Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1017 - 1034
SYNTHESIS AND CHARACTERIZATION
OF MAGNESIUM OXIDE NANOPARTICLES BY USING BANANA PEEL (Musa acuminata
CAVENDISH) EXTRACT
(Sintesis
Hijau dan Pencirian Nanopartikel Magnesium Oksida Menggunakan Ekstrak Kulit
Pisang (Musa acuminata Cavendish)
Nor Syazwanie
Mohd Saidi1, Kooh Jhi Ying1, Hanis Mohd Yusoff1,2*
and Nurhanna Badar1,2
1Faculty of
Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
2Advance Nano-Materials
(ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: hanismy@umt.edu.my
Received: 18 May 2023; Accepted: 9
August 2023; Published: 30 October 2023
Abstract
The synthesis of metal oxide
nanoparticles with the use of plant extract is a promising alternative to
chemical synthesis methods. In the study, magnesium oxide nanoparticles
(MgO-NPs) were synthesized by using Musa acuminata Cavendish banana peel
extract solution. The precursor materials used were Mg(NO3)2.6H2O
and dried Cavendish banana peel extract solution. Different concentration of
Mg(NO3)2.6H2O, different volume of extract
solution, and different calcination temperature were used to conduct this study.
The green synthesized MgO-NPs were characterized by thermogravimetric analysis
(TGA), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible
(UV-Vis) spectroscopy, scanning electron microscopy (SEM) and x-ray diffraction
(XRD). The FTIR spectra showed O-H stretch at 3,340 cm-1 (peel
extract solution), 3,308 cm-1/3,348 cm-1 (pre-calcine
sample), and 3,086.11 cm-1/3,194.12 cm-1 (calcined at 600
°C). The spectra also showed Mg-O stretching at 655.80 cm-1 and
594.08 cm-1 for pre-calcine and calcined samples, respectively. The
wavelength of UV-Vis obtained for 4 sets of green synthesis was around 265 nm
due to the surface plasmon resonance band. Thus, confirmed the formation of
MgO-NPs. SEM images of MgO-NPs samples showed a mixture of non-uniform sizes
and shapes that were agglomerated with average size range of about 90 nm to 320
nm. XRD diffraction analyses displayed the MgO-NPs as a cubic structure.
Keywords: green synthesis, magnesium oxide nanoparticles, Musa
acuminata, sustainable materials
Abstrak
Sintesis
nanopartikel logam oksida dengan menggunakan ekstrak tumbuhan dapat menjanjikan
kaedah alternatif kepada sintesis kimia. Dalam kajian ini, nanopartikel
magnesium oksida (MgO-NPs) telah disintesis menggunakan larutan ekstrak kulit
pisang Musa acuminata Cavendish. Bahan prekursor yang digunakan ialah
magnesium nitrat heksahidrat (Mg(NO3)2.6H2O)
dan larutan ekstrak kulit pisang Cavendish yang kering. Kepekatan Mg(NO3)2.6H2O,
isipadu larutan ekstrak, dan suhu pengkalsinan yang berbeza telah digunakan
untuk menjalankan kajian ini. MgO-NPs yang disintesis hijau dicirikan oleh
Analisis Termogravimetrik (TGA), Spektroskopi Infra Merah Transformasi Fourier
(FTIR), Spektroskopi Ultraviolet-Visible (UV-Vis), Mikroskop Imbasan Elektron
(SEM) dan Pembelauan Sinar-X (XRD). Spektra FTIR telah menunjukkan kewujudan
regangan O-H pada 3,340 cm-1 (larutan ekstrak), 3,308 cm-1/
3,348 cm-1 (sampel sebelum proses kalsin) dan 3,086.11 cm-1/3,194.12
cm-1 (MgO-NPs dikalsinkan pada 600 °C). Spektra FTIR juga
menunjukkan regangan Mg-O pada 655.80 cm-1 dan 594.08 cm-1
untuk sampel sebelum dan selepas proses pengkalsinan. Panjang gelombang UV-Vis
bagi keempat-empat set adalah pada 265 nm adalah disebabkan oleh jalur resonans
plasmon permukaan yang membuktikan pembentukan MgO-NPs. Imej SEM menunjukkan
campuran bentuk dan saiz tidak sekata yang teraglomerat dengan anggaran purata
saiz sekitar 90 nm hingga 320 nm. Analisis XRD memperlihatkan MgO-NPs sebagai
struktur kubik.
