Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1017 - 1034

 

SYNTHESIS AND CHARACTERIZATION OF MAGNESIUM OXIDE NANOPARTICLES BY USING BANANA PEEL (Musa acuminata CAVENDISH) EXTRACT

 

(Sintesis Hijau dan Pencirian Nanopartikel Magnesium Oksida Menggunakan Ekstrak Kulit Pisang (Musa acuminata Cavendish)

 

Nor Syazwanie Mohd Saidi1, Kooh Jhi Ying1, Hanis Mohd Yusoff1,2* and Nurhanna Badar1,2

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Advance Nano-Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: hanismy@umt.edu.my

 

 

Received: 18 May 2023; Accepted: 9 August 2023; Published:  30 October 2023

 

 

Abstract

The synthesis of metal oxide nanoparticles with the use of plant extract is a promising alternative to chemical synthesis methods. In the study, magnesium oxide nanoparticles (MgO-NPs) were synthesized by using Musa acuminata Cavendish banana peel extract solution. The precursor materials used were Mg(NO3)2.6H2O and dried Cavendish banana peel extract solution. Different concentration of Mg(NO3)2.6H2O, different volume of extract solution, and different calcination temperature were used to conduct this study. The green synthesized MgO-NPs were characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) and x-ray diffraction (XRD). The FTIR spectra showed O-H stretch at 3,340 cm-1 (peel extract solution), 3,308 cm-1/3,348 cm-1 (pre-calcine sample), and 3,086.11 cm-1/3,194.12 cm-1 (calcined at 600 °C). The spectra also showed Mg-O stretching at 655.80 cm-1 and 594.08 cm-1 for pre-calcine and calcined samples, respectively. The wavelength of UV-Vis obtained for 4 sets of green synthesis was around 265 nm due to the surface plasmon resonance band. Thus, confirmed the formation of MgO-NPs. SEM images of MgO-NPs samples showed a mixture of non-uniform sizes and shapes that were agglomerated with average size range of about 90 nm to 320 nm. XRD diffraction analyses displayed the MgO-NPs as a cubic structure.

 

Keywords: green synthesis, magnesium oxide nanoparticles, Musa acuminata, sustainable materials

 

Abstrak

Sintesis nanopartikel logam oksida dengan menggunakan ekstrak tumbuhan dapat menjanjikan kaedah alternatif kepada sintesis kimia. Dalam kajian ini, nanopartikel magnesium oksida (MgO-NPs) telah disintesis menggunakan larutan ekstrak kulit pisang Musa acuminata Cavendish. Bahan prekursor yang digunakan ialah magnesium nitrat heksahidrat (Mg(NO3)2.6H2O) dan larutan ekstrak kulit pisang Cavendish yang kering. Kepekatan Mg(NO3)2.6H2O, isipadu larutan ekstrak, dan suhu pengkalsinan yang berbeza telah digunakan untuk menjalankan kajian ini. MgO-NPs yang disintesis hijau dicirikan oleh Analisis Termogravimetrik (TGA), Spektroskopi Infra Merah Transformasi Fourier (FTIR), Spektroskopi Ultraviolet-Visible (UV-Vis), Mikroskop Imbasan Elektron (SEM) dan Pembelauan Sinar-X (XRD). Spektra FTIR telah menunjukkan kewujudan regangan O-H pada 3,340 cm-1 (larutan ekstrak), 3,308 cm-1/ 3,348 cm-1 (sampel sebelum proses kalsin) dan 3,086.11 cm-1/3,194.12 cm-1 (MgO-NPs dikalsinkan pada 600 °C). Spektra FTIR juga menunjukkan regangan Mg-O pada 655.80 cm-1 dan 594.08 cm-1 untuk sampel sebelum dan selepas proses pengkalsinan. Panjang gelombang UV-Vis bagi keempat-empat set adalah pada 265 nm adalah disebabkan oleh jalur resonans plasmon permukaan yang membuktikan pembentukan MgO-NPs. Imej SEM menunjukkan campuran bentuk dan saiz tidak sekata yang teraglomerat dengan anggaran purata saiz sekitar 90 nm hingga 320 nm. Analisis XRD memperlihatkan MgO-NPs sebagai struktur kubik.

