Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 993 - 1002
A NEW GOLD NANOPARTICLES MODIFIED SCREEN PRINTED
PAPER CARD BASED MICROFLUIDIC DEVICE
(Nanopartikel Emas Baru Diubahsuai Skrin Dicetak Kad Kertas
Berasaskan Peranti Mikrobendalir)
Salamatu
Hayatu1,2,3, AbduRahman Abdul Audu2, Magaji Ladan2,
and Nor Azah Yusof3,4
1Department of Pure and Applied
Chemistry,
Faculty of Science, Kaduna State
University, Kaduna P.M.B 2339, Nigeria
2Department of Pure and Industrial
Chemistry,
Faculty of Science, Bayero
University, Kano P.M.B 3011, Nigeria
3Department of Chemistry,
Faculty of Science, Universiti Putra
Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
4Institute of Nanoscience and
Nanotechnology,
Universiti Putra Malaysia, Serdang,
Selangor, Malaysia.
Corresponding author:
salamatu.hayat@kasu.edu.ng
Received: 9 January 2023; Accepted: 23
July 2023; Published: 30 October 2023
Abstract
This work offers a novel platform for the
straightforward and low-cost manufacture of paper microfluidic devices known as
gold nanoparticles modified screen printed paper electrode AuNPs/SPPE. The
component can function as an electrochemical cell as well as a microfluidic
device. Different paper cards were evaluated for hydrophobicity, and metallic
gold card was selected due to its superior hydrophobic properties. Thus, waxing
and other pretreatment steps are eliminated. The AuNPs/SPPE was created by screen
printing on metallic gold card using commercial silver ink. Working electrode
was modified using synthesized gold nanoparticles (AuNPs). The presence and
widespread distribution of Au particles are shown by SEM and EDX study. The
conductivity and resistivity study shows good conductance. The device was
applied in tramadol detection, tramadol was studied electrochemically using
cyclic voltammetry technique, where it was oxidized at 0.1 to 0.3 volts.
Positive results obtained from electrochemical investigation suggest good and
promising future applications.
Keywords: microfluidic, screen printing, paper device
Abstrak
Kerja ini
menawarkan platform baru untuk pembuatan peranti mikrofluidik kertas yang mudah
dan kos rendah yang dikenali sebagai nanopartikel emas yang diubah suai skrin
dicetak kertas elektrod AuNPs/SPPE. Komponen ini boleh berfungsi sebagai sel
elektrokimia serta peranti mikrofluidik. Kad kertas yang berbeza dinilai untuk
hidrofobisiti, dan kad emas logam dipilih kerana sifat hidrofobik yang unggul.
Oleh itu, waxing dan langkah-langkah pretreatment lain dihapuskan. AuNPs/SPPE
dicipta melalui percetakan skrin pada kad emas logam menggunakan dakwat perak
komersial. Elektrod kerja diubah suai menggunakan nanopartikel emas yang disintesis
(AuNPs). Kehadiran dan
pengedaran zarah Au yang meluas ditunjukkan oleh kajian SEM dan EDX. Kajian
kekonduksian dan rintangan menunjukkan kelakuan yang baik. Peranti ini
digunakan dalam pengesanan tramadol, tramadol dikaji secara elektrokimia
menggunakan teknik voltammetrik kitaran, di mana ia teroksida pada 0.1 hingga
0.3 volt. Hasil positif yang diperolehi daripada penyiasatan elektrokimia
menunjukkan aplikasi masa depan yang baik dan menjanjikan.
Kata kunci: mikrobendalir, percetakan skrin, peranti kertas
References
1. Coltro, T., Cheng, C., Carrilho, E.,
and Jesus, D. P. De. (2014). Recent advances in low-cost microfluidic, Electrophoresis,
2014: 1-16.
2. Dutse, S. W., and Yusof. N. A.
(2011). Microfluidics-based lab-on-chip systems in DNA-based biosensing: an
overview. Sensors, 11, 5754-5768.
3. Songjaroen, T., Dungchai, W.,
Chailapakul, O., and Laiwattanapaisal, W. (2011). Novel, simple and low-cost
alternative method for fabrication of paper-based microfluidics by wax dipping.
Talanta 85(5): 2587-2593.
4. Zhang, A. L., and Zha, Y. (2012).
Fabrication of paper-based microfluidic device using printed circuit
technology. AIP Advances, 2(2): 4733346.
5. Dungchai, W., Chailapakul, O., and
Henry, C. S. (2009). Electrochemical detection for paper-based microfluidics, Analytical
Chemistry, 81(14): 5821-5826.
6. Kong, X., Chong, X., Squire, K., and
Wang, A. X. (2018). Microfluidic diatomite analytical devices for illicit drug
sensing with ppb-Level sensitivity. Sensors & Actuators: B. Chemical,
259: 587-595.
