Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 956 – 970
(Pengoptimuman
Secara Eksperimen dan Teori bagi Pengemulsi Mikroekstraksi Cecair-Cecair untuk
Penentuan Racun Perosak Menggunakan Pelarut Eutektik Terdalam
Asid
Lemak)
Nur Hidayah Sazali, Nur Amanina Ajman,
Wan Nazwanie Wan Abdullah, and Nurul Yani Rahim*
School of Chemical Sciences, Universiti
Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
*Corresponding author:
nurulyanirahim@usm.my
Received:
20 July 2023; Accepted: 7 September 2023; Published: 30 October 2023
Abstract
Fatty acid deep eutectic
solvents (DES) became known as a promising alternative to traditional organic
solvents for various extraction processes. In this study, a hydrophobic DES
comprising a mixture of lauric acid (
Keywords: response surface methodology,
2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid,
hydrophobic DES, emulsification liquid-liquid microextraction, pesticides
Abstrak
Pelarut eutektik terdalam asid lemak (DES) dikenali sebagai alternatif
kepada pelarut organik tradisional untuk digunakan dalam pelbagai proses
pengekstrakan. Dalam kajian ini, DES hidrofobik yang terdiri daripada campuran
asid laurik (
Kata kunci: metodologi
permukaan tindak balas, 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic
acid, DES hidrofobik, pengekstrakan mikro cecair-cecair pengemulsi, racun herba
References
1.
Florindo, C., Branco, L. C., and Marrucho, I. M. (2017).
Development of hydrophobic deep eutectic solvents for extraction of pesticides
from aqueous environments. Fluid Phase Equilibria, 448: 135-142.
2.
Musarurwa, H., and Tavengwa, N. T. (2021b). Sustainable extraction of pesticides in food and
environmental samples using emerging green adsorbents. Sustainable Chemistry
and Pharmacy, 24: 100545.
3.
Jouyban,
A., Farajzadeh, M. A., and Mogaddam, M. R. A. (2020). In matrix formation of
deep eutectic solvent used in liquid phase extraction coupled with
solidification of organic droplets dispersive liquid-liquid microextraction;
application in determination of some pesticides in milk samples. Talanta,
206: 120169.
4.
Quintana,
J. B., Rodil, R., Muniategui-Lorenzo, S., López-Mahía, P., and Prada-Rodríguez,
D. (2007). Multiresidue analysis of acidic and polar organic contaminants in
water samples by stir-bar sorptive extraction-liquid desorption-gas
chromatography-mass spectrometry. Journal of Chromatography A,
1174(1-2): 27-39.
5.
Araujo,
L., Prieto, A., Troconis, M., Urribarri, G., Sandrea, W., and Mercado, J.
(2011). Determination of acidic herbicides in water samples by in situ
derivatization, single drop microextraction and gas chromatography-mass
spectrometry. Journal of the Brazilian Chemical Society, 22(12):
2350-2354.
6.
Hou, X.,
Tang, S., Guo, X., Wang, L., Liu, X., Lu, X., and Guo, Y. (2018). Preparation
and application of guanidyl-functionalized graphene oxide-grafted silica for
efficient extraction of acidic herbicides by Box-Behnken design. Journal of
Chromatography A, 1571: 65-75.
7.
Musarurwa,
H., and Tavengwa, N. T. (2021a). Deep eutectic solvent-based dispersive
liquid-liquid micro-extraction of pesticides in food samples. Food Chemistry,
342:127943.
8.
Klamtet,
J. (2016). Ultrasound-assisted emulsification dispersive liquid-liquid
microextraction for preconcentration and determination of cadmium in natural
water samples by spectrophotometric technique. NU. International Journal of
Science, 13(2): 38-48.
9.
Mohamad
Yusoff, N. A. N., Rahim, N. Y., Mohammad, R. E. A., Yahaya, N., and Miskam, M.
(2021). Deep eutectic solvent-based emulsification liquid-liquid
microextraction for the analysis of phenoxy acid herbicides in paddy field
water samples. Royal Society Open Science, 8(3): 1-12.
10.
