Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1003 - 1016

 

BENZIMIDAZOLE DERIVATIVES AS POTENTIAL NEURAMINIDASE INHIBITORS: CONVENTIONAL AND MICROWAVE SYNTHESIS, In Vitro AND MOLECULAR DOCKING ANALYSIS

 

(Terbitan Benzimidazola yang Berpotensi sebagai Perencat Neuraminidase: Sintesis secara Konvensional dan Gelombang Mikro, Analisis In Vitro dan Pengedokan Molekul)

 

Nurasyikin Hamzah1, Shafida Abd Hamid1,4*, Aisyah Saad Abdul Rahim2, and Habibah Abdul Wahab3

 

1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

2Faculty of Pharmacy, UiTM Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

3School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

4SYNTOF, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: shafida@iium.edu.my

 

 

Received: 27 March 2023; Accepted: 23 July 2023; Published:  30 October 2023

 

 

Abstract

As a continuous effort to discover potential neuraminidase (NA) inhibitors, two series of benzimidazole derivatives consisting of esters, 5(a–g) and carboxylic acid moieties, 6(a–g) were synthesised under conventional and microwave conditions. The efficiency of both methods was compared, and their ability to inhibit the action of NA enzyme was examined in silico and in vitro. The microwave synthesis of the target compounds was more efficient and convenient than the conventional method as the former accelerated the reaction from hours to minutes, giving comparable yields. All compounds obtained were confirmed by the 1H, 13C NMR, and mass spectroscopic data. Out of six compounds tested in the carboxylic acid series, only 6f showed inhibitory action towards NA with 15.2%. The binding interactions of 6(ag) were investigated further by molecular docking on the NA active site (PDB ID: 3TI6). 6f was found to interact in the 430-loop cavity mainly by hydrophobic interactions. 6f interacted at different active sites compared to DANA and oseltamivir. Although the compounds showed low inhibitory action, with strategic structural improvements, the benzimidazoles have the potential to be developed as NA inhibitors.

 

Keywords: benzimidazole, MAOS, Neuraminidase inhibitor, Molecular docking, MUNANA

 

Abstrak

Sebagai usaha berterusan untuk menemukan perencat neuraminidase (NA) yang berpotensi, dua siri terbitan benzimidazola yang terdiri daripada ester, 5(ag) dan moieti asid karboksilik, 6(ag) telah disintesis dalam keadaan konvensional dan gelombang mikro. Kecekapan kedua-dua kaedah telah dibandingkan dan keupayaan mereka untuk merencat enzim NA telah diselidik secara in silico dan in vitro. Sintesis sebatian sasaran melalui gelombang mikro adalah lebih cekap dan mudah berbanding kaedah konvensional kerana proses tindak balas dipercepat dari beberapa jam ke minit, memberikan hasil yang setanding. Semua sebatian yang diperoleh adalah bertepatan dengan data 1H, 13C NMR, dan spektroskopi jisim. Daripada enam sebatian yang diuji dalam siri asid karboksilik, hanya 6f menunjukkan tindakan perencatan terhadap NA sebanyak 15.2%. Interaksi pengikatan 6(ag) telah dikaji dengan lebih lanjut melalui pengedokan molekul terhadap tapak aktif NA (PDB ID: 3TI6). 6f didapati berinteraksi dalam rongga 430 gelung terutamanya oleh interaksi hidrofobik. 6f berinteraksi di tapak aktif yang berbeza berbanding DANA dan oseltamivir. Walaupun sebatian menunjukkan tindakan perencatan yang rendah, dengan penambahbaikan struktur strategik, benzimidazola mempunyai potensi untuk dibangunkan sebagai perencat NA.

