Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 946 - 955

 

PHOTOCATALYTIC PERFORMANCE OF MOLYBDENUM DISULPHIDE-GRAPHENE OXIDE IN PERFLUOROOCTANOIC ACID (PFOA) DEGRADATION UNDER INDOOR LIGHT EMITTING DIODE (LED) IRRADIATION

 

(Prestasi Fotokatalitik Molibdenum Disulfida-Grafena Oksida dalam Degradasi Asid Perfluorooktanoik (PFOA) di bawah Penyinaran Diod Pemancar Cahaya Dalaman (LED))

 

Zulhatiqah Zolekafeli1, Kavirajaa Pandian Sambasevam1,2,3, Siti Nor Atika Baharin1,3*

 

1Advanced Materials for Environmental Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Electrochemical Material and Sensor (EMas) Group, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Advanced Biomaterials & Carbon Development (ABCD),

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: atikabaharin@uitm.edu.my

 

 

Received: 30 May 2023; Accepted: 7 September 2023; Published:  30 October 2023

 

Abstract

In this research, molybdenum disulphide-graphene oxide (MoS2-GO) was used as photocatalyst for the degradation of perfluorooctanoic acid (PFOA) under 12-watt light emitting diode (LED) irradiation. The photocatalyst performance was evaluated by a series of experiment; effect of contact time, trapping experiments and recyclability studies. Effect of contact time revealed MoS2-GO degraded PFOA with 80.77% at 120 equilibrium time. Langmuir-Hinshelwood (L-H) kinetic model was applied to study the kinetic model with (R2) of 0.8726 at half-life (t1/2) 2.31 h under LED light irradiation. The trapping experiment shows that photocatalytic process was dominant by •O2-, where •O2-, supported by proton ion (h+), is the major active species whereas •OH only played a minor part in the entire photocatalytic process. The recyclability study revealed the MoS2-GO can be reused for up to six cycles. The employed photocatalyst in the sixth cycle was analyzed using FTIR and the FTIR spectrum shows that the peak diminishes its intensity after reusability at peaks of 1300 cm-1 to 1800 cm-1 for carbonyl (C=O), epoxy, the C=C stretching mode and carbonyl (>C=O), 750 cm-1 to 1250 cm-1 indicates the S-S bond,  and at 3038 cm-1 that is attributed to the O-H stretching vibrations. Thus, this research proposed a performance evaluation of MoS2-GO as photocatalyst for photocatalytic degradation of PFOA under indoor LED light irradiation.

 

Keywords: molybdenum disulphide, photodegradation, perfluorooctanoic acid, light emitting diode

 

Abstrak

Dalam penyelidikan ini, molibdenum disulfida-grafena oksida (MoS2-GO) digunakan sebagai pemangkin foto untuk degradasi asid perfluorooktanoik (PFOA) di bawah penyinaran diod pemancar cahaya (LED) 12 watt. Prestasi pemangkin foto telah dinilai oleh satu siri eksperimen; kesan masa sentuhan, eksperimen perangkap dan kajian kitar semula. Kesan masa sentuhan mendedahkan MoS2-GO merendahkan PFOA dengan 80.77% pada 120 masa keseimbangan. Model kinetik Langmuir-Hinshelwood (L-H) telah digunakan untuk mengkaji model kinetik dengan (R2) sebanyak 0.8726 pada separuh hayat (t1/2) 2.31 h di bawah penyinaran cahaya LED. Eksperimen perangkap menunjukkan bahawa proses fotokatalitik didominasi oleh •O2-, di mana •O2-, disokong oleh ion proton (h+), adalah spesies aktif utama manakala •OH hanya memainkan peranan kecil dalam keseluruhan proses fotokatalitik. Kajian kebolehkitaran semula mendedahkan MoS2-GO boleh digunakan semula sehingga enam kitaran. Pemangkin foto yang digunakan dalam kitaran keenam telah dianalisis menggunakan FTIR dan spektrum FTIR menunjukkan bahawa puncak mengurangkan keamatannya selepas kebolehgunaan semula pada titik 1300 cm-1 hingga 1800 cm-1 untuk karbonil (C=O), epoksi, mod renggangan C=C dan karbonil (>C=O), 750 cm-1 hingga 1250 cm-1 mewakili ikatan S-S,  dan di titik 3038 cm-1 yang mewakili ikatan renggangan O-H. Oleh itu, penyelidikan ini mencadangkan penilaian prestasi MoS2-GO sebagai pemangkin foto untuk degradasi fotokatalitik PFOA di bawah penyinaran cahaya LED dalaman.

 

Kata kunci: molibdenum disulfida, fotodegradasi, asid perfluorooktanoik, diod pemancar cahaya

 


References

1.       Cao, M. H., Wang, B. B., Yu, H. S., Wang, L. L., Yuan, S. H., and Chen, J. (2010). Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials, 179(1-3), 1143-1146.

