Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1003 - 1016
BENZIMIDAZOLE
DERIVATIVES AS POTENTIAL NEURAMINIDASE INHIBITORS: CONVENTIONAL AND MICROWAVE
SYNTHESIS, In Vitro AND MOLECULAR DOCKING ANALYSIS
(Terbitan Benzimidazola yang Berpotensi sebagai Perencat
Neuraminidase: Sintesis secara Konvensional dan Gelombang Mikro, Analisis In
Vitro dan Pengedokan Molekul)
Nurasyikin
Hamzah1, Shafida Abd Hamid1,4*, Aisyah Saad Abdul Rahim2,
and Habibah Abdul Wahab3
1Department of Chemistry, Kulliyyah
of Science, International Islamic University Malaysia, Bandar Indera Mahkota,
25200 Kuantan, Pahang, Malaysia
2Faculty of Pharmacy, UiTM Puncak
Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
3School of Pharmaceutical Sciences,
Universiti Sains Malaysia, 11800, Penang, Malaysia
4SYNTOF, Kulliyyah of Science,
International Islamic University Malaysia, Bandar Indera Mahkota, 25200
Kuantan, Pahang, Malaysia
*Corresponding
author: shafida@iium.edu.my
Received: 27 March 2023; Accepted: 23
July 2023; Published: 30 October 2023
Abstract
As a continuous effort to
discover potential neuraminidase (NA) inhibitors, two series of benzimidazole
derivatives consisting of esters, 5(a–g)
and carboxylic acid moieties, 6(a–g)
were synthesised under conventional and
microwave conditions. The
efficiency of both methods was compared, and their ability to inhibit the
action of NA enzyme was examined in silico and in vitro. The
microwave synthesis of the target compounds was more efficient and convenient
than the conventional method as the former accelerated the reaction from hours
to minutes, giving comparable yields. All compounds obtained were confirmed by
the 1H, 13C NMR, and mass spectroscopic data. Out of six
compounds tested in the carboxylic acid series, only 6f showed
inhibitory action towards NA with 15.2%. The binding interactions of 6(a–g)
were investigated further by molecular docking on the NA active site (PDB ID:
3TI6). 6f was found to interact in the 430-loop cavity mainly by
hydrophobic interactions. 6f interacted at different active sites
compared to DANA and oseltamivir. Although the compounds showed low inhibitory
action, with strategic structural improvements, the benzimidazoles have the
potential to be developed as NA inhibitors.
Keywords: benzimidazole, MAOS,
Neuraminidase inhibitor, Molecular docking, MUNANA
Abstrak
Sebagai usaha
berterusan untuk menemukan perencat neuraminidase (NA) yang berpotensi, dua
siri terbitan benzimidazola yang terdiri daripada ester, 5(a–g)
dan moieti asid karboksilik, 6(a–g) telah disintesis dalam keadaan
konvensional dan gelombang mikro. Kecekapan kedua-dua kaedah telah dibandingkan
dan keupayaan mereka untuk merencat enzim NA telah diselidik secara in
silico dan in vitro. Sintesis sebatian sasaran melalui gelombang
mikro adalah lebih cekap dan mudah berbanding kaedah konvensional kerana proses
tindak balas dipercepat dari beberapa jam ke minit, memberikan hasil yang
setanding. Semua sebatian yang diperoleh adalah bertepatan dengan data 1H,
13C NMR, dan spektroskopi jisim. Daripada enam sebatian yang diuji
dalam siri asid karboksilik, hanya 6f menunjukkan tindakan perencatan
terhadap NA sebanyak 15.2%. Interaksi pengikatan 6(a–g) telah dikaji
dengan lebih lanjut melalui pengedokan molekul terhadap tapak aktif NA (PDB ID:
3TI6). 6f didapati berinteraksi dalam rongga 430 gelung terutamanya oleh
interaksi hidrofobik. 6f berinteraksi di tapak aktif yang berbeza
berbanding DANA dan oseltamivir. Walaupun sebatian menunjukkan tindakan
perencatan yang rendah, dengan penambahbaikan struktur strategik, benzimidazola
mempunyai potensi untuk dibangunkan sebagai perencat NA.
Kata kunci: Benzimidazola, MAOS, Perencat neuraminidase, Pengedokan
molekul, MUNANA
References
1. Bouvier,
N. M, and Palese, P. (2008). The biology of influenza
viruses. Vaccine, 26 (suppl. 4): D49-D53.
