Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 971 – 979
(Penilaian Spesis Ionik Dalam Air Hujan Terhadap
Kepelbagaian pH
di Antara Tanah Tinggi dan Tanah Rendah di Malaysia)
Puteri Marlini Zaini1, Ku
Mohd Kalkausar Ku Yusof1*, and Siti Kamilah Che Soh1,
and Samsuri Abdullah2
1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu,
21030 Kuala Nerus, Terengganu, Malaysia
2Faculty
of Ocean Engineering Technology and Informatics, Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: kukausar@umt.edu.my
Received: 23 June 2023; Accepted: 9
August 2023; Published: 30 October 2023
Abstract
This study investigated the
variability of ionic species and pH in rainwater chemistry during wet fallout
events in Highlands (Cameron Highlands, CH) and lowlands (Petaling Jaya, PJ) in
2019. A total of 1,040 datasets were obtained from the Malaysia Meteorological
Department. Descriptive analysis, Mann-Whitney U test, Spearman correlation
test, and discriminant analysis were employed. The selected variables included
pH, H+, Na+, K+, Ca2+, Mn2+,
Zn2+, Cl-, NO3-, and SO42-.
Mn2+ exhibited a significant difference (p <0.05) between
CH and PJ. Rainfall at PJ was more acidic due to higher concentrations of Cl-,
SO42-, and NO3-. pH in CH showed a strong
positive correlation with Na+, K+, and Ca2+ as
compared to PJ, attributed to atmospheric neutralizing reactions between acids
(HNO3 and H2SO4) and alkaline compounds (CaCO3,
NaCl, and KNO3) present in suspended fine particles during wet
fallout. Discriminant analysis, by using the confusion matrix, demonstrated
significant differences in the overall performances of anions, cations, and pH
in rainwater chemistry between CH and PJ, achieving 94.32% classification
accuracy. This study highlighted the variability of ionic species and pH in
rainwater chemistry between highlands and lowland areas. The findings
contributed to understanding atmospheric heterogeneous reactions and factors
that influenced rainwater chemistry at different geographic locations.
Keywords: wet fall-out, ionic species,
statistical analysis, Petaling Jaya, Cameron Highlands
Abstrak
Kajian ini mengkaji kebolehubahan
spesies ionik dan pH dalam kimia air hujan semasa berlakunya hujan di tanah
tinggi (Cameron Highlands, CH) dan tanah rendah (Petaling Jaya, PJ) pada tahun
2019. Sebanyak 1,040 set data diperoleh daripada Jabatan Meteorologi Malaysia.
Analisis deskriptif, ujian Mann-Whitney U, ujian korelasi Spearman, dan
analisis diskriminasi telah digunakan. Pemboleh ubah yang terpilih termasuk pH,
H+, Na+, K+, Ca2+, Mn2+,
Zn2+, Cl-, NO3-, dan SO42-.
Mn2+ menunjukkan perbezaan yang signifikan (p <0.05)
antara CH dengan PJ. Hujan di PJ lebih berasid sebab disumbangkan oleh
kepekatan Cl-, SO42-,
dan NO3- yang lebih tinggi. pH di CH menunjukkan korelasi
positif yang kuat dengan Na+, K+, dan Ca2+
berbanding dengan PJ, disebabkan oleh tindak balas peneutralan atmosfera antara
asid (HNO3 dan H2SO4) dengan sebatian alkali
(CaCO3, NaCl, dan KNO3) yang terdapat dalam zarah halus
yang terampai semasa hujan. Analisis diskriminasi, menggunakan matriks
kekeliruan, menunjukkan perbezaan ketara dalam prestasi keseluruhan anion,
kation, dan pH dalam kimia air hujan antara CH dengan PJ, mencapai ketepatan
pengelasan 94.32%. Kesimpulannya, kajian ini mengetengahkan kebolehubahan
spesies ion dan pH dalam kimia air hujan antara kawasan tanah tinggi ddengan
tanah rendah. Penemuan ini menyumbang kepada pemahaman tindak balas heterogen
atmosfera dan faktor yang mempengaruhi kimia air hujan di lokasi geografi yang
berbeza.
Kata kunci: hujan, spesies ionik, analisis
statistik, Petaling Jaya, Cameron Highlands
References
1. Jain,
C.D., Madhavan, B.L. and Ratnam, M.V. (2019). Source apportionment of rainwater
chemical composition to investigate the transport of lower atmospheric
pollutants to the UTLS region. Environmental Pollution, 248: 166-174.
2. Khan,
M.F., Maulud, K.N.A., Latif, M.T., Chung, J.X., Amil, N., Alias, A., Nadzir,
M.S.M., Sahani, M., Mohammad, M., Jahaya, M.F., Hassan, H., Jeba, F., Tahir,
N.M., and Abdullah, S.M.S. (2018). Physicochemical factors and their potential
sources inferred from long-term rainfall measurements at an urban and remote
rural site in tropical areas. Science of Total Environment, 613-614:
1401-1416.
3. Li,
J., Wu, H., Jiang, P., and Fu, C. (2022). Rainwater chemistry in a subtropical
high – altitude mountain site, South China: Seasonality, source apportionment
and potential factors. Atmospheric Environment, 268: 118786.
