Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 956 – 970

 

EXPERIMENTAL AND THEORETICAL OPTIMIZATION OF EMULSIFICATION LIQUID-LIQUID MICROEXTRACTION FOR DETERMINATION OF HERBICIDES USING FATTY ACID DEEP EUTECTIC SOLVENTS

 

(Pengoptimuman Secara Eksperimen dan Teori bagi Pengemulsi Mikroekstraksi Cecair-Cecair untuk Penentuan Racun Perosak Menggunakan Pelarut Eutektik Terdalam

Asid Lemak)

 

Nur Hidayah Sazali, Nur Amanina Ajman, Wan Nazwanie Wan Abdullah, and Nurul Yani Rahim*

 

School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia

 

*Corresponding author: nurulyanirahim@usm.my

 

 

Received: 20 July 2023; Accepted: 7 September 2023; Published:  30 October 2023

 

 

Abstract

Fatty acid deep eutectic solvents (DES) became known as a promising alternative to traditional organic solvents for various extraction processes. In this study, a hydrophobic DES comprising a mixture of lauric acid ( ) and pelargonic acid ( ) at a molar ratio of 1:3, was utilized to extract 2,4-D and MCPA herbicides from aqueous solutions. FTIR and TGA were utilized in order to characterize the synthesized DES. Emulsification liquid-liquid microextraction (ELLME) technique is employed to enhance the efficiency of extraction. Furthermore, response surface methodology (RSM) was applied to optimize the extraction process of these herbicides while considering parameters such as volume of DES and emulsifying agent and pH. RSM method has various advantages, including its simplicity, fast, low cost, and great extraction efficiency. It also helps in selecting the optimum condition method to analyze the relationship between the variable, where pH 2, 265 μL volume of DES and 200 μL volume of tetrahydrofuran (THF) were the optimal conditions obtained in this study. Under these conditions, the coefficients of determination ( ) were obtained between 65% and 79%. In addition, the results obtained from the experiment are comparable to or closely aligned with RSM, hence there was a good fit between the two methods. These results revealed that the fatty acid-based DES demonstrated remarkable efficiency in extracting 2,4-D and MCPA herbicides as well as contributing to the development of environmentally friendly extraction techniques.

 

Keywords: response surface methodology, 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, hydrophobic DES, emulsification liquid-liquid microextraction, pesticides

 

Abstrak

Pelarut eutektik terdalam asid lemak (DES) dikenali sebagai alternatif kepada pelarut organik tradisional untuk digunakan dalam pelbagai proses pengekstrakan. Dalam kajian ini, DES hidrofobik yang terdiri daripada campuran asid laurik ( ) dan asid pelargonik ( ) pada nisbah molar 1:3, telah digunakan untuk mengekstrak racun herba 2,4-D dan MCPA daripada larutan akueus. FTIR dan TGA telah digunakan untuk mengenalpasti DES yang disintesis. Teknik pengekstrakan mikro cecair-cecair pengemulsi (ELLME) digunakan untuk meningkatkan kecekapan pengekstrakan. Tambahan pula, metodologi permukaan tindak balas (RSM) digunakan bertujuan untuk mengoptimumkan proses pengekstrakan racun herba ini dan mempertimbangkan parameter seperti isipadu DES dan agen pengemulsi dan pH. Kaedah RSM ini mempunyai pelbagai kelebihan, termasuk kesederhanaan, pantas, kos rendah, dan kecekapan pengekstrakan yang hebat. RSM juga membantu dalam memilih keadaan kaedah yang optimum untuk menganalisis hubungan antara pembolehubah, di mana pH 2, 265 μL isipadu DES dan 200 μL isipadu tetrahydrofuran (THF) adalah keadaan optimum yang diperolehi dalam kajian ini. Dengan  keadaan ini, pekali penentuan ( ) diperoleh antara 65% dan 79%. Di samping itu, keputusan yang diperoleh daripada data eksperimen adalah setanding atau sejajar rapat dengan data RSM, oleh itu terdapat kesesuaian yang baik antara kedua-dua kaedah. Keputusan ini mendedahkan bahawa DES berasaskan asid lemak menunjukkan kecekapan yang luar biasa dalam mengekstrak racun herba 2,4-D dan MCPA serta menyumbang kepada pembangunan teknik pengekstrakan mesra alam. 

 

Kata kunci: metodologi permukaan tindak balas, 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, DES hidrofobik, pengekstrakan mikro cecair-cecair pengemulsi, racun herba

 


 

References

1.       Florindo, C., Branco, L. C., and Marrucho, I. M. (2017). Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilibria, 448: 135-142.

