Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 980 - 992
THE INFLUENCE OF H3PO4 CONCENTRATION ON THE YIELD,
POROUS STRUCTURE, AND SURFACE CHEMICALS OF SARAWAK WILD BAMBOO ACTIVATED CARBON
Mahanim Sarif1,*,
Hashim Bojet2, Tumirah Khadiran1, Rafidah Jalil1,
Puad Elham1, Nicholas Andrew Lissem2, Johari Zainudin2,
Wan Ching Ching2 and Rickey Anak Dayus2
1Wood
Chemistry and Non Wood Utilization Programme, Forest Products Division, Forest
Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia
2Sarawak
Timber Industry Development Corporation (STIDC), Jalan Stadium, Petra Jaya,
93050 Kuching, Sarawak
*Corresponding
author:
mahanim@frim.gov.my
Received: 19 April 2023; Accepted: 11
August 2023; Published: 30 October 2023
Abstract
Activated carbon (AC) is a versatile porous material
with numerous applications in various industries. In this study, ACs with both
specific surface area and mesoporous developed structure were prepared using
Sarawak wild bamboos, i.e., Gigantochloa levis (beting) and Bambusa vulgaris (aur), as a carbon precursor. The bamboos were chemically activated with phosphoric
acid (H3PO4) at various concentrations, and then
carbonized using a tubular furnace at 500 °C for 3 hr under an inert nitrogen
gas flow. The proximate and ultimate analyses of AC were measured. The chemical
and porous structure of AC were characterized using Brunauer,
Emmett, and Teller (BET), Fourier transform infrared spectroscopy (FTIR), and
field emission scanning electron microscopy (FESEM). The results show that by increasing the H3PO4
concentration, the surface area of bamboo AC was increased. The AC yield
between 58% and 62% was obtained at 1%–9% v/v H3PO4
impregnations. The highest surface area of 1319 and 1285 m2/g were
obtained at 9% v/v H3PO4 impregnation of beting and aur bamboos, respectively. Therefore, ACs can be
prepared using low H3PO4 impregnation concentration, but
high quality ACs comparable to other ACs from different biomass with good yield
and textural characteristics are also producible. This could lower the
production cost of ACs from bamboo due to the use of cheap and novel raw
materials from different species of bamboo by using only the minimum
concentration of activating agent in the production.
Keywords:
activated carbon, bamboo, chemical
activation, surface area
Abstrak
Karbon teraktif (AC) ialah bahan
berliang serba boleh dengan pelbagai aplikasi dalam pelbagai industri. Dalam
kajian ini, AC dengan kedua-dua kawasan permukaan tertentu dan struktur liang
meso telah disediakan menggunakan buluh liar Sarawak; Gigantochloa levis (beting) dan Bambusa
vulgaris (aur) sebagai prekursor karbon. Buluh tersebut diaktifkan secara
kimia dengan asid fosforik (H3PO4) pada pelbagai
kepekatan, dan kemudian dikarbonisasi menggunakan relau tiub pada suhu 500 °C
selama 3 jam dengan aliran gas nitrogen. Analisis proksimat dan unsur karbon,
hidrogen, nitrogen, sulphur ke atas AC telah diukur. Struktur kimia dan
keliangan AC dicirikan menggunakan, Brunauer, Emmett, dan Teller (BET),
spektroskopi inframerah transformasi Fourier (FTIR) dan Mikroskopi elektron
pengimbasan pelepasan medan (FESEM). Keputusan
menunjukkan bahawa dengan meningkatkan kepekatan H3PO4,
luas permukaan AC buluh meningkat. Hasil AC dalam julat antara 58% hingga 62%
diperolehi pada impregnasi 1% - 9% v/v impregnasi H3PO4.
Luas permukaan tertinggi 1319 m2/g dan 1285 m2/g
diperolehi pada 9% v/v H3PO4 impregnasi buluh beting dan
aur. Oleh itu, AC boleh disediakan menggunakan kepekatan impregnasi H3PO4
yang rendah, tetapi AC berkualiti tinggi setanding dengan AC lain daripada
biojisim berbeza dengan hasil yang baik dan ciri tekstur juga boleh dihasilkan.