2. Shinde,
V., Bridges, C. B., Uyeki, T. M., Bo, S., Balish, A.,
Xu, X., Lindstrom, S., Gubareva, L.V., Deyde, V., Garten, R.J., Harris, M., Gerber, S., Vagasky, S., Smith, F., Pascoe, N., Martin, K., Dufficy,
D., Ritger, K., Conover, C., Quinlisk, P., Klimov, A., Bresee, J.S., and
Finelli, L. (2009). Triple-reassortant swine
influenza A (H1) in humans in the United States, 2005-2009. The New England
Journal of Medicine, 360: 2616-2625.
3. Sinha,
A. K., Roy, A., Das, B., Das, S., and Basak, S. (2009). Evolutionary
complexities of swine flu H1N1 gene sequences of 2009. Biochemical and
Biophysical Research Communications, 390: 349-351.
4. Bassetti,
M., Castaldo, N., and Carnelutti, A. (2019).
Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and
future perspectives, Expert Opinion on Pharmacotherapy, 20: 1711-1718.
5. Kayser,
V. and Ramzan, I. (2021). Vaccines and vaccination: history and emerging
issues. Human Vaccines & Immunotherapeutics,
17: 5255-5268.
6. Carvalho,
S. B., Peixoto, C., Manuel, M. J., and Ricardo, R. J. (2021). Downstream
processing for influenza vaccines and candidates: An update. Biotechnology
and Bioengineering, 118: 2845-2869.
7. Farrukee,
R., and Hurt, A. C. (2017). Antiviral drugs for the treatment and prevention of
influenza. Current
Treatment Options in Infectious Diseases, 9: 318-332.
8. Balgi, A.
D., Wang, J., Cheng, D. Y., Ma, C., Pfeifer, T. A., Shimizu, Y., Anderson, H.
J., Pinto, L. H., Lamb, R. A., DeGrado, W. F., and Roberge, M. (2013).
Inhibitors of the influenza A virus M2 proton channel discovered using a
high-throughput yeast growth restoration assay. PLoS
One, 8(2): e55271.
9. Wang,
T., and Wade, R. C. (2001). Comparative binding energy (COMBINE) analysis of
influenza neuraminidase-inhibitor complexes. Journal of Medicinal Chemistry,
44: 961-971.
10. Jefferson,
T., Demicheli, V., Rivetti, D., Jones, M., Di Pietrantonj, C., and Rivetti, A. (2006). Antivirals
for influenza in healthy adults: Systematic review. Lancet, 367:
303-313.
11. Bright,
R. A., Shay, D. K., Shu, B., Cox, N. J., and Klimov, A. I. (2006) Adamantane
resistance among influenza a virus isolated early during the 2005-2006
influenza season in the United States. JAMA, 295: 891-894.
12. Vorobjev, Y.
N. (2021) An effective molecular blocker of ion channel of M2 protein as
anti-influenza a drug. Journal of Biomolecular Structure and Dynamics,
39: 2352-2363.
13. McAuley,
J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., and McKimm-Breschkin, J. L. (2019) Influenza virus neuraminidase
structure and functions. Frontiers in Microbiology, 10: 39.
14. Chand,
P., Babu, Y.S., Bhantia, S., Rowland, S., Deghani, A., Kotian, P.L., Hutchison, T.L., Ali, S.,
Brouillette, W., El-Kattan, Y., and Lin, T. H. (2004). Syntheses and
neuraminidase inhibitory activity of multisubstituted
cyclopentane amide derivatives Journal of Medicinal Chemistry, 47:
1919-1929.
15. Sarukhanyan,
E., Shanmugam, T. A., and Dandekar, T. (2022). In silico studies reveal
peramivir and zanamivir as an optimal drug treatment even If H7N9 avian type
influenza virus acquires further resistance. Molecules, 27: 5920.
16. Alame,
M. M., Massaad, E., and Zaraket,
H. (2016). Peramivir: A novel intravenous neuraminidase inhibitor for treatment
of acute influenza infections. Frontiers in Microbiology, 7: 450.
17. Alamgir,
M., Black, D. St. C., and Kumar, N. (2007). Synthesis, reactivity and
biological activity of benzimidazoles. In Khan MTH (ed) Topics in Heterocyclic
Chemistry, Springer, Berlin, Germany, 9, pp. 87-118.
18. de
Oliveira, H. C., and Rodrigues, M. L. (2021). Repurposing
benzimidazoles to fight Cryptococcus. Fungal Biology Reviews, 37: 27-40.
