Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 980 - 992

 

THE INFLUENCE OF H3PO4 CONCENTRATION ON THE YIELD, POROUS STRUCTURE, AND SURFACE CHEMICALS OF SARAWAK WILD BAMBOO ACTIVATED CARBON

 

(Pengaruh Kepekatan H3PO4 Terhadap Hasil, Struktur Berliang dan Bahan Kimia Permukaan Karbon Teraktif Buluh Liar Sarawak)

 

Mahanim Sarif1,*, Hashim Bojet2, Tumirah Khadiran1, Rafidah Jalil1, Puad Elham1, Nicholas Andrew Lissem2, Johari Zainudin2, Wan Ching Ching2 and Rickey Anak Dayus2

 

1Wood Chemistry and Non Wood Utilization Programme, Forest Products Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia

2Sarawak Timber Industry Development Corporation (STIDC), Jalan Stadium, Petra Jaya, 93050 Kuching, Sarawak

 

*Corresponding author: mahanim@frim.gov.my

 

 

Received: 19 April 2023; Accepted: 11 August 2023; Published:  30 October 2023

 

 

Abstract

Activated carbon (AC) is a versatile porous material with numerous applications in various industries. In this study, ACs with both specific surface area and mesoporous developed structure were prepared using Sarawak wild bamboos, i.e., Gigantochloa levis (beting) and Bambusa vulgaris (aur), as a carbon precursor. The bamboos were chemically activated with phosphoric acid (H3PO4) at various concentrations, and then carbonized using a tubular furnace at 500 °C for 3 hr under an inert nitrogen gas flow. The proximate and ultimate analyses of AC were measured. The chemical and porous structure of AC were characterized using Brunauer, Emmett, and Teller (BET), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). The results show that by increasing the H3PO4 concentration, the surface area of bamboo AC was increased. The AC yield between 58% and 62% was obtained at 1%–9% v/v H3PO4 impregnations. The highest surface area of 1319 and 1285 m2/g were obtained at 9% v/v H3PO4 impregnation of beting and aur bamboos, respectively. Therefore, ACs can be prepared using low H3PO4 impregnation concentration, but high quality ACs comparable to other ACs from different biomass with good yield and textural characteristics are also producible. This could lower the production cost of ACs from bamboo due to the use of cheap and novel raw materials from different species of bamboo by using only the minimum concentration of activating agent in the production.

 

Keywords: activated carbon, bamboo, chemical activation, surface area

 

Abstrak

Karbon teraktif (AC) ialah bahan berliang serba boleh dengan pelbagai aplikasi dalam pelbagai industri. Dalam kajian ini, AC dengan kedua-dua kawasan permukaan tertentu dan struktur liang meso telah disediakan menggunakan buluh liar Sarawak; Gigantochloa levis (beting) dan Bambusa vulgaris (aur) sebagai prekursor karbon. Buluh tersebut diaktifkan secara kimia dengan asid fosforik (H3PO4) pada pelbagai kepekatan, dan kemudian dikarbonisasi menggunakan relau tiub pada suhu 500 °C selama 3 jam dengan aliran gas nitrogen. Analisis proksimat dan unsur karbon, hidrogen, nitrogen, sulphur ke atas AC telah diukur. Struktur kimia dan keliangan AC dicirikan menggunakan, Brunauer, Emmett, dan Teller (BET), spektroskopi inframerah transformasi Fourier (FTIR) dan Mikroskopi elektron pengimbasan pelepasan medan (FESEM). Keputusan  menunjukkan bahawa dengan meningkatkan kepekatan H3PO4, luas permukaan AC buluh meningkat. Hasil AC dalam julat antara 58% hingga 62% diperolehi pada impregnasi 1% - 9% v/v impregnasi H3PO4. Luas permukaan tertinggi 1319 m2/g dan 1285 m2/g diperolehi pada 9% v/v H3PO4 impregnasi buluh beting dan aur. Oleh itu, AC boleh disediakan menggunakan kepekatan impregnasi H3PO4 yang rendah, tetapi AC berkualiti tinggi setanding dengan AC lain daripada biojisim berbeza dengan hasil yang baik dan ciri tekstur juga boleh dihasilkan. Ini boleh mengurangkan kos pengeluaran AC daripada buluh kerana penggunaan bahan mentah yang murah dan baru daripada spesies buluh yang berbeza dengan hanya menggunakan kepekatan minimum agen pengaktif dalam pengeluaran.

 

Kata kunci: karbon teraktif, buluh, pengaktifan kimia, luas permukaan

 

References

1.       Negara, D. N. K. P., Nindhia, T. G. T., Surata, I. W., Sucipta, M. and Hidajat, F. (2019). Activated carbon characteristics of tabah bamboo that physically activated under different activation time. IOP Conference Series: Materials Science and Engineering, 539(1): 012011.