Ini boleh mengurangkan kos pengeluaran AC daripada buluh kerana penggunaan
bahan mentah yang murah dan baru daripada spesies buluh yang berbeza dengan
hanya menggunakan kepekatan minimum agen pengaktif dalam pengeluaran.
Kata kunci: karbon teraktif, buluh, pengaktifan
kimia, luas permukaan
References
1.
Negara, D. N. K. P., Nindhia,
T. G. T., Surata, I. W., Sucipta,
M. and Hidajat, F. (2019). Activated carbon
characteristics of tabah bamboo that physically activated under different activation time. IOP
Conference Series: Materials Science and Engineering, 539(1): 012011.
2.
Mohd Iqbaldin, M. N., Khudzir, I., Mohd Azlan M. I., Zaidi, A.G., Surani, B. and Zubri, Z. (2013). Properties of coconut shell activated
carbon. Journal of Tropical Forest Science, 25(4): 497-503.
3.
Bagheri, N. and Abedi, J. (2009). Preparation of
high surface area activated carbon from corn by chemical activation using
potassium hydroxide. Chemical Engineering Research and Design, 87(8):
1059-1064.
4.
Feng, J., Zhu, H., Xu, Y., Jiang, J. and Pan, H.
(2021). Preparation and characterization of high-performance activated carbon
from papermaking black-liquor at low temperature. Journal of Analytical and
Applied Pyrolysis, 159: 105292.
5.
Mahanim, S. M. A., Wan Asma, I.,
Rafidah, J., Puad, E. and Shaharuddin,
H. (2011). Production of activated carbon from industrial bamboo wastes. Journal
of Tropical Forest Science, 23 (4): 417-424.
6.
Huang, Y. P., Hou, C. H., His, H. C. and Wu, J. W.
(2015). Optimization of highly microporous activated carbon preparation from
Moso bamboo using central composite design approach. Journal of Taiwan
Institute of Chemical Engineers, 50: 266-275.
7.
Huang, G. Wang, Y., Zhang, T., Wu, X. and Cai, J.
(2019). High-performance hierarchical N-doped porous carbons from
hydrothermally carbonized bamboo shoot shells for symmetric supercapacitors. Journal
of Taiwan Institute of Chemical Engineers, 96: 672-680.
8.
Negara, D. N. K. P., Nindhia,
T. G. T., Surata, I. W., Hidajat,
F. and Sucipta, M. (2020). Textural characteristics
of activated carbons derived from Tabah bamboo manufactured by using H3PO4
chemical activation. Materials Today: Proceedings, 22: 148-155.
9.
Tay, T., Ucar, S. and
Karagöz, S. (2009). Preparation and characterization of activated carbon from
waste biomass. Journal of Hazardous Materials, 165(1): 481-485.
10.
Li, W., Yang, K., Peng, J., Zhang, L., Guo, S. and
Xia, H. (2008). Effects of carbonization temperatures on characteristics of
porosity in coconut shell chars and activated carbons derived from carbonized
coconut shell chars. Industrial crops and
products, 28(2):190-198.
11.
Supriya, S., Palanisamy, P. N. and Shanthi, P.
(2014). Preparation and characterization of activated carbon from casuarina for
the removal of dyes from textile wastewater. International Journal of ChemTech Research, 6 (7): 3635-3641.
12.
Tumirah, K., Mohd Zobir, H., Zulkarnain, Z. and Rafaedah, R. (2015). Textural and chemical properties of
activated prepared from tropical peat soil by chemical activation method. BioResources, 10 (1): 986-1007.
13.
Wise, L. E., Murphy, M. and D’ Addieco,
A.A. (1946). Chlorite holocellulose: Its fractiontion
and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122 (2): 35-43.
14.
TAPPI. 203 om-93. Alpha, Beta and Gamma Cellulose in
Pulp. (2009). Technical Association of the pulp and industry, Atlanta.
15.
TAPPI. T222 om-02Acid-Insoluble Lignin in Wood and
Pulp. (2002). Technical Association of the pulp and industry, Atlanta.
16.