 

Kata kunci: sintesis hijau, nanopartikel magnesium oksida, Musa acuminata, bahan lestari

 

References

1.       United States Environmental Protection Agency (2023). Basics of green chemistry. https://www.epa.gov/greenchemistry/basics-green-chemistry [Accessed on 17 July 2023].

2.       Murcia, J. E., Martinez, S., Martins V., Herrera, D., Buitrago, C., Velasquez, A., Ruiz, F. and Torres, M. (2023). Risk assessment and green chemistry applied to waste generated in university laboratories. Heliyon, 9(5): e15900.

3.       Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L. and Shahi, S. K. (2018). Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. Journal of Nanostructure in Chemistry, 8(3): 217-254.

4.       Kumar, P. P., Bhatlu, M. L. D., Sukanya, K., Karthikeyan, S, and Jayan, N. (2020). Synthesis of magnesium oxide nanoparticle by eco-friendly method (green synthesis)–A review. Materials Today: Proceedings, 37: 3028-3030.

5.       Singh, J., Dutta, T., Kim, KH., Rawat, M., Samdar, P. and Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16(1): 84.

6.       Narendhran, S., Manikandan, M. and Shakila, P. B. (2019). Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bulletin of Materials Science42(3): 1-8.

7.       Ganapathi Rao, K., Ashok, C. H., Venkateswara Rao, K., Shilpa Chakra, C. H. and Akshaykranth, A. (2015). Eco-friendly synthesis of MgO nanoparticles from orange fruit waste. International Journal Advance Research Physical Science2: 1-6.

8.       Vishwasrao, C., Momin, B. and Ananthanarayan, L. (2019). Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste and Biomass Valorization10(8):  2353-2363.

9.       Farani R. M., Farsadrooh, M., Zare, I., Gholami, A. and Akhavan, O. (2023). Green synthesis of magnesium oxide nanoparticles and nanocomposites for photocatalytic antimicrobial, antibiofilm and antifungal applications. Catalysts, 13(4): 642.

10.    Chaudhary, J., Tailor, G., Yadav, M., and Mehta, C. (2023). Green route synthesis of metallic nanoparticles using various herbal extracts: A review. Biocatalysis and Agricultural Biotechnology, 50: 102692.

11.    Ramanujam, K., and Sundrarajan, M. (2014). Antibacterial effects of biosynthesized MgO nanoparticles using ethanolic fruit extract of Emblica officinalis. Journal of Photochemistry and Photobiology B: Biology, 141: 296-300.

12.    Moorthy, S. K., Ashok, C. H., Rao, K. V., and Viswanathan, C. (2015). Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Materials Today: Proceedings, 2(9): 4360-4368.

13.    Umaralikhan, L., and Jamal Mohamed Jaffar, M. (2018). Green synthesis of MgO nanoparticles and its antibacterial activity. Iranian Journal of Science and Technology, Transaction A: Science, 42(2): 477-485.

14.    Dabhane, H., Ghotekar, S., Zate, M., Kute, S., Jadhav, G. and Medhane, V. (2022). Green synthesis of MgO nanoparticles using aqueous leaf extract of Ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological activities. Inorganic Chemistry Communications, 138: 109270.

15.    Duong, T. H. Y., Nguyen, T. N., Oanh, H. T., Dang Thi, T. A., Giang, L. N. T., Phuong, H. T., Anh, N. T., Nguyen, B. M., Quang, V. T., Le, G. T. and Nguyen, T. van. (2019). Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. Journal of Chemistry, 2019: 4376429.

16.    Suresh, J., Yuvakkumar, R., Sundrarajan, M., and Hong, S. I. (2014). Green synthesis of magnesium oxide nanoparticles. Advanced Materials Research, 952: 141-144.

17.    Ali, R., Shanan, Z. J., Saleh, G. M., and Abass, Q. (2020). Green synthesis and the study of some physical properties of MgO nanoparticles and their antibacterial activity. Iraqi Journal of Science, 61(2): 266-276.

18.    Vijayakumar, S., Punitha, V. N., and Parameswari, N. (2021). Phytonanosynthesis of MgO nanoparticles: Green synthesis, characterization and antimicrobial evaluation. Arabian Journal for Science and Engineering, 2021: 1-6.