Kata kunci: sintesis hijau, nanopartikel magnesium oksida, Musa
acuminata, bahan lestari
References
1.
United States
Environmental Protection Agency (2023). Basics of green chemistry. https://www.epa.gov/greenchemistry/basics-green-chemistry [Accessed on 17 July
2023].
2.
Murcia, J. E., Martinez,
S., Martins V., Herrera, D., Buitrago, C., Velasquez, A., Ruiz, F. and Torres,
M. (2023). Risk assessment and green chemistry applied to waste
generated in university laboratories. Heliyon,
9(5): e15900.
3.
Khandel, P., Yadaw, R. K.,
Soni, D. K., Kanwar, L. and Shahi, S. K. (2018). Biogenesis of metal
nanoparticles and their pharmacological applications: present status and
application prospects. Journal of Nanostructure in Chemistry, 8(3):
217-254.
4.
Kumar,
P. P., Bhatlu, M. L. D., Sukanya, K., Karthikeyan, S,
and Jayan, N. (2020). Synthesis of magnesium oxide nanoparticle by eco-friendly
method (green synthesis)–A review. Materials
Today: Proceedings, 37: 3028-3030.
5.
Singh,
J., Dutta, T., Kim, KH., Rawat, M., Samdar, P. and Kumar, P. (2018). ‘Green’
synthesis of metals and their oxide nanoparticles: applications for
environmental remediation. Journal of Nanobiotechnology, 16(1): 84.
6.
Narendhran, S.,
Manikandan, M. and Shakila, P. B. (2019). Antibacterial, antioxidant properties
of Solanum trilobatum and sodium
hydroxide-mediated magnesium oxide nanoparticles: a green chemistry
approach. Bulletin of Materials
Science, 42(3): 1-8.
7.
Ganapathi Rao, K.,
Ashok, C. H., Venkateswara Rao, K., Shilpa Chakra, C. H. and Akshaykranth, A. (2015). Eco-friendly synthesis of MgO
nanoparticles from orange fruit waste. International
Journal Advance Research Physical Science, 2: 1-6.
8. Vishwasrao, C., Momin, B. and Ananthanarayan, L. (2019). Green synthesis of silver
nanoparticles using sapota fruit waste and evaluation of their antimicrobial
activity. Waste and Biomass
Valorization, 10(8): 2353-2363.
9.
Farani R. M., Farsadrooh, M., Zare, I., Gholami, A. and Akhavan, O.
(2023). Green synthesis of magnesium oxide nanoparticles and nanocomposites for
photocatalytic antimicrobial, antibiofilm and antifungal applications. Catalysts,
13(4): 642.
10. Chaudhary, J., Tailor, G., Yadav, M., and Mehta, C.
(2023). Green route synthesis of metallic nanoparticles using various herbal
extracts: A review. Biocatalysis and
Agricultural Biotechnology, 50: 102692.
11.
Ramanujam, K., and Sundrarajan, M. (2014). Antibacterial effects of
biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. Journal of
Photochemistry and Photobiology B: Biology, 141: 296-300.
12. Moorthy, S. K., Ashok, C. H., Rao, K. V., and
Viswanathan, C. (2015). Synthesis and characterization of MgO nanoparticles by
neem leaves through green method. Materials Today: Proceedings, 2(9):
4360-4368.
13. Umaralikhan, L.,
and Jamal Mohamed Jaffar, M. (2018). Green synthesis of MgO nanoparticles and
its antibacterial activity. Iranian Journal of Science and Technology,
Transaction A: Science, 42(2): 477-485.
