal of Chromatography B, 1208: 123391.
26.
Lin, B., Chen, J., Zeng,
Y., Li, L., Qiu, B., Lin, Z. and Guo, L. (2019). A facile approach for on-site
evaluation of nicotine in tobacco and environmental tobacco smoke. ACS
Sensors, 4(7): 1844-1850.
27.
Qayyum, I.,
Fazal-ur-Rehman, M. and Ibrahim, M. S. (2018). Extraction of nicotine
(3-(1-methyl-2-pyrrolidinyl) pyridine) from tobacco leaves separated from Gold
Live Classic BrandTM cigarettes by solvent extraction approach and
characterization via IR analysis. Biosciences Biotechnology Research Asia,
15(4): 799-804.
28.
Sheng, L. Q., Ding, L.,
Tong, H. W., Yong, G. P., Zhou, X. Z. and Liu, S. M. (2005). Determination of
nicotine-related alkaloids in tobacco and cigarette smoke by GC-FID. Chromatographia,
62(1-2): 63-68.
29.
Ikhsanov, Y. S.,
Nauryzbaev, M., Musabekova, A., Alimzhanova, M. and Burashev, E. (2019). Study
of Nicotiana tabacum L extraction, by methods of liquid and
supercritical fluid extraction. Journal of Applied Engineering Science,
17(3): 338-353.