19. Garudachari,
B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N., Hegde, G., and Isloor,
A. M. (2012). Synthesis, characterization and antimicrobial studies of some new
quinoline incorporated benzimidazole derivatives. European Journal of
Medicinal Chemistry, 54: 900-906.
20. Liu,
H-B., Gao, W-W., Tangadanchu, V. K. R., Zhou, C-H.,
and Geng, R-X. (2018 Novel aminopyrimidinyl
benzimidazoles as potentially antimicrobial agents: Design, synthesis and
biological evaluation. European Journal of Medicinal Chemistry, 143:
66-84.
21. Marinescu,
M., Tudorache, D. G., Marton, G. I., Zalaru, C-M.,
Popa, M., Chifiriuc, M-C., Stavarache,
C-E., Constantinescu, C., Marinescu, M., Tudorache, D.G., Marton, G.I., Zalaru, C-M., Popa, M., Chifiriuc,
M-C., Stavarache, C-E., and Constantinescu, C. (2017)
Density functional theory molecular modeling,
chemical synthesis, antimicrobial behaviour of selected benzimidazole
derivatives. Journal of Molecular Structure, 1130: 463-471.
22. Wang,
X. J., Xi, M. Y., Fu, J. H., Zhang, F. R., Cheng, G. F., Yin, D. L., and You,
Q. D. (2012). Synthesis, biological evaluation and SAR studies of benzimidazole
derivatives as H1-antihistamine agents. Chinese Chemical Letters, 23:
707-710.
23. Zhou,
S., and Huang, G. (2020). Synthesis of anti-allergic drugs. (2020). RSC
Advances, 10: 5874-5885.
24. Bistrović,
A., Krstulović, L., Harej, A., Grbčić,
P., Sedić, M., Koštrun, S., Pavelić, S.K.,
Bajić, M., and Raić-Malić, S. (2018).
Design, synthesis and biological evaluation of novel benzimidazole amidines as
potent multi-target inhibitors for the treatment of non-small cell lung cancer.
European Journal of Medicinal Chemistry, 143: 1616-1634.
25. Ren,
Y., Wang, Y., Li, G., Zhang, Z., Ma, L., Cheng, B., and Chen, J. (2021).
Discovery of novel benzimidazole and indazole analogues as tubulin
polymerization inhibitors with potent anticancer activities. Journal of
Medicinal Chemistry, 64: 4498-4515.
26. Burger-Kentischer, A., Finkelmeier, D.,
Keller, P., Bauer, J., Eickhoff, H., Kleymann, G., Abu Rayyan, W., Singh, A., Schröppel, K., Lemuth, K., Wiesmüller, K. H., and Rupp, S. (2011). A screening assay
based on host-pathogen interaction models identifies a set of novel antifungal
benzimidazole derivatives. Antimicrobial Agents and Chemotherapy, 55:
4789-4801.
27. Kankate, R.
S., Gide, P. S., Belsare, D. P. (2019). Design, synthesis and antifungal
evaluation of novel benzimidazole tertiary amine type of fluconazole analogues.
Arabian Journal of Chemistry, 12: 2224-2235.
28. Guo,
Y., Hou, X., Fang, H. (2020). Recent applications of benzimidazole as a
privileged scaffold in drug discovery. Mini-Reviews in Medicinal Chemistry,
21: 1367-1379.
29. Mermer,
A., Keles, T., and Sirin, Y. (2021). Recent studies of nitrogen containing
heterocyclic compounds as novel antiviral agents: A review, Bioorganic
Chemistry, 114: 105076.
30. Gedye,
R., Smith, F., Westaway, K., Ali, H., Baldisera, L.,
Laberge, L., and Rousell, L. (1986). The use of microwave ovens for rapid
organic synthesis. Tetrahedron Letters, 27: 279-282.
31. Giguere,
R. J., Bray, T. L., Duncan, S. M., and Majetich, G. (1986). Application of
commercial microwave ovens to organic synthesis. Tetrahedron Letters,
27: 4945-4958.
32. Martina,
K., Cravotto, G., and Varma, R. S. (2021). Impact of
microwaves on organic synthesis and strategies toward flow processes and
scaling up. Journal of Organic Chemistry, 86: 13857-13872.
33. Nain,
S., Singh, R., and Ravichandran, S. (2019). Importance of microwave heating in
organic synthesis. Advanced Journal of Chemistry-Section A, 2: 94-104.
