Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 946 - 955
PHOTOCATALYTIC
PERFORMANCE OF MOLYBDENUM DISULPHIDE-GRAPHENE OXIDE IN PERFLUOROOCTANOIC ACID
(PFOA) DEGRADATION UNDER INDOOR LIGHT EMITTING DIODE (LED) IRRADIATION
(Prestasi Fotokatalitik Molibdenum
Disulfida-Grafena Oksida dalam Degradasi Asid Perfluorooktanoik (PFOA) di bawah
Penyinaran Diod Pemancar Cahaya Dalaman (LED))
Zulhatiqah Zolekafeli1, Kavirajaa Pandian
Sambasevam1,2,3, Siti Nor Atika Baharin1,3*
1Advanced Materials for Environmental
Remediation (AMER), Faculty of Applied Sciences, Universiti Teknologi MARA
Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri
Sembilan, Malaysia
2Electrochemical Material and Sensor
(EMas) Group, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Advanced Biomaterials & Carbon
Development (ABCD),
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: atikabaharin@uitm.edu.my
Received:
30 May 2023; Accepted: 7 September 2023; Published: 30 October 2023
Abstract
In this research, molybdenum
disulphide-graphene oxide (MoS2-GO) was used as photocatalyst
for the degradation of perfluorooctanoic acid (PFOA) under 12-watt light
emitting diode (LED) irradiation. The photocatalyst performance was evaluated
by a series of experiment; effect of contact time, trapping experiments and recyclability
studies. Effect of contact time revealed MoS2-GO degraded PFOA with 80.77% at 120 equilibrium time.
Langmuir-Hinshelwood (L-H) kinetic model was applied to study the kinetic model
with (R2) of 0.8726 at half-life (t1/2) 2.31 h under LED
light irradiation. The trapping experiment shows that photocatalytic process
was dominant by •O2-, where •O2-,
supported by proton ion (h+), is the major active species whereas
•OH only played a minor part in the entire photocatalytic process. The
recyclability study revealed the MoS2-GO
can be reused for up to six
cycles. The employed photocatalyst in the sixth cycle was analyzed
using FTIR and the FTIR spectrum shows that the peak diminishes its intensity
after reusability at peaks of 1300 cm-1 to 1800 cm-1 for
carbonyl (C=O), epoxy, the C=C stretching mode and carbonyl (>C=O), 750 cm-1
to 1250 cm-1 indicates the S-S bond,
and at 3038 cm-1 that is attributed to the O-H stretching
vibrations. Thus, this research proposed a performance evaluation of MoS2-GO as photocatalyst for photocatalytic degradation of
PFOA under indoor LED light irradiation.
Keywords: molybdenum disulphide, photodegradation,
perfluorooctanoic acid, light emitting diode
Abstrak
Dalam
penyelidikan ini, molibdenum disulfida-grafena oksida (MoS2-GO)
digunakan sebagai pemangkin foto untuk degradasi asid perfluorooktanoik (PFOA)
di bawah penyinaran diod pemancar cahaya (LED) 12 watt. Prestasi pemangkin foto
telah dinilai oleh satu siri eksperimen; kesan masa sentuhan, eksperimen
perangkap dan kajian kitar semula. Kesan masa sentuhan mendedahkan MoS2-GO
merendahkan PFOA dengan 80.77% pada 120 masa keseimbangan. Model kinetik
Langmuir-Hinshelwood (L-H) telah digunakan untuk mengkaji model kinetik dengan
(R2) sebanyak 0.8726 pada separuh hayat (t1/2) 2.31 h di
bawah penyinaran cahaya LED. Eksperimen perangkap menunjukkan bahawa proses
fotokatalitik didominasi oleh •O2-, di mana •O2-,
disokong oleh ion proton (h+), adalah spesies aktif utama manakala
•OH hanya memainkan peranan kecil dalam keseluruhan proses fotokatalitik.
Kajian kebolehkitaran semula mendedahkan MoS2-GO boleh digunakan
semula sehingga enam kitaran. Pemangkin foto yang digunakan dalam kitaran
keenam telah dianalisis menggunakan FTIR dan spektrum FTIR menunjukkan bahawa
puncak mengurangkan keamatannya selepas kebolehgunaan semula pada titik 1300 cm-1
hingga 1800 cm-1 untuk karbonil (C=O), epoksi, mod renggangan C=C
dan karbonil (>C=O), 750 cm-1 hingga 1250 cm-1
mewakili ikatan S-S, dan di titik 3038
cm-1 yang mewakili ikatan renggangan O-H. Oleh itu, penyelidikan ini
mencadangkan penilaian prestasi MoS2-GO sebagai
pemangkin foto untuk degradasi fotokatalitik PFOA di bawah penyinaran cahaya
LED dalaman.
Kata kunci: molibdenum disulfida,
fotodegradasi, asid perfluorooktanoik, diod pemancar cahaya
References
1.
Cao, M. H., Wang, B. B.,
Yu, H. S., Wang, L. L., Yuan, S. H., and Chen, J. (2010). Photochemical
decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV
light irradiation. Journal of Hazardous Materials, 179(1-3),
1143-1146.
2.
EFSA Panel on
Contaminants in the Food Chain (EFSA CONTAM Panel), Schrenk,
D., Bignami, M., Bodin, L.,
Chipman, J. K., del Mazo, J., ... and Schwerdtle, T. (2020). Risk to human health related to the
presence of perfluoroalkyl substances in food. EFSA Journal, 18(9):
e06223.