Cannavacciuolo,
C., Pagliari, S., Frigerio, J., Giustra, C. M., Labra, M., and Campone, L.
(2023). Natural deep eutectic solvents (NADESs) combined with sustainable
extraction techniques: a review of the green chemistry approach in food
analysis. Foods, 12(1): 56.
Altunay, N., Ünal, Y., and Elik, A. (2020). Towards green
analysis of curcumin from tea, honey and spices: Extraction by deep eutectic
solvent assisted emulsification liquid-liquid microextraction method based on response surface design. Food
Additives & Contaminants: Part A, 37(6): 869-881.
11.
Florindo,
Catarina, Romero, L., Rintoul, I., Branco, L. C., and Marrucho, I. M. (2018).
From phase change materials to green solvents: Hydrophobic low viscous fatty acid-based
deep eutectic solvents. ACS Sustainable Chemistry and Engineering, 6(3):
3888-3895.
12.
Arcon,
D. P., and Franco, F. C. (2020). All-fatty
acid hydrophobic deep eutectic solvents towards a simple and efficient
microextraction method of toxic industrial dyes. Journal of Molecular
Liquids, 318: 114220.
13.
Zhang,
K., Li, S., Wang, Y., Fan, J., and Zhu, G. (2020). Air-assisted liquid-liquid
microextraction based on solidification of floating deep eutectic solvent for
the analysis of ultraviolet filters in water samples by high performance liquid
chromatography with the aid of response surface methodology. Journal of
Chromatography A, 1618: 460876.
14.
Mohamad
Said, K. A., and Mohamed Amin, M. A. (2016). Overview on the response surface
methodology (RSM) in extraction processes. Journal of Applied Science &
Process Engineering, 2(1): 8-17.
15.
Moria,
K., Khurshid, H., Mustafa, M. I., Alhothali, A., and Bamasag, O. (2022).
Application of the response surface methodology (RSM) in the optimization of
acenaphthene (ACN) removal from wastewater by activated carbon. Sustainability,
14(14): 8581.
16.
Shishov,
A., Boczkaj, G., Bulatov, A., and Andruch, V. (2022). Deep eutectic solvents or
eutectic mixtures? characterization of tetrabutylammonium bromide and nonanoic
acid mixtures. The Journal of Physical Chemistry B, 126(21): 3889-3896.
17.
Ribeiro,
B. D., Florindo, C., Iff, L. C., Coelho, M. A. Z., and Marrucho, I. M. (2015).
Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS
Sustainable Chemistry and Engineering, 3(10): 2469-2477.
18.
Delgado-Mellado,
N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M., García, J., and Rodríguez,
F. (2018). Thermal stability of choline chloride deep eutectic solvents by
TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 260(2017): 37-43.
19.
Dadfarnia,
S., and Haji-Shabani, A. M. (2014). Choice of solvent in liquid-phase
microextraction. Miniaturization in Sample Preparation, Barwick 1997:
253-275.
20.
Nedaei,
M., Zarei, A. R., and Ghorbanian, S. A. (2018). Development of a new
emulsification microextraction method based on solidification of settled
organic drop: Application of a novel ultra-hydrophobic tailor-made deep
eutectic solvent. New Journal of Chemistry, 42(15): 12520-12529.
21.
Sazali, N. H., Miskam, M., Suah, F. B. M., and Rahim, N. Y. (2022).
Analysis of herbicide mixtures in
environmental samples with emulsification liquid-liquid microextraction using
fatty acids deep eutectic solvents. International Journal of Environmental
Analytical Chemistry, 00(00): 1-20.
22.
Liu, L.,
and Zhu, T. (2017). Emulsification liquid–liquid microextraction based on deep
eutectic solvents: an extraction method for the determination of sulfonamides
in water samples. Analytical Methods, 9(32): 4747-4753.
23.
Rodríguez-Ramos,
R., Santana-Mayor, Á., Socas-Rodríguez, B., and Rodríguez-Delgado, M. Á.
(2021). Recent applications of deep eutectic solvents in environmental
analysis. Applied Sciences (Switzerland), 11(11): 4779.
24.