19.    Prasanth, R., Kumar, S. D., Jayalakshmi, A., Singaravelu, G., Govindaraju, K. and Kumar, V. G. (2019). Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian Journal of Geo Marine Sciences, 48(8): 1210-1215.

20.    Amina, M., al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F., Oraby, H. F., Al Hamoud, G. A., Bukhari, S. I., and Moubayed, N. M. S. (2020). Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS ONE, 15: 0237567.

21.    Balakrishnan, G., Velavan, R., Mujasam Batoo, K., and Raslan, E. H. (2020). Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results in Physics, 16: 103013.

22.    Ammulu, M. A., Vinay Viswanath, K., Giduturi, A. K., Vemuri, P. K., Mangamuri, U. and Poda, S. (2021). Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications. Journal of Genetic Engineering and Biotechnology, 19: 21.

23.    Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R. and Natarajan, S. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190: 86-97.

24.    Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H. and Ding, W. (2018). Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearumFrontiers in Microbiology9: 790.

25.    Chandrasekar, M., Subash, M., Perumal, V., Panimalar, S., Aravindan, S., Uthrakumar, R., Inmozhi, C., Isaev, A. B., Muniyasamy, S., Raja, A. and Kaviyarasu, K. (2022). Specific charge separation of Sn doped MgO nanoparticles for photocatalytic activity under UV light irradiation. Separation and Purification Technology, 2021: 294.

26.    Pandit, C., Roy, A., Ghotekar, S., Khusro, A., Islam, M. N., Emran, T. bin, Lam, S. E., Khandaker, M. U. and Bradley, D. A. (2022). Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University - Science, 34(3): 101869.

27.    Marfu’ah, S., Rohma, S. M., Fanani, F., Hidayati, E. N., Nitasari, D. W., Primadi, T. R., Ciptawati, E., Sumari, S., and Fajaroh, F. (2020, May). Green synthesis of ZnO nanoparticles by using banana peel extract as capping agent and its bacterial activity. 2nd International Conference on Chemistry and Material Science (IC2MS), 833: 1-7.

28.    Naganathan, S. and Thirunavukkarasu, S. (2017). Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, antioxidant, and anti-tumor cell line studies. 2nd International Conference on Mining, Material and Metallurgical Engineering, 191: 1-7.

29.    Abdullah, F. H., Abu Bakar, N. H. H. and Abu Bakar, M. (2020). Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik, 206: 164279.

30.    Abdullah, F. H., Abu Bakar, N. H. H. and Abu Bakar, M. (2021). Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment. Journal of Hazardous Materials, 406: 164279.

31.    Hussien, N. A. (2023). Antimicrobial potential of biosynthesized zinc oxide nanoparticles using banana peel and date seeds extracts. Sustainability (Switzerland), 15(11): 9048.

32.    Hussien, N. A., al Malki, J. S., al Harthy, F. A. R., Mazi, A. W. and Al Shadadi, J. A. A. (2023). Sustainable eco-friendly synthesis of zinc oxide nanoparticles using banana peel and date seed extracts, characterization, and cytotoxicity evaluation. Sustainability, 15(13): 9864.

33.    Shittu, H. O., Igiehon, E., Eremwanarue, A. O., Oijagbe, R. E., Momoh, M. O. and Agbontian, M. A. (2021). Optimization of phytosynthesis of magnesium oxide and magnesium chloride nanoparticles. Nigerian Journal of Biotechnology, 37(2): 74-83.

34.    Vu, H. T., Scarlett, C. J. and Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods40: 238-248.

35.    Gillani, S. F., Ali, S., Tahir, H. M., Shakir, H. A. and Hassan, A. (2020). Phytochemical analysis, antibacterial and antibiogram activities of fruits peels against human pathogenic bacteria. International Food Research Journal, 27(5): 963-970.

36.    Nguyen, V. T., and Le, M. D. (2018). Influence of various drying conditions on phytochemical compounds and antioxidant activity of carrot peel. Beverages, 4(4): 80.

37.    Saikumari, N., Dev, S. M., and Dev, S. A. (2021). Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Scientific Reports, 11(1): 1-17.

38.    Kumar, S. A., Jarvin, M., Inbanathan, S. S. R., Umar, A., Lalla, N. P., Dzade, N. Y., Algadi, H., Rahman, Q. I. and Baskoutas, S. (2022). Facile green synthesis of magnesium oxide nanoparticles using tea (Camellia sinensis) extract for efficient photocatalytic degradation of methylene blue dye. Environmental Technology and Innovation, 28: 102746.