7. Ansari, N., Lodha, A., Pandya, A.,
and Menon, S. K. (2017). Determination of cause of death using paper-based
microfluidic device as a colorimetric probe. Analytical Methods, 9(38):
5632-5639.
8. Martinez, A. W., Phillips, S. T.,
Carrilho, E., Iii, S. W. T., Sindi, H., and Whitesides, G. M. (2008). Simple
telemedicine for developing regions: Camera phones and paper-based microfluidic
devices for real-time, off-site diagnosis. Analytical Chemistry, 80(10):
3699-3707.
9. Musile, G., Wang, L., Bottoms, J.,
Tagliaro, F., and McCord, B. (2015). The development of paper microfluidic
devices for presumptive drug detection. Analytical Methods, 7(19):
8025-8033.
10. Sharma, N., Barstis, T., and Giri, B.
(2018). Advances in paper-analytical methods for pharmaceutical analysis. European
Journal of Pharmaceutical Sciences, 111: 46-56.
11. De Araujo, W. R., Cardoso, T. M. G.,
da Rocha, R. G., Santana, M. H. P., Muñoz, R. A. A., Richter, E. M., and
Coltro, W. K. T. (2018). Portable analytical platforms for forensic chemistry:
A review. Analytica Chimica Acta, 1034: 1-21.
12. Oliveira, X. G., Munoz, R. A. A.,
Henry, C. S., and Coltro, W. K. T. (2018). Detection of analgesics and sedation
drugs in whiskey using electrochemical paper-based analytical devices. Electroanalysis,
308: 1-9.
13. Harper, L., Powell, J., and Pijl, E.
M. (2017). An overview of forensic drug testing methods and their suitability
for harm reduction point-of-care services. Harm Reduction Journal, 14:
52.
14. Zhang, D., and Liu, Q. (2016).
Biosensors and bioelectronics on smartphone for portable biochemical detection.
Biosensors and Bioelectronic, 75: 273-284.
15. De Araujo, W. R., and Paixão, W. R.
(2014). Fabrication of disposable electrochemical devices using silver ink and
office paper. Analyst, 139(11): 2742-2747.
16. Adkins, J., Boehle, K., and Henry, C.
(2015). Electrochemical paper‐based microfluidic devices. Electrophoresis,
36(16): 1811-1824.
17. Tayyab, S., Naqvi, R., Rasheed, T.,
Naeem, M., Najam, M., Majeed, S., … and Shafi, S. (2020). Fabrication of iron modified
screen-printed carbon electrode for sensing of amino acids. Polyhedron,
180: 114426.
18. Mohseni, N., Bahram, M., and Baheri,
T. (2017). Chemical nose for discrimination of opioids based on unmodified gold
nanoparticles. Sensors and Actuators, B: Chemical, 250: 509-517.
19. Lodha, A., Pandya, A., Sutariya, P.
G., and Menon, S. K. (2014). A smart and rapid colorimetric method for the
detection of codeine sulphate, using unmodified gold nanoprobe. RSC
Advances, 4(92): 50443-50448.
20. Johan, M. R., Chong, L. C., and
Hamizi, N. A. (2012). Preparation and stabilization of monodispersed colloidal
gold by reduction with monosodium glutamate and poly (methyl methacrylate). International
Journal of Electrochemical Science, 7: 4567-4573.
21. Mou, Y., Zhang, Y., Cheng, H., Peng,
Y., and Chen, M. (2018). Fabrication of highly conductive and flexible printed
electronics by low temperature sintering reactive silver ink. Applied
Surface Science, 459(7): 249-256.
22. Tukur, S. A., Yusof, N. A., &
Hajian, R. (2014). Gold nanoparticles-modified screen-printed electrode for
determination of Pb (II) ion using linear sweep anodic stripping voltammetry. IEEE
Sensors Journal, 15(5): 2780-2784.
23. Ghosale, A., Shankar, R., Ganesan,
V., and Shrivas, K. (2016). Direct-writing of paper based conductive track
using silver nano-ink for electroanalytical application. Electrochimica
Acta, 209: 511-520.
24. Joubert, T., Bezuidenhout, P. H.,
Chen, H., Smith, S., and Land, K. J. (2015). Inkjet-printed silver tracks on
different paper substrates. Materials Today: Proceedings, 2(7):
3891-3900.
25. Liu, H., Qing, H., Li, Z., Long, Y.,
Lin, M., Yang, H., and Li, A. (2017). Paper: A promising material for
human-friendly functional wearable electronics. Materials Science &
Engineering Research, 112: 1-22.
26. Muhammad, S., Zahra, U. B., Ahmad,
A., Shah, L. A., and Muhammad, A. (2020). Understanding the basics of electron
transfer and cyclic voltammetry of potassium ferricyanide - An outer sphere
heterogeneous electrode reaction. Journal of the Chemical Society of
Pakistan, 42(6): 813-817.