14. Dabhane, H., Ghotekar, S., Zate,
M., Kute, S., Jadhav, G. and Medhane, V. (2022).
Green synthesis of MgO nanoparticles using aqueous leaf extract of Ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological
activities. Inorganic Chemistry Communications, 138: 109270.
15. Duong, T. H. Y., Nguyen, T. N., Oanh, H. T., Dang Thi, T. A., Giang, L. N. T., Phuong, H. T., Anh, N. T.,
Nguyen, B. M., Quang, V. T., Le, G. T. and Nguyen, T. van. (2019). Synthesis of
magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. Journal of Chemistry,
2019: 4376429.
16. Suresh, J., Yuvakkumar, R., Sundrarajan, M., and Hong, S. I. (2014). Green synthesis of
magnesium oxide nanoparticles. Advanced Materials Research, 952:
141-144.
17.
Ali, R., Shanan, Z. J.,
Saleh, G. M., and Abass, Q. (2020). Green synthesis and the study of some
physical properties of MgO nanoparticles and their antibacterial
activity. Iraqi Journal of Science,
61(2): 266-276.
18.
Vijayakumar,
S., Punitha, V. N., and Parameswari, N. (2021). Phytonanosynthesis
of MgO nanoparticles: Green synthesis, characterization and antimicrobial
evaluation. Arabian Journal for Science and Engineering, 2021: 1-6.
19.
Prasanth, R., Kumar, S.
D., Jayalakshmi, A., Singaravelu, G., Govindaraju, K. and Kumar, V. G. (2019).
Green synthesis of magnesium oxide nanoparticles and their antibacterial
activity. Indian
Journal of Geo Marine Sciences, 48(8):
1210-1215.
20. Amina, M., al Musayeib, N.
M., Alarfaj, N. A., El-Tohamy, M. F., Oraby, H. F., Al Hamoud, G. A., Bukhari, S. I., and
Moubayed, N. M. S. (2020). Biogenic green synthesis of MgO nanoparticles using Saussurea costus
biomasses for a comprehensive detection of their antimicrobial, cytotoxicity
against MCF-7 breast cancer cells and photocatalysis potentials. PLoS ONE, 15: 0237567.
21. Balakrishnan, G., Velavan, R., Mujasam
Batoo, K., and Raslan, E. H. (2020). Microstructure, optical and photocatalytic
properties of MgO nanoparticles. Results in Physics, 16: 103013.
22. Ammulu, M. A., Vinay Viswanath, K., Giduturi, A. K., Vemuri, P. K., Mangamuri,
U. and Poda, S. (2021). Phytoassisted synthesis of
magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications. Journal
of Genetic Engineering and Biotechnology, 19: 21.
23. Pugazhendhi, A., Prabhu, R., Muruganantham,
K., Shanmuganathan, R. and Natarajan, S. (2019). Anticancer, antimicrobial and
photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B:
Biology, 190: 86-97.
24.
Cai, L., Chen, J., Liu,
Z., Wang, H., Yang, H. and Ding, W. (2018). Magnesium oxide nanoparticles:
Effective agricultural antibacterial agent against Ralstonia
solanacearum. Frontiers in
Microbiology, 9: 790.
25. Chandrasekar, M., Subash, M., Perumal, V., Panimalar,
S., Aravindan, S., Uthrakumar, R., Inmozhi, C.,
Isaev, A. B., Muniyasamy, S., Raja, A. and
Kaviyarasu, K. (2022). Specific charge separation of Sn doped MgO nanoparticles
for photocatalytic activity under UV light irradiation. Separation and
Purification Technology, 2021: 294.
26. Pandit, C., Roy, A., Ghotekar,
S., Khusro, A., Islam, M. N., Emran, T. bin, Lam, S. E., Khandaker, M. U. and Bradley,
D. A. (2022). Biological agents for synthesis of nanoparticles and their
applications. Journal of King Saud University - Science, 34(3): 101869.
27.