39.    Essien, E. R., Atasie, V. N., Oyebanji, T. O. and Nwude, D. O. (2020). Biomimetic synthesis of magnesium oxide nanoparticles using Chromolaena odorata (L.) leaf extract. Chemical Papers, 1-9.

40.    Yusoff, H. M., Idris, N.H., Hipul, N. F., Yusoff, N. F. M., Izham, N. Z. M. and Bhat, I. U. H. (2020). Green synthesis of zinc oxide nanoparticles using black tea extract and its potential as anode material in sodium-ion batteries. Malaysian Journal of Chemistry, 22(2): 43-51.

41.    Hii, Y. S., Jeevanandam, J. and Chan, Y. S. (2019). Plant mediated green synthesis and nanoencapsulation of MgO nanoparticle from Calotropis gigantea: Characterisation and kinetic release studies. Inorganic and Nano-Metal Chemistry48(12): 620-631.

42.    Essien, E. R., Atasie, V. N., Okeafor, A. O. and Nwude, D. O. (2020). Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. International Nano Letters, 10(1): 43-48.

43.    Latha, C. K., Raghasudha, M., Aparna, Y., Ramchander, M., Ravinder, D., Jaipal, K., Veerasomaiah, P. and Shridhar, D. (2017). Effect of capping agent on the morphology, size and optical properties of In2O3 nanoparticles. Materials Research, 20(1): 256-263.

44.    Yusoff, H. M., Hazwani, N. U., Hassan, N. and Izwani, F. (2015). Comparison of sol gel and dehydration magnesium oxide (MgO) as a catalyst in Michael addition reaction. International Journal of Integrated Engineering, 7(3): 43-50.

45.    Hassan, S. E. D., Fouda, A., Saied, E., Farag, M., Eid, A. M., Barghoth, M. G. and Awad, M. F. (2021). Rhizopus Oryzae-mediated green synthesis of magnesium oxide nanoparticles (MgO-NPs): A promising tool for antimicrobial, mosquitocidal action, and tanning effluent treatment. Journal of Fungi, 7(5): 372.

46.    Osuntokun, J., Onwudiwe, D. C. and Ebenso, E. E. (2019). Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 12(4): 444-457.

47.    Dobrucka, R. (2018). Synthesis of MgO nanoparticles using Artemisia abrotanum herba extract and their antioxidant and photocatalytic properties. Iranian Journal of Science and Technology, Transactions A: Science, 42(2): 547-555.

48.    Vidhya, E., Vijayakumar, S., Nilavukkarasi, M., Punitha, V. N., Snega, S., and Praseetha, P. K. (2021). Green fabricated MgO nanoparticles as antimicrobial agent: Characterization and evaluation. Materials Today: Proceedings, 45: 5579-5583.

49.    Farizan, A. F., Yusoff, H. M., Badar, N., Bhat, I. U. H., Anwar, S. J., Wai, C. P., Asari, A., Kasim, M. F., and Elong, K. (2023). Green synthesis of magnesium oxide nanoparticles using Mariposa Christia vespertilionis leaves extract and its antimicrobial study toward S. aureus and E. coli. Arabian Journal for Science and Engineering, 48(6): 7373-7386.

50.    Adamo, G., Campora, S. and Ghersi, G. (2017). Nanostructures for novel therapy: synthesis, characterization and applications. Elsevier, Amsterdam: pp. 57-80.

51.    Venkatachalam, A., Jesuraj, J. P., and Sivaperuman, K. (2021). Moringa oleifera leaf extract-mediated green synthesis of nanostructured alkaline earth oxide (MgO) and its physicochemical properties. Journal of Chemistry, 2021: 4301504.

52.    Rahmani-Nezhad, S., Dianat, S., Saeedi, M., and Hadjiakhoondi, A. (2017). Synthesis, characterization and catalytic activity of plant mediated MgO nanoparticles using Mucuna pruriens L. seed extract and their biological evaluation. Journal of Nanoanalysis, 4(4): 290-298.

53.    Zhang, D., Ma, X. L., Gu, Y., Huang, H., and Zhang, G. W. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 8(799): 1-18.