Liu, Q-S., Zheng, T., Wang, P. and Guo, L. (2010).
Preparation and characterization of activated carbon from bamboo by
microwave-induced phosphoric acid activation. Industrial Crops and Products,
31(2): 233-238.
17.
Negara, D.P., Nindhia,
T.T., Surata, I.W. and Sucipta,
M. (2017). Chemical, strength and microstructure characterization of Balinese
bamboos as activated carbon source for adsorbed
natural gas application. IOP Conference
Series: Materials Science and Engineering. 201(1): 012033.
18.
Kasim, J. Ahmad, A. J., Mohamod A. L. and Khoo, K.
C. (1994). A note on the proximate chemical composition and fibre morphology of
bambusa vulgaris. Journal of Tropical Forest
Science, 6 (3): 356-358.
19.
Azeez, M. A. and Orege, J.
I. (2018). Chapter 3: Bamboo, its chemical modification, and products. In H. P.
S. Abdul Khalil (Ed.), Bamboo. IntechOpen.
http://dx.doi.org/10.5772/intechopen.76359: 25-48.
20.
AssefaAragaw, T. (2016). Proximate
analysis of cane bagasse and synthesizing activated carbon: Emphasis on
material balance. Journal of Environmental Treatment Techniques, 4(4):
102-110.
21.
Yorgun, S. and
Yıldız, D. (2015). Preparation and characterization of activated
carbons from Paulownia wood by chemical activation with H3PO4.
Journal of the Taiwan Institute of
Chemical Engineers, 53: 122-131.
22.
Shamsuddin, M. S., Yusoff, N. R. N. and Sulaiman M.
A. (2016). Synthesis and characterization of activated carbon produced from
kenaf core fiber using H3PO4 activation. Procedia
Chemistry, 19: 558-565.
23.
Ismail, I.S., Rashidi, N.A. and Yusup, S. (2022).
Production and characterization of bamboo-based activated carbon through
single-step H3PO4 activation for CO2 capture. Environmental Science and Pollution Research,
29(9): 12434-12440.
24.
Chandra, T. C., Mirna, M. M., Sunarso,
J., Sudaryanto, Y. and Ismadji, S. (2009). Activated
carbon from durian shell: Preparation and characterization. Journal of the
Taiwan Institute of Chemical Engineers, 40(4): 457-462.
25.
Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li,
L. and Liu, Q. (2020). Optimized preparation of activated carbon from coconut
shell and municipal sludge. Materials Chemistry and Physics, 241:
122327.
26.
Bakri, M. K. and Jayamani, E. (2016). Comparative
study of functional groups in natural fibers: Fourier transform infrared
analysis (FTIR). Futuristic Trends in Engineering, Science, Humanities, and
Technology, 1: 167-174.
27.
Hesas, R. H., Wan Daud, W. M.
A., Sahu, J. N. and Arami-Niya, A. (2013). The effects of a microwave heating
method on the production of activated carbon from agricultural waste: A review.
Journal of Analytical and Applied Pyrolysis, 100: 1-11.
28.
Suárez-Garcı́a, F., Martı́nez-Alonso,
A. and Tascón, J. M. D. (2004). Activated carbon
fibers from Nomex by chemical activation with phosphoric acid. Carbon,
42(8-9): 1419-1426.
29.
Jagtoyen, M. and Derbyshire, F.
(1993). Some considerations of the origins of porosity in carbons from
chemically activated wood. Carbon, 31(7): 1185-1192.
30.
Wang, Y. X., Ngo, H. H. and Guo, W. S. (2015).
Preparation of a specific bamboo based activated carbon and its application for
ciprofloxacin removal. Science of The Total Environment, 533: 32-39.
31.
Nachenius, R.
W., Ronsse, F., Venderbosch,
R. H., and Prins, W. (2013). Chapter two - biomass pyrolysis. In D. Y. Murzin
(Ed.), Advances in Chemical Engineering, (Vol. 42, pp. 75–139).
Academic Press Inc.
32.
Karanfil, T., Kitis, M., Kilduff, J. E. and Wigton,
A. (1999). Role of granular activated carbon surface chemistry on the
adsorption of organic compounds. 2. Natural organic matter. Environmental
Science Technology, 33(18): 3225-3233.