Marfu’ah, S., Rohma, S. M., Fanani, F., Hidayati, E. N., Nitasari, D. W., Primadi, T. R., Ciptawati,
E., Sumari, S., and Fajaroh, F. (2020, May). Green
synthesis of ZnO nanoparticles by using banana peel
extract as capping agent and its bacterial activity. 2nd
International Conference on Chemistry and Material Science (IC2MS), 833:
1-7.
28.
Naganathan,
S. and Thirunavukkarasu, S. (2017). Green way genesis of silver nanoparticles
using multiple fruit peels waste and its antimicrobial, antioxidant, and
anti-tumor cell line studies. 2nd International Conference on
Mining, Material and Metallurgical Engineering, 191: 1-7.
29. Abdullah, F. H., Abu Bakar, N. H. H. and Abu Bakar, M.
(2020). Low temperature biosynthesis of crystalline zinc oxide nanoparticles
from Musa acuminata peel extract for visible-light degradation of methylene
blue. Optik, 206: 164279.
30. Abdullah, F. H., Abu Bakar, N. H. H. and Abu Bakar, M.
(2021). Comparative study of chemically synthesized and low temperature
bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for
enhanced visible-photocatalytic degradation of organic contaminants in
wastewater treatment. Journal of Hazardous Materials, 406: 164279.
31. Hussien, N. A. (2023). Antimicrobial potential of
biosynthesized zinc oxide nanoparticles using banana peel and date seeds
extracts. Sustainability (Switzerland), 15(11): 9048.
32. Hussien, N. A., al Malki, J. S., al Harthy, F. A. R.,
Mazi, A. W. and Al Shadadi, J. A. A. (2023).
Sustainable eco-friendly synthesis of zinc oxide nanoparticles using banana
peel and date seed extracts, characterization, and cytotoxicity evaluation. Sustainability,
15(13): 9864.
33. Shittu, H. O., Igiehon, E., Eremwanarue, A. O., Oijagbe, R.
E., Momoh, M. O. and Agbontian, M. A. (2021).
Optimization of phytosynthesis of magnesium oxide and
magnesium chloride nanoparticles. Nigerian Journal of Biotechnology,
37(2): 74-83.
34.
Vu, H. T., Scarlett, C.
J. and Vuong, Q. V. (2018). Phenolic compounds within banana peel and their
potential uses: A review. Journal of
Functional Foods, 40:
238-248.
35.
Gillani, S. F., Ali, S.,
Tahir, H. M., Shakir, H. A. and Hassan, A. (2020). Phytochemical analysis,
antibacterial and antibiogram activities of fruits peels against human
pathogenic bacteria. International Food Research Journal, 27(5):
963-970.
36.
Nguyen,
V. T., and Le, M. D. (2018). Influence of various
drying conditions on phytochemical compounds and antioxidant activity of carrot
peel. Beverages, 4(4): 80.
37.
Saikumari, N., Dev, S.
M., and Dev, S. A. (2021). Effect
of calcination temperature on the properties and applications of bio extract
mediated titania nano particles. Scientific Reports, 11(1):
1-17.
38. Kumar, S. A., Jarvin, M.,
Inbanathan, S. S. R., Umar, A., Lalla, N. P., Dzade,
N. Y., Algadi, H., Rahman, Q. I. and Baskoutas, S. (2022). Facile green synthesis of magnesium
oxide nanoparticles using tea (Camellia sinensis) extract for efficient
photocatalytic degradation of methylene blue dye. Environmental Technology
and Innovation, 28: 102746.
39.
Essien, E. R., Atasie, V. N., Oyebanji, T. O.
and Nwude, D. O. (2020). Biomimetic synthesis of
magnesium oxide nanoparticles using Chromolaena
odorata (L.) leaf extract. Chemical
Papers, 1-9.
40.
Yusoff, H. M., Idris,
N.H., Hipul, N. F., Yusoff, N. F. M., Izham, N. Z. M. and Bhat, I. U. H. (2020). Green synthesis
of zinc oxide nanoparticles using black tea extract and its potential as anode
material in sodium-ion batteries. Malaysian Journal of Chemistry, 22(2):
43-51.