 

Kata kunci: Benzimidazola, MAOS, Perencat neuraminidase, Pengedokan molekul, MUNANA

 

References

1.       Bouvier, N. M, and Palese, P. (2008). The biology of influenza viruses. Vaccine, 26 (suppl. 4): D49-D53.

2.       Shinde, V., Bridges, C. B., Uyeki, T. M., Bo, S., Balish, A., Xu, X., Lindstrom, S., Gubareva, L.V., Deyde, V., Garten, R.J., Harris, M., Gerber, S., Vagasky, S., Smith, F., Pascoe, N., Martin, K., Dufficy, D., Ritger, K., Conover, C., Quinlisk, P., Klimov, A., Bresee, J.S., and Finelli, L. (2009). Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009. The New England Journal of Medicine, 360: 2616-2625.

3.       Sinha, A. K., Roy, A., Das, B., Das, S., and Basak, S. (2009). Evolutionary complexities of swine flu H1N1 gene sequences of 2009. Biochemical and Biophysical Research Communications, 390: 349-351.

4.       Bassetti, M., Castaldo, N., and Carnelutti, A. (2019). Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and future perspectives, Expert Opinion on Pharmacotherapy, 20: 1711-1718.

5.       Kayser, V. and Ramzan, I. (2021). Vaccines and vaccination: history and emerging issues. Human Vaccines & Immunotherapeutics, 17: 5255-5268.

6.       Carvalho, S. B., Peixoto, C., Manuel, M. J., and Ricardo, R. J. (2021). Downstream processing for influenza vaccines and candidates: An update. Biotechnology and Bioengineering, 118: 2845-2869.

7.       Farrukee, R., and Hurt, A. C. (2017). Antiviral drugs for the treatment and prevention of influenza. Current Treatment Options in Infectious Diseases, 9: 318-332.

8.       Balgi, A. D., Wang, J., Cheng, D. Y., Ma, C., Pfeifer, T. A., Shimizu, Y., Anderson, H. J., Pinto, L. H., Lamb, R. A., DeGrado, W. F., and Roberge, M. (2013). Inhibitors of the influenza A virus M2 proton channel discovered using a high-throughput yeast growth restoration assay. PLoS One, 8(2): e55271.

9.       Wang, T., and Wade, R. C. (2001). Comparative binding energy (COMBINE) analysis of influenza neuraminidase-inhibitor complexes. Journal of Medicinal Chemistry, 44: 961-971.

10.    Jefferson, T., Demicheli, V., Rivetti, D., Jones, M., Di Pietrantonj, C., and Rivetti, A. (2006). Antivirals for influenza in healthy adults: Systematic review. Lancet, 367: 303-313.

11.    Bright, R. A., Shay, D. K., Shu, B., Cox, N. J., and Klimov, A. I. (2006) Adamantane resistance among influenza a virus isolated early during the 2005-2006 influenza season in the United States. JAMA, 295: 891-894.

12.    Vorobjev, Y. N. (2021) An effective molecular blocker of ion channel of M2 protein as anti-influenza a drug. Journal of Biomolecular Structure and Dynamics, 39: 2352-2363.

13.    McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., and McKimm-Breschkin, J. L. (2019) Influenza virus neuraminidase structure and functions. Frontiers in Microbiology, 10: 39.

14.    Chand, P., Babu, Y.S., Bhantia, S., Rowland, S., Deghani, A., Kotian, P.L., Hutchison, T.L., Ali, S., Brouillette, W., El-Kattan, Y., and Lin, T. H. (2004). Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives Journal of Medicinal Chemistry, 47: 1919-1929.

15.    Sarukhanyan, E., Shanmugam, T. A., and Dandekar, T. (2022). In silico studies reveal peramivir and zanamivir as an optimal drug treatment even If H7N9 avian type influenza virus acquires further resistance. Molecules, 27: 5920.

16.    Alame, M. M., Massaad, E., and Zaraket, H. (2016). Peramivir: A novel intravenous neuraminidase inhibitor for treatment of acute influenza infections. Frontiers in Microbiology, 7: 450.

17.    Alamgir, M., Black, D. St. C., and Kumar, N. (2007). Synthesis, reactivity and biological activity of benzimidazoles. In Khan MTH (ed) Topics in Heterocyclic Chemistry, Springer, Berlin, Germany, 9, pp. 87-118.