3.
Hao, S., Zhao, X., Cheng,
Q., Xing, Y., Ma, W., Wang, X., ... and Xu, X. (2020). A mini review of the
preparation and photocatalytic properties of two-dimensional materials. Frontiers
in Chemistry, 8: 582146.
4.
Huang, Y., Kong, M., Westerman, D., Xu, E. G., Coffin, S., Cochran, K. H., ...
and Dionysiou, D. D. (2018). Effects of HCO3–on
degradation of toxic contaminants of emerging concern by UV/NO3–. Environmental
Science & Technology, 52(21): 12697-12707.
5.
Khan, M., Assal, M. E., Tahir, M. N., Khan, M., Ashraf, M., Hatshan, M. R., ... and Adil, S. F. (2022).
Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy
conversion for environmental remediation. Journal of Saudi Chemical
Society, 26(6): 101544.
6.
Li, M., Yu, Z.,
Liu, Q., Sun, L., and Huang, W. (2016). Photocatalytic
decomposition of perfluorooctanoic acid by noble metallic nanoparticles
modified TiO2. Chemical Engineering Journal, 286:
232-238.
7.
Li, Y., Xiang, F., Lou,
W., and Zhang, X. (2019). MoS2 with structure tuned photocatalytic
ability for degradation of methylene blue. In IOP Conference Series:
Earth and Environmental Science (Vol. 300, No. 5, p. 052021). IOP Publishing.
8.
Lohmann, R., Cousins, I.
T., DeWitt, J. C., Gluge, J., Goldenman,
G., Herzke, D., ... and Wang, Z. (2020). Are
fluoropolymers really of low concern for human and environmental health and
separate from other PFAS?. Environmental
Science & Technology, 54(20): 12820-12828.
9.
Norsham,
I. N. M., Sambasevam, K. P., Shahabuddin, S., Jawad,
A. H., and Baharin, S. N. A. (2022). Photocatalytic
degradation of perfluorooctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent
irradiation. Journal of Environmental Chemical Engineering, 10(5):
108466.
10.
Olatunde,
O. C., Kuvarega, A. T., and Onwudiwe,
D. C. (2020). Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl
substances. Heliyon, 6(12):
e05614.
11.
Patterson, C. L., &
Haught, R. C. (2021). Regulatory considerations to ensure clean and safe
drinking water. In Handbook of water purity and quality (pp.
93-135). Academic Press.
12.
Rafiei-Sarmazdeh, Z., Zahedi-Dizaji, S. M.,
and Kang, A. K. (2019). Two-dimensional
nanomaterials. London, UK: IntechOpen.
13.
Sahu,
S. P., Qanbarzadeh, M., Ateia,
M., Torkzadeh, H., Maroli,
A. S., and Cates, E. L. (2018). Rapid degradation and mineralization of
perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2
microparticle ultraviolet photocatalyst. Environmental Science &
Technology Letters, 5(8): 533-538.
14.
Santoso,
S. P., Angkawijaya, A. E., Bundjaja,
V., Hsieh, C. W., Go, A. W., Yuliana, M., ... and Ismadji,
S. (2021). TiO2/guar gum hydrogel composite for adsorption and
photodegradation of methylene blue. International Journal of Biological
Macromolecules, 193: 721-733.
15.
Trojanowicz,
M., Bartosiewicz, I., Bojanowska-Czajka,
A., Kulisa, K., Szreder,
T., Bobrowski, K., ... and Kisała,
J. (2019). Application of ionizing radiation in decomposition of
perfluorooctanoate (PFOA) in waters. Chemical Engineering Journal, 357:
698-714.
16.
Wang, H., Liu, X., Niu, P., Wang, S., Shi, J., and Li, L. (2020). Porous
two-dimensional materials for photocatalytic and electrocatalytic
applications. Matter, 2(6): 1377-1413.
17.
Wang, P., Liu, D., Yan,
S., Cui, J., Liang, Y., and Ren, S. (2022). Adverse effects of perfluorooctane sulfonate on the liver and relevant
mechanisms. Toxics, 10(5): 265.
18.
Wen, Y., Rentería-Gómez, A., Day, G. S., Smith,
M. F., Yan, T. H., Ozdemir, R. O. K., ... and Zhou,
H. C. (2022). Integrated photocatalytic reduction and oxidation of
perfluorooctanoic acid by metal–organic frameworks: key insights into the
degradation mechanisms. Journal of the American Chemical Society, 144(26):
11840-11850.
19.
Xu, B., Liu, S., Zhou, J.
L., Zheng, C., Weifeng, J., Chen, B., ... and Qiu, W. (2021). PFAS and their substitutes in groundwater:
Occurrence, transformation and remediation. Journal of Hazardous
Materials, 412: 125159.
20.
Yao, X., Zuo, J., Wang, Y. J., Song, N. N., Li, H. H., and Qiu, K. (2021). Enhanced photocatalytic degradation of
perfluorooctanoic acid by mesoporous Sb2O3/TiO2
heterojunctions. Frontiers in Chemistry, 9: 690520.
21.
Ye, L., Liu, J., Jiang,
Z., Peng, T., and Zan, L. (2013). Facets coupling of BiOBr-g-C3N4
composite photocatalyst for enhanced visible-light-driven photocatalytic
activity. Applied Catalysis B: Environmental, 142: 1-7.
22. Zhang,
F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., and Cai, Z. (2019). Recent
advances and applications of semiconductor photocatalytic technology. Applied
Sciences, 9(12): 2489.