33.
Moore, B. C., Cannon, F. S., Westrick, J. A., Metz,
D. H., Shrive, C. A., DeMarco, J. and Hartman, D. J. (2001). Changes in GAC
pore structure during full-scale water treatment at Cincinnati: A comparison
between virgin and thermally reactivated GAC. Carbon, 39(6): 789-807.
34.
Lu, Z., Sun, W., Li, C., Cao, W. Jing, Z., Li, S.,
Ao, X., Chen, C. and Liu, S. (2020). Effect of granular activated carbon
pore-size distribution on biological activated carbon filter performance. Water
Research, 177: 115768.
35.
Nowotny, N., Epp, B., von Sonntag, C. and Fahlenkamp, H. (2007). Quantification and modeling of the
elimination behavior of ecologically problematic wastewater micropollutants by
adsorption on powdered and granulated activated carbon. Environmental
Science & Technology, 41(6): 2050-2055.
36.
Hsieh, C-T. and Teng, H. (2000). Influence of
mesopore volume and adsorbate size on adsorption capacities of activated
carbons in aqueous solutions. Carbon, 38(6): 863-869.
37.
Walker, G. M. and Weatherley, L. R. (1998).
Bacterial regeneration in biological activated carbon systems. Process
Safety and Environmental Protection, 76(2): 177-182.
38.
Wang, J. Z., Summers, R. S. and Miltner, R. J.
(1995). Biofiltration performance: Part 1, relationship to biomass. Journal
American Water Works Association, 87: 55-63.
39.
Rai, M.K., Shahi, G., Meena, V., Meena, R.,
Chakraborty, S., Singh, R.S. and Rai, B.N. (2016). Removal of hexavalent
chromium Cr(VI) using activated carbon prepared from mango kernel activated
with H3PO4. Resource-efficient technologies, 2: S63-S70.
40.
Kan, Y., Yue, Q., Li, D., Wu, Y. and Gao, B. (2017).
Preparation and characterization of activated carbons from waste tea by H3PO4
activation in different atmospheres for oxytetracycline removal. Journal
of the Taiwan Institute of Chemical Engineers, 71: 494-500.
41.
Zhang, Z., Lei, Y., Li, D., Zhao, J., Wang, Y.,
Zhou, G., Yan, C. and He, Q. (2020). Sudden heating of H3PO4-loaded
coconut shell in CO2 flow to produce super activated carbon and its
application for benzene adsorption. Renewable Energy, 153: 1091-1099.
42.
Njoku, V.O., Islam, M.A., Asif, M. and Hameed, B.H.
(2014). Preparation of mesoporous activated carbon from coconut frond for the
adsorption of carbofuran insecticide. Journal of Analytical and Applied
Pyrolysis, 110:
172-180.
43.
Silva, M. C., Spessato, L., Silva, T. L., Lopes, G.
K., Zanella, H. G., Yokoyama, J. T., Cazetta, A. L.
and Almeida, V. C. (2021). H3PO4–activated carbon fibers
of high surface area from banana tree pseudo-stem fibers: adsorption studies of
methylene blue dye in batch and fixed bed systems. Journal of Molecular
Liquids, 324: 114771.
44.
Anisuzzaman, S. M., Joseph, C.G.,
Daud, W. M. A. B. W., Krishnaiah, D. and Yee, H. S. (2015). Preparation and
characterization of activated carbon from Typha
orientalis leaves. International Journal
of Industrial Chemistry, 6:
9-21.
45.
Wang, Y. X., Ngo, H. H. and Guo, W. S. (2015).
Preparation of a specific bamboo based activated carbon and its application for
ciprofloxacin removal. Science of the Total Environment, 533: 32-39.
46.
Lee, C. L., Chin, K. L., H’ng, P. S., Rashid, U., Maminski, M. and Khoo, P. S. (2021). Effect of pretreatment
conditions on the chemical–structural characteristics of coconut and palm
kernel shell: A potentially valuable precursor for eco-efficient activated
carbon production. Environmental Technology & Innovation, 21: 101309.