Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 993 - 1002

 

A NEW GOLD NANOPARTICLES MODIFIED SCREEN PRINTED PAPER CARD BASED MICROFLUIDIC DEVICE

 

(Nanopartikel Emas Baru Diubahsuai Skrin Dicetak Kad Kertas Berasaskan Peranti Mikrobendalir)

 

Salamatu Hayatu1,2,3, AbduRahman Abdul Audu2, Magaji Ladan2, and Nor Azah Yusof3,4

 

1Department of Pure and Applied Chemistry,

Faculty of Science, Kaduna State University, Kaduna P.M.B 2339, Nigeria

2Department of Pure and Industrial Chemistry,

Faculty of Science, Bayero University, Kano P.M.B 3011, Nigeria

3Department of Chemistry,

Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

4Institute of Nanoscience and Nanotechnology,

Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

 

Corresponding author: salamatu.hayat@kasu.edu.ng

 

 

Received: 9 January 2023; Accepted: 23 July 2023; Published:  30 October 2023

 

 

Abstract

This work offers a novel platform for the straightforward and low-cost manufacture of paper microfluidic devices known as gold nanoparticles modified screen printed paper electrode AuNPs/SPPE. The component can function as an electrochemical cell as well as a microfluidic device. Different paper cards were evaluated for hydrophobicity, and metallic gold card was selected due to its superior hydrophobic properties. Thus, waxing and other pretreatment steps are eliminated. The AuNPs/SPPE was created by screen printing on metallic gold card using commercial silver ink. Working electrode was modified using synthesized gold nanoparticles (AuNPs). The presence and widespread distribution of Au particles are shown by SEM and EDX study. The conductivity and resistivity study shows good conductance. The device was applied in tramadol detection, tramadol was studied electrochemically using cyclic voltammetry technique, where it was oxidized at 0.1 to 0.3 volts. Positive results obtained from electrochemical investigation suggest good and promising future applications.

 

Keywords: microfluidic, screen printing, paper device

 

Abstrak

Kerja ini menawarkan platform baru untuk pembuatan peranti mikrofluidik kertas yang mudah dan kos rendah yang dikenali sebagai nanopartikel emas yang diubah suai skrin dicetak kertas elektrod AuNPs/SPPE. Komponen ini boleh berfungsi sebagai sel elektrokimia serta peranti mikrofluidik. Kad kertas yang berbeza dinilai untuk hidrofobisiti, dan kad emas logam dipilih kerana sifat hidrofobik yang unggul. Oleh itu, waxing dan langkah-langkah pretreatment lain dihapuskan. AuNPs/SPPE dicipta melalui percetakan skrin pada kad emas logam menggunakan dakwat perak komersial. Elektrod kerja diubah suai menggunakan nanopartikel emas yang disintesis (AuNPs). Kehadiran dan pengedaran zarah Au yang meluas ditunjukkan oleh kajian SEM dan EDX. Kajian kekonduksian dan rintangan menunjukkan kelakuan yang baik. Peranti ini digunakan dalam pengesanan tramadol, tramadol dikaji secara elektrokimia menggunakan teknik voltammetrik kitaran, di mana ia teroksida pada 0.1 hingga 0.3 volt. Hasil positif yang diperolehi daripada penyiasatan elektrokimia menunjukkan aplikasi masa depan yang baik dan menjanjikan.

 

Kata kunci: mikrobendalir, percetakan skrin, peranti kertas

 

References

1.       Coltro, T., Cheng, C., Carrilho, E., and Jesus, D. P. De. (2014). Recent advances in low-cost microfluidic, Electrophoresis, 2014: 1-16.

2.       Dutse, S. W., and Yusof. N. A. (2011). Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors, 11, 5754-5768.

3.       Songjaroen, T., Dungchai, W., Chailapakul, O., and Laiwattanapaisal, W. (2011). Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85(5): 2587-2593.

4.       Zhang, A. L., and Zha, Y. (2012). Fabrication of paper-based microfluidic device using printed circuit technology. AIP Advances, 2(2): 4733346.

5.       Dungchai, W., Chailapakul, O., and Henry, C. S. (2009). Electrochemical detection for paper-based microfluidics, Analytical Chemistry, 81(14): 5821-5826.

6.       Kong, X., Chong, X., Squire, K., and Wang, A. X. (2018). Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sensors & Actuators: B. Chemical, 259: 587-595.

7.       Ansari, N., Lodha, A., Pandya, A., and Menon, S. K. (2017). Determination of cause of death using paper-based microfluidic device as a colorimetric probe. Analytical Methods, 9(38): 5632-5639.