2.       Mohd Iqbaldin, M. N., Khudzir, I., Mohd Azlan M. I., Zaidi, A.G., Surani, B. and Zubri, Z. (2013). Properties of coconut shell activated carbon. Journal of Tropical Forest Science, 25(4): 497-503.

3.       Bagheri, N. and Abedi, J. (2009). Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research and Design, 87(8): 1059-1064.

4.       Feng, J., Zhu, H., Xu, Y., Jiang, J. and Pan, H. (2021). Preparation and characterization of high-performance activated carbon from papermaking black-liquor at low temperature. Journal of Analytical and Applied Pyrolysis, 159: 105292.

5.       Mahanim, S. M. A., Wan Asma, I., Rafidah, J., Puad, E. and Shaharuddin, H. (2011). Production of activated carbon from industrial bamboo wastes. Journal of Tropical Forest Science, 23 (4): 417-424.

6.       Huang, Y. P., Hou, C. H., His, H. C. and Wu, J. W. (2015). Optimization of highly microporous activated carbon preparation from Moso bamboo using central composite design approach. Journal of Taiwan Institute of Chemical Engineers, 50: 266-275.

7.       Huang, G. Wang, Y., Zhang, T., Wu, X. and Cai, J. (2019). High-performance hierarchical N-doped porous carbons from hydrothermally carbonized bamboo shoot shells for symmetric supercapacitors. Journal of Taiwan Institute of Chemical Engineers, 96: 672-680.

8.       Negara, D. N. K. P., Nindhia, T. G. T., Surata, I. W., Hidajat, F. and Sucipta, M. (2020). Textural characteristics of activated carbons derived from Tabah bamboo manufactured by using H3PO4 chemical activation. Materials Today: Proceedings, 22: 148-155.

9.       Tay, T., Ucar, S. and Karagöz, S. (2009). Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials, 165(1): 481-485.

10.    Li, W., Yang, K., Peng, J., Zhang, L., Guo, S. and Xia, H. (2008). Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial crops and products, 28(2):190-198.

11.    Supriya, S., Palanisamy, P. N. and Shanthi, P. (2014). Preparation and characterization of activated carbon from casuarina for the removal of dyes from textile wastewater. International Journal of ChemTech Research, 6 (7): 3635-3641.

12.    Tumirah, K., Mohd Zobir, H., Zulkarnain, Z. and Rafaedah, R. (2015). Textural and chemical properties of activated prepared from tropical peat soil by chemical activation method. BioResources, 10 (1): 986-1007.

13.    Wise, L. E., Murphy, M. and D’ Addieco, A.A. (1946). Chlorite holocellulose: Its fractiontion and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122 (2): 35-43.

14.    TAPPI. 203 om-93. Alpha, Beta and Gamma Cellulose in Pulp. (2009). Technical Association of the pulp and industry, Atlanta.

15.    TAPPI. T222 om-02Acid-Insoluble Lignin in Wood and Pulp. (2002). Technical Association of the pulp and industry, Atlanta.

16.    Liu, Q-S., Zheng, T., Wang, P. and Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops and Products, 31(2): 233-238.

17.    Negara, D.P., Nindhia, T.T., Surata, I.W. and Sucipta, M. (2017). Chemical, strength and microstructure characterization of Balinese bamboos as activated carbon source for adsorbed natural gas application. IOP Conference Series: Materials Science and Engineering. 201(1): 012033.

18.    Kasim, J. Ahmad, A. J., Mohamod A. L. and Khoo, K. C. (1994). A note on the proximate chemical composition and fibre morphology of bambusa vulgaris. Journal of Tropical Forest Science, 6 (3): 356-358.

19.    Azeez, M. A. and Orege, J. I. (2018). Chapter 3: Bamboo, its chemical modification, and products. In H. P. S. Abdul Khalil (Ed.), Bamboo. IntechOpen. http://dx.doi.org/10.5772/intechopen.76359: 25-48.

20.    AssefaAragaw, T. (2016). Proximate analysis of cane bagasse and synthesizing activated carbon: Emphasis on material balance. Journal of Environmental Treatment Techniques, 4(4): 102-110.

21.    Yorgun, S. and Yıldız, D. (2015). Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 53: 122-131.

22.    Shamsuddin, M. S., Yusoff, N. R. N. and Sulaiman M. A. (2016). Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry, 19: 558-565.

23.    Ismail, I.S., Rashidi, N.A. and Yusup, S. (2022). Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environmental Science and Pollution Research, 29(9): 12434-12440.

24.    Chandra, T. C., Mirna, M. M., Sunarso, J., Sudaryanto, Y. and Ismadji, S. (2009). Activated carbon from durian shell: Preparation and characterization. Journal of the Taiwan Institute of Chemical Engineers, 40(4): 457-462.