4. Do,
L.T.T., Griffith, S.M., Tseng, W-T., and Lin, N-H. (2021). Long-term trend of
wintertime precipitation chemistry at a remote islet site influenced by
anthropogenic emissions from continental East Asia. Atmospheric Environment,
262: 118626.
5. Razali, A., Syed, Ismail, S. N.,
Awang, S., Mangala, S. P., and Zainal Abidin, E. (2018). Land use change in
highland area and its impact on river water quality a review case studies in
Malaysia. Ecology Process, 7: 19.
6.
Ghosh, R. S. (2014). Retrieved from Communities Struggle
for Sustainable Rural Development In The Cameron Highlands. Access https://propernet.ias.unu.edu/activities/lp/2014lp/2014lp_cameron
7. Mohammadi, A., Shahabi, H., and
Ahmad, B. (2019). Land-cover change detection in a part of Cameron Highlands,
Malaysia using ETM+ Satellite imagery and support vector machine (SVM)
algorithm. Environment Asia, 12(2):145-154.
8. Morrissey, K., Chung, I., Morse, A.,
Parthasaranth, S., Roebuck, M.M., Tan, M.P., Wood, A., Wong, P-F., and Frostic,
S.P. (2021). The effects of air quality on hospital admissions for chronic respiratory
diseases in Petaling Jaya, Malaysia, 2013-2015. Atmosphere, 12(8): 1060.
9. Shabanda, I. S., Koki, I. B., Low, K.
H., Md Zain, S., Khor, S. M., and Abu Bakar, N. K. (2019). Daily exposure to
toxic metals through urban road dust from industrial, commercial, heavy
traffic, and residential areas in Petaling Jaya, Malaysia: a health risk
assessment. Environmental Science Pollution, 26: 37193-37211.
10. Martins, E. H., Nogarotto, D. C.,
Mortatti, J., and Pozza, S. A. (2019). Chemical composition of rainwater in an
urban area of the southeast of Brazil. Atmospheric Pollution Research, 10(20):
520-530.
11. Cable, E. and Deng, Y. (2018). Trace
elements in atmospheric wet precipitation in Detroit metropolitan area: Levels
and possible sources. Chemosphere, 210: 1091-1098.
12. Mishra, P., Pandey,
C. M., Singh, U., Gupta, A., Sahu, C., and Keshri, A. (2019). Descriptive
statistics and normality tests for statistical data. Annals of Cardiac
Anaesthesia, 22(1): 67.
13. Ibrahim, Y.S.,
Hamzah, S.R., Khalik, W.M.A.W.M., Yusof, K.M.K.K., and Anuar, S.T. (2021).
Spatiotemporal microplastic occurrence study of Setiu Wetland, South China Sea.
Science of Total Environment, 788: 147809.
14. Park, S. M., Seo, B. K., Lee, G., and
Kahng, S. H. (2015). Chemical composition of water-soluble inorganic species in
precipitation at Shihwa basin, Korea. Atmosphere, 6: 732-750.
15. Payus, C. M., Jiklim, C., and
Sentian, J. (2020). Rainwater chemistry of acid precipitation occurrences due
to long-range transboundary haze pollution and prolonged drought events during
southwest monsoon season: climate change driven. Heliyon, 6: e04997.
16. Zhou, S., Xu, Z., Liu, W., Wu, Y.,
Zhao, T., Jiang, H., Zhang, J., Zhou, L., and Wang, Y. (2019). Chemical
composition of precipitation in Shenzhen, a coastal mega-city in South China:
Influence of urbanization and anthropogenic activities on acidity and ionic
composition. Science of the Total Environment, 662: 218-226.
17. Shivashankara, G. P., and Sharmila,
G. V. (2012). pH and chemical composition of bulk precipitation Karnataka,
India. International Conference on Biotechnology and Environment Management,
42: 1-10.
18.
Yue, F. J., Waldron, S., Li, S. L., Wang, Z. J., Xu, S., Zhang, Z. C.,
and Oliver, D. M. (2019). Land use interacts with changes in catchment
hydrology to generate chronic nitrate pollution in karst waters and strong
seasonality in excess nitrate export. Science of the Total Environment, 696:
134062.
19. Zeng, H., and Han, G. (2021).
Rainwater chemistry observation in a karst city: variations, influence factors,
sources and potential environmental effects. Peer J Life & Environment, 2021:
e11167.
20. Zeng, H., Han, G., Wu, Q., and Tang,
Y. (2020). Effects agricultural alkaline substances on reducing the rainwater
acidification: Insight from chemical composition and calcium isotopes in a
karst forest area. Agriculture, Ecosystems and Environment, 290: 115166.
21.
Zeng, J., Yue, F. Y., Li, S. L., Wang, Z. J., Wu, Q., Qin, C. Q., and
Yan, Z. L. (2019). Quantifying depression trapping effect on rainwater chemical
composition during rainy season in karst agricultural area, southwestern China.
Atmospheric Environment, 218: 116998.
22. Ubuoh, E. A., Nwogu, F. U., and
Osuagwu, E. C. (2021). Wet deposition chemistry and neutralization potential in
oil producing region of southern Nigeria. Journal of Environmental
Management, 289: 112431.