8.       Martinez, A. W., Phillips, S. T., Carrilho, E., Iii, S. W. T., Sindi, H., and Whitesides, G. M. (2008). Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Analytical Chemistry, 80(10): 3699-3707.

9.       Musile, G., Wang, L., Bottoms, J., Tagliaro, F., and McCord, B. (2015). The development of paper microfluidic devices for presumptive drug detection. Analytical Methods, 7(19): 8025-8033.

10.    Sharma, N., Barstis, T., and Giri, B. (2018). Advances in paper-analytical methods for pharmaceutical analysis. European Journal of Pharmaceutical Sciences, 111: 46-56.

11.    De Araujo, W. R., Cardoso, T. M. G., da Rocha, R. G., Santana, M. H. P., Muñoz, R. A. A., Richter, E. M., and Coltro, W. K. T. (2018). Portable analytical platforms for forensic chemistry: A review. Analytica Chimica Acta, 1034: 1-21.

12.    Oliveira, X. G., Munoz, R. A. A., Henry, C. S., and Coltro, W. K. T. (2018). Detection of analgesics and sedation drugs in whiskey using electrochemical paper-based analytical devices. Electroanalysis, 308: 1-9.

13.    Harper, L., Powell, J., and Pijl, E. M. (2017). An overview of forensic drug testing methods and their suitability for harm reduction point-of-care services. Harm Reduction Journal, 14: 52.

14.    Zhang, D., and Liu, Q. (2016). Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronic, 75: 273-284.

15.    De Araujo, W. R., and Paixão, W. R. (2014). Fabrication of disposable electrochemical devices using silver ink and office paper. Analyst, 139(11): 2742-2747.

16.    Adkins, J., Boehle, K., and Henry, C. (2015). Electrochemical paper‐based microfluidic devices. Electrophoresis, 36(16): 1811-1824.

17.    Tayyab, S., Naqvi, R., Rasheed, T., Naeem, M., Najam, M., Majeed, S., … and Shafi, S. (2020). Fabrication of iron modified screen-printed carbon electrode for sensing of amino acids. Polyhedron, 180: 114426.

18.      Mohseni, N., Bahram, M., and Baheri, T. (2017). Chemical nose for discrimination of opioids based on unmodified gold nanoparticles. Sensors and Actuators, B: Chemical, 250: 509-517.

19.      Lodha, A., Pandya, A., Sutariya, P. G., and Menon, S. K. (2014). A smart and rapid colorimetric method for the detection of codeine sulphate, using unmodified gold nanoprobe. RSC Advances, 4(92): 50443-50448.

20.      Johan, M. R., Chong, L. C., and Hamizi, N. A. (2012). Preparation and stabilization of monodispersed colloidal gold by reduction with monosodium glutamate and poly (methyl methacrylate). International Journal of Electrochemical Science, 7: 4567-4573.

21.      Mou, Y., Zhang, Y., Cheng, H., Peng, Y., and Chen, M. (2018). Fabrication of highly conductive and flexible printed electronics by low temperature sintering reactive silver ink. Applied Surface Science, 459(7): 249-256.

22.      Tukur, S. A., Yusof, N. A., & Hajian, R. (2014). Gold nanoparticles-modified screen-printed electrode for determination of Pb (II) ion using linear sweep anodic stripping voltammetry. IEEE Sensors Journal, 15(5): 2780-2784.

23.      Ghosale, A., Shankar, R., Ganesan, V., and Shrivas, K. (2016). Direct-writing of paper based conductive track using silver nano-ink for electroanalytical application. Electrochimica Acta, 209: 511-520.

24.      Joubert, T., Bezuidenhout, P. H., Chen, H., Smith, S., and Land, K. J. (2015). Inkjet-printed silver tracks on different paper substrates. Materials Today: Proceedings, 2(7): 3891-3900.

25.      Liu, H., Qing, H., Li, Z., Long, Y., Lin, M., Yang, H., and Li, A. (2017). Paper: A promising material for human-friendly functional wearable electronics. Materials Science & Engineering Research, 112: 1-22.

26.      Muhammad, S., Zahra, U. B., Ahmad, A., Shah, L. A., and Muhammad, A. (2020). Understanding the basics of electron transfer and cyclic voltammetry of potassium ferricyanide - An outer sphere heterogeneous electrode reaction. Journal of the Chemical Society of Pakistan, 42(6): 813-817.