25.    Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L. and Liu, Q. (2020). Optimized preparation of activated carbon from coconut shell and municipal sludge. Materials Chemistry and Physics, 241: 122327.

26.    Bakri, M. K. and Jayamani, E. (2016). Comparative study of functional groups in natural fibers: Fourier transform infrared analysis (FTIR). Futuristic Trends in Engineering, Science, Humanities, and Technology, 1: 167-174.

27.    Hesas, R. H., Wan Daud, W. M. A., Sahu, J. N. and Arami-Niya, A. (2013). The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied Pyrolysis, 100: 1-11.

28.    Suárez-Garcı́a, F., Martı́nez-Alonso, A. and Tascón, J. M. D. (2004). Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon, 42(8-9): 1419-1426.

29.    Jagtoyen, M. and Derbyshire, F. (1993). Some considerations of the origins of porosity in carbons from chemically activated wood. Carbon, 31(7): 1185-1192.

30.    Wang, Y. X., Ngo, H. H. and Guo, W. S. (2015). Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Science of The Total Environment, 533: 32-39.

31.    Nachenius, R. W., Ronsse, F., Venderbosch, R. H., and Prins, W. (2013). Chapter two - biomass pyrolysis. In D. Y. Murzin (Ed.), Advances in Chemical Engineering, (Vol. 42, pp. 75–139). Academic Press Inc.

32.    Karanfil, T., Kitis, M., Kilduff, J. E. and Wigton, A. (1999). Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environmental Science Technology, 33(18): 3225-3233.

33.    Moore, B. C., Cannon, F. S., Westrick, J. A., Metz, D. H., Shrive, C. A., DeMarco, J. and Hartman, D. J. (2001). Changes in GAC pore structure during full-scale water treatment at Cincinnati: A comparison between virgin and thermally reactivated GAC. Carbon, 39(6): 789-807.

34.    Lu, Z., Sun, W., Li, C., Cao, W. Jing, Z., Li, S., Ao, X., Chen, C. and Liu, S. (2020). Effect of granular activated carbon pore-size distribution on biological activated carbon filter performance. Water Research, 177: 115768.

35.    Nowotny, N., Epp, B., von Sonntag, C. and Fahlenkamp, H. (2007). Quantification and modeling of the elimination behavior of ecologically problematic wastewater micropollutants by adsorption on powdered and granulated activated carbon. Environmental Science & Technology, 41(6): 2050-2055.

36.    Hsieh, C-T. and Teng, H. (2000). Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon, 38(6): 863-869.

37.    Walker, G. M. and Weatherley, L. R. (1998). Bacterial regeneration in biological activated carbon systems. Process Safety and Environmental Protection, 76(2): 177-182.

38.    Wang, J. Z., Summers, R. S. and Miltner, R. J. (1995). Biofiltration performance: Part 1, relationship to biomass. Journal American Water Works Association, 87: 55-63.

39.    Rai, M.K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R.S. and Rai, B.N. (2016). Removal of hexavalent chromium Cr(VI) using activated carbon prepared from mango kernel activated with H3PO4Resource-efficient technologies2: S63-S70.

40.    Kan, Y., Yue, Q., Li, D., Wu, Y. and Gao, B. (2017). Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. Journal of the Taiwan Institute of Chemical Engineers71: 494-500.

41.    Zhang, Z., Lei, Y., Li, D., Zhao, J., Wang, Y., Zhou, G., Yan, C. and He, Q. (2020). Sudden heating of H3PO4-loaded coconut shell in CO2 flow to produce super activated carbon and its application for benzene adsorption. Renewable Energy153: 1091-1099.

42.    Njoku, V.O., Islam, M.A., Asif, M. and Hameed, B.H. (2014). Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. Journal of Analytical and Applied Pyrolysis110: 172-180.

43.    Silva, M. C., Spessato, L., Silva, T. L., Lopes, G. K., Zanella, H. G., Yokoyama, J. T., Cazetta, A. L. and Almeida, V. C. (2021). H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: adsorption studies of methylene blue dye in batch and fixed bed systems. Journal of Molecular Liquids324: 114771.

44.    Anisuzzaman, S. M., Joseph, C.G., Daud, W. M. A. B. W., Krishnaiah, D. and Yee, H. S. (2015). Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry6: 9-21.

45.    Wang, Y. X., Ngo, H. H. and Guo, W. S. (2015). Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Science of the Total Environment533: 32-39.

46.    Lee, C. L., Chin, K. L., H’ng, P. S., Rashid, U., Maminski, M. and Khoo, P. S. (2021). Effect of pretreatment conditions on the chemical–structural characteristics of coconut and palm kernel shell: A potentially valuable precursor for eco-efficient activated carbon production. Environmental Technology & Innovation21: 101309.