Khezeli,
T., Daneshfar, A., and Sahraei, R. (2015). Emulsification liquid–liquid
microextraction based on deep eutectic solvent: An extraction method for the
determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic
hydrocarbons from water samples. Journal of Chromatography A, 1425:
25-33.
25.
Behbahani,
M., Najafi, F., Bagheri, S., Bojdi, M. K., and Hassanlou, P. G., Bagheri, A.
(2014). Coupling of solvent-based de-emulsification dispersive liquid–liquid
microextraction with high performance liquid chromatography for simultaneous
simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and
2-methyl-4-chlorophenoxyacetic acid. Environmental Monitoring and Assessment,
186(4): 2609-2618.
26.
Qurratu,
A., and Reehan, A. (2016). A review of 2, 4-Dichlorophenoxyacetic acid (2, 4-
D) derivatives: 2, 4-D dimethylamine salt and 2, 4-D butyl ester. International
Journal of Applied Engineering Research, 11(19): 9946-9955.
27.
Li, N.,
Chen, J., and Shi, Y. (2017). Magnetic polyethyleneimine functionalized reduced
graphene oxide as a novel magnetic solid-phase extraction adsorbent for the
determination of polar acidic herbicides in rice. Analytica Chimica Acta,
949: 23-34.
28.
Van
Scoy, A. R., and Tjeerdema, R. S. (2014). Environmental fate and toxicology of
chlorothalonil. Reviews of Environmental Contamination and Toxicology,
232: 89-105.
29.
Ji,
Y., Meng, Z., Zhao, J., Zhao, H., and Zhao, L. (2020). Eco-friendly ultrasonic
assisted liquid–liquid microextraction method based on hydrophobic deep
eutectic solvent for the determination of sulfonamides in fruit juices. Journal
of Chromatography A, 1609: 460520.
30.
Tangsiri,
R., and Nezamzadeh-Ejhieh, A. (2020). Cadmium
sulfide nanoparticles: Synthesis, brief characterization and experimental
design by response surface methodology (RSM) in the photodegradation of
ranitidine hydrochloride. Chemical Physics Letters, 758: 137919.
31.
Deb, A.,
Debnath, A., and Saha, B. (2021). Sono-assisted enhanced adsorption of
eriochrome Black-T dye onto a novel polymeric nanocomposite: kinetic, isotherm,
and response surface methodology optimization. Journal of Dispersion Science
and Technology, 42(11):1579-1592.
32.
Shanmugam, B. K., Vardhan, H., Raj, M. G., Kaza, M., Sah, R.,
and Hanumanthappa, H. (2021). Application
of fractional factorial design for evaluating the separation performance of the
screening machine. International Journal of Coal Preparation and Utilization,
42(11): 3369-3379.
33.
Cheng,
C. L., Shalabh, and Garg, G. (2014). Coefficient of determination for multiple
measurement error models. Journal of Multivariate Analysis, 126:
137-152.
34.
Kumari, P. P., and Lavanya, M. (2021). Optimization of inhibition efficiency of a schiff base on
mild steel in acid medium: Electrochemical and RSM approach. Journal of Bio-
and Tribo-Corrosion, 7(3): 110.
35.
Moghadam,
A. G., Rajabi, M., and Asghari, A. (2018). Efficient and relatively safe
emulsification microextraction using a deep eutectic solvent for influential
enrichment of trace main anti-depressant drugs from complicated samples. In Journal
of Chromatography B: Analytical Technologies in the Biomedical and Life
Sciences, 1072: 50-59.
36.
Florindo,
C., Lima, F., Branco, L. C., and Marrucho, I. M. (2019). Hydrophobic deep
eutectic solvents: A circular approach to purify water contaminated with
ciprofloxacin. ACS Sustainable Chemistry & Engineering, 7(17):
14739-14746.
37.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L.
S., and Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization
in analytical chemistry. Talanta, 76(5): 965-977.
38.
Siewe,
F. B., Kudre, T. G., and Narayan, B. (2021). Optimisation of
ultrasound-assisted enzymatic extraction conditions of umami compounds from
fish by-products using the combination of fractional factorial design and
central composite design. Food Chemistry, 334: 127498.