18.    de Oliveira, H. C., and Rodrigues, M. L. (2021). Repurposing benzimidazoles to fight Cryptococcus. Fungal Biology Reviews, 37: 27-40.

19.    Garudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N., Hegde, G., and Isloor, A. M. (2012). Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. European Journal of Medicinal Chemistry, 54: 900-906.

20.    Liu, H-B., Gao, W-W., Tangadanchu, V. K. R., Zhou, C-H., and Geng, R-X. (2018 Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 143: 66-84.

21.    Marinescu, M., Tudorache, D. G., Marton, G. I., Zalaru, C-M., Popa, M., Chifiriuc, M-C., Stavarache, C-E., Constantinescu, C., Marinescu, M., Tudorache, D.G., Marton, G.I., Zalaru, C-M., Popa, M., Chifiriuc, M-C., Stavarache, C-E., and Constantinescu, C. (2017) Density functional theory molecular modeling, chemical synthesis, antimicrobial behaviour of selected benzimidazole derivatives. Journal of Molecular Structure, 1130: 463-471.

22.    Wang, X. J., Xi, M. Y., Fu, J. H., Zhang, F. R., Cheng, G. F., Yin, D. L., and You, Q. D. (2012). Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as H1-antihistamine agents. Chinese Chemical Letters, 23: 707-710.

23.    Zhou, S., and Huang, G. (2020). Synthesis of anti-allergic drugs. (2020). RSC Advances, 10: 5874-5885.

24.    Bistrović, A., Krstulović, L., Harej, A., Grbčić, P., Sedić, M., Koštrun, S., Pavelić, S.K., Bajić, M., and Raić-Malić, S. (2018). Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. European Journal of Medicinal Chemistry, 143: 1616-1634.

25.    Ren, Y., Wang, Y., Li, G., Zhang, Z., Ma, L., Cheng, B., and Chen, J. (2021). Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. Journal of Medicinal Chemistry, 64: 4498-4515.

26.    Burger-Kentischer, A., Finkelmeier, D., Keller, P., Bauer, J., Eickhoff, H., Kleymann, G., Abu Rayyan, W., Singh, A., Schröppel, K., Lemuth, K., Wiesmüller, K. H., and Rupp, S. (2011). A screening assay based on host-pathogen interaction models identifies a set of novel antifungal benzimidazole derivatives. Antimicrobial Agents and Chemotherapy, 55: 4789-4801.

27.    Kankate, R. S., Gide, P. S., Belsare, D. P. (2019). Design, synthesis and antifungal evaluation of novel benzimidazole tertiary amine type of fluconazole analogues. Arabian Journal of Chemistry, 12: 2224-2235.

28.    Guo, Y., Hou, X., Fang, H. (2020). Recent applications of benzimidazole as a privileged scaffold in drug discovery. Mini-Reviews in Medicinal Chemistry, 21: 1367-1379.

29.    Mermer, A., Keles, T., and Sirin, Y. (2021). Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review, Bioorganic Chemistry, 114: 105076.

30.    Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., and Rousell, L. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 27: 279-282.

31.    Giguere, R. J., Bray, T. L., Duncan, S. M., and Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron Letters, 27: 4945-4958.

32.    Martina, K., Cravotto, G., and Varma, R. S. (2021). Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up. Journal of Organic Chemistry, 86: 13857-13872.

33.    Nain, S., Singh, R., and Ravichandran, S. (2019). Importance of microwave heating in organic synthesis. Advanced Journal of Chemistry-Section A, 2: 94-104.

34.    Soni, J. P., Joshi, S. V., Chemitikanti, K.S., Shankaraiah, N. The riveting chemistry of poly-aza-heterocycles employing microwave technique: A decade review. European Journal of Organic Chemistry, 2021: 1476-1490.