2.       Musarurwa, H., and Tavengwa, N. T. (2021b). Sustainable extraction of pesticides in food and environmental samples using emerging green adsorbents. Sustainable Chemistry and Pharmacy, 24: 100545.

3.       Jouyban, A., Farajzadeh, M. A., and Mogaddam, M. R. A. (2020). In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples. Talanta, 206: 120169.

4.       Quintana, J. B., Rodil, R., Muniategui-Lorenzo, S., López-Mahía, P., and Prada-Rodríguez, D. (2007). Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry. Journal of Chromatography A, 1174(1-2): 27-39.

5.       Araujo, L., Prieto, A., Troconis, M., Urribarri, G., Sandrea, W., and Mercado, J. (2011). Determination of acidic herbicides in water samples by in situ derivatization, single drop microextraction and gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 22(12): 2350-2354.

6.       Hou, X., Tang, S., Guo, X., Wang, L., Liu, X., Lu, X., and Guo, Y. (2018). Preparation and application of guanidyl-functionalized graphene oxide-grafted silica for efficient extraction of acidic herbicides by Box-Behnken design. Journal of Chromatography A, 1571: 65-75.

7.       Musarurwa, H., and Tavengwa, N. T. (2021a). Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples. Food Chemistry, 342:127943.

8.       Klamtet, J. (2016). Ultrasound-assisted emulsification dispersive liquid-liquid microextraction for preconcentration and determination of cadmium in natural water samples by spectrophotometric technique. NU. International Journal of Science, 13(2): 38-48.

9.       Mohamad Yusoff, N. A. N., Rahim, N. Y., Mohammad, R. E. A., Yahaya, N., and Miskam, M. (2021). Deep eutectic solvent-based emulsification liquid-liquid microextraction for the analysis of phenoxy acid herbicides in paddy field water samples. Royal Society Open Science, 8(3): 1-12.

10.    Cannavacciuolo, C., Pagliari, S., Frigerio, J., Giustra, C. M., Labra, M., and Campone, L. (2023). Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: a review of the green chemistry approach in food analysis. Foods, 12(1): 56.

Altunay, N., Ünal, Y., and Elik, A. (2020). Towards green analysis of curcumin from tea, honey and spices: Extraction by deep eutectic solvent assisted emulsification liquid-liquid microextraction method   based on response surface design. Food Additives & Contaminants: Part A, 37(6): 869-881.

11.    Florindo, Catarina, Romero, L., Rintoul, I., Branco, L. C., and Marrucho, I. M. (2018). From phase change materials to green solvents: Hydrophobic low viscous fatty acid-based deep eutectic solvents. ACS Sustainable Chemistry and Engineering, 6(3): 3888-3895.

12.    Arcon, D. P., and Franco, F. C. (2020). All-fatty acid hydrophobic deep eutectic solvents towards a simple and efficient microextraction method of toxic industrial dyes. Journal of Molecular Liquids, 318: 114220.

13.    Zhang, K., Li, S., Wang, Y., Fan, J., and Zhu, G. (2020). Air-assisted liquid-liquid microextraction based on solidification of floating deep eutectic solvent for the analysis of ultraviolet filters in water samples by high performance liquid chromatography with the aid of response surface methodology. Journal of Chromatography A, 1618: 460876.

14.    Mohamad Said, K. A., and Mohamed Amin, M. A. (2016). Overview on the response surface methodology (RSM) in extraction processes. Journal of Applied Science & Process Engineering, 2(1): 8-17.

15.    Moria, K., Khurshid, H., Mustafa, M. I., Alhothali, A., and Bamasag, O. (2022). Application of the response surface methodology (RSM) in the optimization of acenaphthene (ACN) removal from wastewater by activated carbon. Sustainability, 14(14): 8581.

16.    Shishov, A., Boczkaj, G., Bulatov, A., and Andruch, V. (2022). Deep eutectic solvents or eutectic mixtures? characterization of tetrabutylammonium bromide and nonanoic acid mixtures. The Journal of Physical Chemistry B, 126(21): 3889-3896.

17.    Ribeiro, B. D., Florindo, C., Iff, L. C., Coelho, M. A. Z., and Marrucho, I. M. (2015). Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustainable Chemistry and Engineering, 3(10): 2469-2477.

18.    Delgado-Mellado, N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M., García, J., and Rodríguez, F. (2018). Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 260(2017): 37-43.