34. Soni,
J. P., Joshi, S. V., Chemitikanti, K.S., Shankaraiah, N. The riveting chemistry of poly-aza-heterocycles employing microwave technique: A decade
review. European Journal of Organic Chemistry, 2021: 1476-1490.
35. Sharma,
N., Sharma, U. K., and Van der Eycken, E. V. (2018).
Microwave-assisted organic synthesis: Overview of recent applications. In Zhang
W, Cue BW (eds) Green techniques for organic synthesis and medicinal chemistry,
2nd edition, John Wiley & Sons Ltd., New Jersey: pp. 441-468.
36. Kuhnert,
N. (2002). Microwave-assisted reactions in organic synthesis-are there any
nonthermal microwave effects?. Angewandte Chemie International Edition, 41:
1863-1866.
37. Zarubaev, V.
V., Vasilieva, S. V., Esaulkova, Y. L., Garshinina, A. V., Veprintseva,
V. M., Galochkina, A. V., Protsak,
Y. S., Teselkin, I. V., Morkovnik,
A. S., Divaeva, L. N., and Lavrentieva, I. N. (2018).
Protective activity of novel benzimidazole derivatives at experimental
influenza infection. Russian Journal of Infection and Immunity, 8:
195-200.
38. Kutkat,
O., Kandeil, A., Moatasim,
Y., Elshaier, Y. A. M. M., El-Sayed, W. A., Gaballah,
S. T., El Taweel, A., Kamel, M. N., El Sayes, M.,
Ramadan, M. A., El-Shesheny, R., Abdel-Megeid, F. M. E., Webby, R., Kayali, G., and Ali, M. A.
(2022). In Vitro and In Vivo antiviral studies of new heteroannulated 1,2,3-triazole glycosides targeting the
neuraminidase of influenza A viruses. Pharmaceuticals, 15: 351.
39. Malbari, K.
D., Chintakrindi, A. S., Ganji, L. R., Gohil, D. J.,
Kothari, S. T., Joshi, M. V., and Kanyalkar, M. A.
(2019). Structure-aided drug development of potential neuraminidase inhibitors
against pandemic H1N1 exploring alternate binding mechanism. Molecular
Diversity, 23: 927-951.
40. Potier,
M., Mameli, L., Bélisle, M., Dallaire, L., Melanxon, S. B. (1979). Fluorometric
assay of Neuraminidase with a sodium
(4-methylumbelliferyl-α-D-N-acetylneuraminate) substrate. Analytical
Biochemistry, 94: 287-296.
41. Blick,
T. J., Tiong, T., Sahasrabudhe, A., Varghese, J. N., Colman, P. M., Hart, G.
J., Bethell, R. C., and McKimm-Breschkin, J. L.
(1995). Generation and characterization of an influenza virus Neuraminidase
variant with decreased sensitivity to the Neuraminidase-specific inhibitor
4-guanidino-Neu5Ac2en. Virology, 214: 475-484.
42. Hamzah,
N., Ngah, N., Hamid, S. A., and Abdul Rahim, A. S. (2011). Ethyl
1-(2-hydroxyethyl)-2-[2-(methylsulfanyl)
ethyl]-1H-benzimidazole-5-carboxylate. Acta Crystallographica
Section E, E68: o197-o198.
43. Hamzah,
N., Ngah, N., Hamid, S. A., and Abdul Rahim, A. S. (2011). Ethyl
1-(2-hydroxyethyl)-2-propyl-1H-benzimidazole-5-carboxylate. Acta Crystallographica Section E, E67: o2704.
44. Hamzah,
N., Ngah, N., Hamid, S. A., and Abdul Rahim, A. S. (2012).
2-sec-Butyl-1-(2-hydroxyethyl)-1H- benzimidazole-5-carboxylic acid. Acta Crystallographica Section E, E68: o1995.
45. Li,
Q., Qi, J., Zhang, W., Vavricka, C. J., Shi, Y., Wei, J., Feng, E., Shen, J.,
Chen, J., Liu, D., He, J., Yan, J., Liu, H., Jiang, H., Teng, M., Li, X., and
Gao, G. F. (2010). The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity
in its active site. Nature Structural & Molecular Biology, 17:
1266-1268.
46.
Taylor, N. R., and von
Itzstein, M. (1994). Molecular modelling studies on ligand binding to sialidase
from influenza virus and the mechanism of catalysis. Journal of Medicinal
Chemistry, 37: 616-624.