41. Hii,
Y. S., Jeevanandam, J. and Chan, Y. S. (2019). Plant
mediated green synthesis and nanoencapsulation of MgO nanoparticle from Calotropis
gigantea: Characterisation and kinetic release
studies. Inorganic and Nano-Metal
Chemistry, 48(12):
620-631.
42. Essien,
E. R., Atasie, V. N., Okeafor,
A. O. and Nwude, D. O. (2020). Biogenic synthesis of
magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf
extract. International Nano Letters, 10(1): 43-48.
43. Latha, C. K., Raghasudha,
M., Aparna, Y., Ramchander, M., Ravinder, D., Jaipal,
K., Veerasomaiah, P. and Shridhar, D. (2017). Effect
of capping agent on the morphology, size and optical properties of In2O3
nanoparticles. Materials Research, 20(1): 256-263.
44.
Yusoff, H. M., Hazwani, N. U., Hassan, N. and Izwani,
F. (2015). Comparison of sol gel and dehydration magnesium oxide (MgO) as a
catalyst in Michael addition reaction. International Journal of
Integrated Engineering, 7(3): 43-50.
45.
Hassan, S. E. D., Fouda,
A., Saied, E., Farag, M., Eid, A. M., Barghoth, M. G.
and Awad, M. F. (2021). Rhizopus Oryzae-mediated
green synthesis of magnesium oxide nanoparticles (MgO-NPs): A promising tool
for antimicrobial, mosquitocidal action, and tanning
effluent treatment. Journal of Fungi, 7(5): 372.
46.
Osuntokun, J., Onwudiwe, D. C. and Ebenso, E. E.
(2019). Green synthesis of ZnO nanoparticles using
aqueous Brassica oleracea L. var. italica and
the photocatalytic activity. Green Chemistry Letters and Reviews, 12(4):
444-457.
47.
Dobrucka, R. (2018). Synthesis
of MgO nanoparticles using Artemisia abrotanum herba
extract and their antioxidant and photocatalytic properties. Iranian
Journal of Science and Technology, Transactions A: Science, 42(2):
547-555.
48.
Vidhya, E., Vijayakumar,
S., Nilavukkarasi, M., Punitha, V. N., Snega, S., and
Praseetha, P. K. (2021). Green fabricated MgO
nanoparticles as antimicrobial agent: Characterization and evaluation. Materials
Today: Proceedings, 45: 5579-5583.
49. Farizan, A. F., Yusoff, H. M., Badar, N., Bhat, I. U. H.,
Anwar, S. J., Wai, C. P., Asari, A., Kasim, M. F., and Elong, K. (2023). Green
synthesis of magnesium oxide nanoparticles using Mariposa Christia
vespertilionis leaves extract and its
antimicrobial study toward S. aureus and E. coli. Arabian
Journal for Science and Engineering, 48(6): 7373-7386.
50.
Adamo, G., Campora, S.
and Ghersi, G. (2017). Nanostructures for novel therapy: synthesis,
characterization and applications. Elsevier, Amsterdam: pp. 57-80.
51. Venkatachalam, A., Jesuraj, J.
P., and Sivaperuman, K. (2021). Moringa oleifera
leaf extract-mediated green synthesis of nanostructured alkaline earth oxide
(MgO) and its physicochemical properties. Journal of Chemistry, 2021:
4301504.
52.
Rahmani-Nezhad,
S., Dianat, S., Saeedi, M., and Hadjiakhoondi, A.
(2017). Synthesis, characterization and catalytic activity of plant mediated
MgO nanoparticles using Mucuna pruriens L. seed extract and their
biological evaluation. Journal of Nanoanalysis,
4(4): 290-298.
53. Zhang, D., Ma, X. L., Gu, Y., Huang, H., and Zhang, G.
W. (2020). Green
synthesis of metallic nanoparticles and their potential applications to treat
cancer. Frontiers in Chemistry, 8(799): 1-18.