19.    Dadfarnia, S., and Haji-Shabani, A. M. (2014). Choice of solvent in liquid-phase microextraction. Miniaturization in Sample Preparation, Barwick 1997: 253-275.

20.    Nedaei, M., Zarei, A. R., and Ghorbanian, S. A. (2018). Development of a new emulsification microextraction method based on solidification of settled organic drop: Application of a novel ultra-hydrophobic tailor-made deep eutectic solvent. New Journal of Chemistry, 42(15): 12520-12529.

21.    Sazali, N. H., Miskam, M., Suah, F. B. M., and Rahim, N. Y. (2022). Analysis of herbicide mixtures in environmental samples with emulsification liquid-liquid microextraction using fatty acids deep eutectic solvents. International Journal of Environmental Analytical Chemistry, 00(00): 1-20.

22.    Liu, L., and Zhu, T. (2017). Emulsification liquid–liquid microextraction based on deep eutectic solvents: an extraction method for the determination of sulfonamides in water samples. Analytical Methods, 9(32): 4747-4753.

23.    Rodríguez-Ramos, R., Santana-Mayor, Á., Socas-Rodríguez, B., and Rodríguez-Delgado, M. Á. (2021). Recent applications of deep eutectic solvents in environmental analysis. Applied Sciences (Switzerland), 11(11): 4779.

24.    Khezeli, T., Daneshfar, A., and Sahraei, R. (2015). Emulsification liquid–liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. Journal of Chromatography A, 1425: 25-33.

25.    Behbahani, M., Najafi, F., Bagheri, S., Bojdi, M. K., and Hassanlou, P. G., Bagheri, A. (2014). Coupling of solvent-based de-emulsification dispersive liquid–liquid microextraction with high performance liquid chromatography for simultaneous simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. Environmental Monitoring and Assessment, 186(4): 2609-2618.

26.    Qurratu, A., and Reehan, A. (2016). A review of 2, 4-Dichlorophenoxyacetic acid (2, 4- D) derivatives: 2, 4-D dimethylamine salt and 2, 4-D butyl ester. International Journal of Applied Engineering Research, 11(19): 9946-9955.

27.    Li, N., Chen, J., and Shi, Y. (2017). Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice. Analytica Chimica Acta, 949: 23-34.

28.    Van Scoy, A. R., and Tjeerdema, R. S. (2014). Environmental fate and toxicology of chlorothalonil. Reviews of Environmental Contamination and Toxicology, 232: 89-105.

29.    Ji, Y., Meng, Z., Zhao, J., Zhao, H., and Zhao, L. (2020). Eco-friendly ultrasonic assisted liquid–liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices. Journal of Chromatography A, 1609: 460520.

30.    Tangsiri, R., and Nezamzadeh-Ejhieh, A. (2020). Cadmium sulfide nanoparticles: Synthesis, brief characterization and experimental design by response surface methodology (RSM) in the photodegradation of ranitidine hydrochloride. Chemical Physics Letters, 758: 137919.

31.    Deb, A., Debnath, A., and Saha, B. (2021). Sono-assisted enhanced adsorption of eriochrome Black-T dye onto a novel polymeric nanocomposite: kinetic, isotherm, and response surface methodology optimization. Journal of Dispersion Science and Technology, 42(11):1579-1592.

32.    Shanmugam, B. K., Vardhan, H., Raj, M. G., Kaza, M., Sah, R., and Hanumanthappa, H. (2021). Application of fractional factorial design for evaluating the separation performance of the screening machine. International Journal of Coal Preparation and Utilization, 42(11): 3369-3379.

33.    Cheng, C. L., Shalabh, and Garg, G. (2014). Coefficient of determination for multiple measurement error models. Journal of Multivariate Analysis, 126: 137-152.

34.    Kumari, P. P., and Lavanya, M. (2021). Optimization of inhibition efficiency of a schiff base on mild steel in acid medium: Electrochemical and RSM approach. Journal of Bio- and Tribo-Corrosion, 7(3): 110.

35.    Moghadam, A. G., Rajabi, M., and Asghari, A. (2018). Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples. In Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1072: 50-59.

36.    Florindo, C., Lima, F., Branco, L. C., and Marrucho, I. M. (2019). Hydrophobic deep eutectic solvents: A circular approach to purify water contaminated with ciprofloxacin. ACS Sustainable Chemistry & Engineering, 7(17): 14739-14746.

37.    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and  Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5): 965-977.

38.    Siewe, F. B., Kudre, T. G., and Narayan, B. (2021). Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chemistry, 334: 127498.