35.    Sharma, N., Sharma, U. K., and Van der Eycken, E. V. (2018). Microwave-assisted organic synthesis: Overview of recent applications. In Zhang W, Cue BW (eds) Green techniques for organic synthesis and medicinal chemistry, 2nd edition, John Wiley & Sons Ltd., New Jersey: pp. 441-468.

36.    Kuhnert, N. (2002). Microwave-assisted reactions in organic synthesis-are there any nonthermal microwave effects?. Angewandte Chemie International Edition, 41: 1863-1866.

37.    Zarubaev, V. V., Vasilieva, S. V., Esaulkova, Y. L., Garshinina, A. V., Veprintseva, V. M., Galochkina, A. V., Protsak, Y. S., Teselkin, I. V., Morkovnik, A. S., Divaeva, L. N., and Lavrentieva, I. N. (2018). Protective activity of novel benzimidazole derivatives at experimental influenza infection. Russian Journal of Infection and Immunity, 8: 195-200.

38.    Kutkat, O., Kandeil, A., Moatasim, Y., Elshaier, Y. A. M. M., El-Sayed, W. A., Gaballah, S. T., El Taweel, A., Kamel, M. N., El Sayes, M., Ramadan, M. A., El-Shesheny, R., Abdel-Megeid, F. M. E., Webby, R., Kayali, G., and Ali, M. A. (2022). In Vitro and In Vivo antiviral studies of new heteroannulated 1,2,3-triazole glycosides targeting the neuraminidase of influenza A viruses. Pharmaceuticals, 15: 351.

39.    Malbari, K. D., Chintakrindi, A. S., Ganji, L. R., Gohil, D. J., Kothari, S. T., Joshi, M. V., and Kanyalkar, M. A. (2019). Structure-aided drug development of potential neuraminidase inhibitors against pandemic H1N1 exploring alternate binding mechanism. Molecular Diversity, 23: 927-951.

40.    Potier, M., Mameli, L., Bélisle, M., Dallaire, L., Melanxon, S. B. (1979). Fluorometric assay of Neuraminidase with a sodium (4-methylumbelliferyl-α-D-N-acetylneuraminate) substrate. Analytical Biochemistry, 94: 287-296.

41.    Blick, T. J., Tiong, T., Sahasrabudhe, A., Varghese, J. N., Colman, P. M., Hart, G. J., Bethell, R. C., and McKimm-Breschkin, J. L. (1995). Generation and characterization of an influenza virus Neuraminidase variant with decreased sensitivity to the Neuraminidase-specific inhibitor 4-guanidino-Neu5Ac2en. Virology, 214: 475-484.

42.    Hamzah, N., Ngah, N., Hamid, S. A., and Abdul Rahim, A. S. (2011). Ethyl 1-(2-hydroxyethyl)-2-[2-(methylsulfanyl) ethyl]-1H-benzimidazole-5-carboxylate. Acta Crystallographica Section E, E68: o197-o198.

43.    Hamzah, N., Ngah, N., Hamid, S. A., and Abdul Rahim, A. S. (2011). Ethyl 1-(2-hydroxyethyl)-2-propyl-1H-benzimidazole-5-carboxylate. Acta Crystallographica Section E, E67: o2704.

44.    Hamzah, N., Ngah, N., Hamid, S. A., and Abdul Rahim, A. S. (2012). 2-sec-Butyl-1-(2-hydroxyethyl)-1H- benzimidazole-5-carboxylic acid. Acta Crystallographica Section E, E68: o1995.

45.    Li, Q., Qi, J., Zhang, W., Vavricka, C. J., Shi, Y., Wei, J., Feng, E., Shen, J., Chen, J., Liu, D., He, J., Yan, J., Liu, H., Jiang, H., Teng, M., Li, X., and Gao, G. F. (2010). The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nature Structural & Molecular Biology, 17: 1266-1268.

46.    Taylor, N. R., and von Itzstein, M. (1994). Molecular modelling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. Journal of Medicinal Chemistry, 37: 616-624.