2.       EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel), Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., del Mazo, J., ... and Schwerdtle, T. (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal, 18(9): e06223.

3.       Hao, S., Zhao, X., Cheng, Q., Xing, Y., Ma, W., Wang, X., ... and Xu, X. (2020). A mini review of the preparation and photocatalytic properties of two-dimensional materials. Frontiers in Chemistry, 8: 582146.

4.       Huang, Y., Kong, M., Westerman, D., Xu, E. G., Coffin, S., Cochran, K. H., ... and Dionysiou, D. D. (2018). Effects of HCO3–on degradation of toxic contaminants of emerging concern by UV/NO3Environmental Science & Technology, 52(21): 12697-12707.

5.       Khan, M., Assal, M. E., Tahir, M. N., Khan, M., Ashraf, M., Hatshan, M. R., ... and Adil, S. F. (2022). Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. Journal of Saudi Chemical Society, 26(6): 101544.

6.       Li, M., Yu, Z., Liu, Q., Sun, L., and Huang, W. (2016). Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2Chemical Engineering Journal, 286: 232-238.

7.       Li, Y., Xiang, F., Lou, W., and Zhang, X. (2019). MoS2 with structure tuned photocatalytic ability for degradation of methylene blue. In IOP Conference Series: Earth and Environmental Science (Vol. 300, No. 5, p. 052021). IOP Publishing.

8.       Lohmann, R., Cousins, I. T., DeWitt, J. C., Gluge, J., Goldenman, G., Herzke, D., ... and Wang, Z. (2020). Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS?. Environmental Science & Technology, 54(20): 12820-12828.

9.       Norsham, I. N. M., Sambasevam, K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S. N. A. (2022). Photocatalytic degradation of perfluorooctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent irradiation. Journal of Environmental Chemical Engineering, 10(5): 108466.

10.    Olatunde, O. C., Kuvarega, A. T., and Onwudiwe, D. C. (2020). Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl substances. Heliyon6(12): e05614.

11.    Patterson, C. L., & Haught, R. C. (2021). Regulatory considerations to ensure clean and safe drinking water. In Handbook of water purity and quality (pp. 93-135). Academic Press.

12.    Rafiei-Sarmazdeh, Z., Zahedi-Dizaji, S. M., and Kang, A. K. (2019). Two-dimensional nanomaterials. London, UK: IntechOpen.

13.    Sahu, S. P., Qanbarzadeh, M., Ateia, M., Torkzadeh, H., Maroli, A. S., and Cates, E. L. (2018). Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2 microparticle ultraviolet photocatalyst. Environmental Science & Technology Letters, 5(8): 533-538.

14.    Santoso, S. P., Angkawijaya, A. E., Bundjaja, V., Hsieh, C. W., Go, A. W., Yuliana, M., ... and Ismadji, S. (2021). TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. International Journal of Biological Macromolecules, 193: 721-733.

15.    Trojanowicz, M., Bartosiewicz, I., Bojanowska-Czajka, A., Kulisa, K., Szreder, T., Bobrowski, K., ... and Kisała, J. (2019). Application of ionizing radiation in decomposition of perfluorooctanoate (PFOA) in waters. Chemical Engineering Journal, 357: 698-714.

16.    Wang, H., Liu, X., Niu, P., Wang, S., Shi, J., and Li, L. (2020). Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter, 2(6): 1377-1413.

17.    Wang, P., Liu, D., Yan, S., Cui, J., Liang, Y., and Ren, S. (2022). Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms. Toxics, 10(5): 265.

18.    Wen, Y., Rentería-Gómez, A., Day, G. S., Smith, M. F., Yan, T. H., Ozdemir, R. O. K., ... and Zhou, H. C. (2022). Integrated photocatalytic reduction and oxidation of perfluorooctanoic acid by metal–organic frameworks: key insights into the degradation mechanisms. Journal of the American Chemical Society, 144(26): 11840-11850.

19.    Xu, B., Liu, S., Zhou, J. L., Zheng, C., Weifeng, J., Chen, B., ... and Qiu, W. (2021). PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. Journal of Hazardous Materials, 412: 125159.

20.    Yao, X., Zuo, J., Wang, Y. J., Song, N. N., Li, H. H., and Qiu, K. (2021). Enhanced photocatalytic degradation of perfluorooctanoic acid by mesoporous Sb2O3/TiO2 heterojunctions. Frontiers in Chemistry, 9: 690520.

21.    Ye, L., Liu, J., Jiang, Z., Peng, T., and Zan, L. (2013). Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 142: 1-7.

22.    Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., and Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences9(12): 2489.