Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 935 - 945
DEVELOPMENT OF A HOME-BUILT UV-VISIBLE
SPECTROPHOTOMETER EMPLOYING ARDUINO MICROCONTROLLER SYSTEM FOR CHEMICAL ANALYSIS
(Pembangunan Spektrofotometer
Ultraungu-Nampak Binaan Sendiri Menggunakan Sistem Pengawal Mikro Arduino untuk
Analisis Bahan Kimia)
Anis Nur Shasha Abdul Halim1, Tam Yi Qian1,
Aemi Syazwani Abdul Keyon 1,2*, and Nur Safwati Mohd Nor 3
1Department
of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor
Bahru, Johor, Malaysia
2Centre
for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and
Industrial Research, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor,
Malaysia
3Department
of Applied Mechanics and Design, Faculty of Mechanical Engineering, Universiti
Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia.
*Corresponding author: aemi@utm.my
Received:
13 March 2023; Accepted: 22 August 2023; Published: 30 October 2023
Abstract
This
work demonstrated the development and the application of a home-built
spectrophotometer device employing Arduino microcontroller. Arduino UNO
microcontroller was utilized as a data acquisition system. Arrangement of the
system’s hardware was based on the working principle of a commercially
available benchtop instrument. For the first time in the scope of Arduino-based
spectrophotometer, the developed device consisted of double light sources and
innovative monochromator design to cater the requirement of ultraviolet (UV)
and visible ranges. A visible white LED and UV LED emitting between 190 and 600
nm spectrum were employed. Light dependent resistor (LDR) and GUVA-S12SD UV
sensor were utilized as light detectors. Innovative monochromator system was
incorporated with combination of stepper motor and DVD disc as a diffraction
grating for wavelength selection. The effectiveness of the UV range in the
device was tested using bisphenol A (BPA) and triclosan, while Reactive Orange
16 and Reactive Red 120 dyes for visible range. The device could detect BPA
from 10 to 50 ppm concentration (obtained through external linear graph
producing R2 = 0.9970), while triclosan from 1 to 5 ppm (R2 = 0.9971). The limit
of detection (LOD) and the limit of quantitation (LOQ) for BPA were 7.01 ppm
and 23.38 ppm, respectively. The LOD and LOQ for triclosan were 0.60 ppm and
1.99 ppm, respectively. The results obtained from the device on all analytes
were validated with a commercially available benchtop UV-vis spectrophotometer. The linearity of BPA from
10 to 50 ppm obtained a correlation of R2 = 0.9941. Triclosan showed
R2
= 0.9965 for linearity from 1 to 5 ppm. The LOD and LOQ were 8.58 ppm and 28.61 ppm,
respectively. The LOD and LOQ for triclosan were 0.66 ppm and 2.19 ppm respectively. As for visible range, the benchtop spectrophotometer
could detect Reactive Orange 16 from 10 to 50 ppm concentration (R2 = 0.9967) while Reactive Red 120 (R2 = 0.9958). The LOD and
LOQ for Reactive Orange 16 were 6.76 ppm and 22.52 ppm, respectively. The LOD
and LOQ for Reactive Red 120 were 6.94 ppm and 23.13 ppm, respectively. Nearly identical R2,
LOD and LOQ were obtained for both home-built Arduino device and the benchtop
UV-visible spectrophotometer. These data indicated positive outcomes with
accuracy percentage 95% and 97.2% for BPA and triclosan, 98.6% and 93.5% for
Reactive Orange 16 and Reactive Red 120 dye of the home-built Arduino
spectrophotometer.
Keywords: arduino, home-built, UV-visible spectrophotometer, dye
analysis, pollutant analysis
Abstrak
Kajian
ini menunjukkan pembangunan dan aplikasi peranti spektrofotometer binaan
sendiri yang menggunakan mikropengawal Arduino. Pengawal mikro Arduino UNO
telah digunakan sebagai sistem pemerolehan data. Susunan perkakasan sistem adalah
berdasarkan prinsip kerja instrumen komersil. Buat pertama kali dalam skop
spektrofotometer berasaskan Arduino, peranti yang dibangunkan terdiri daripada
sumber cahaya berganda dan reka bentuk monokromator yang inovatif untuk
memenuhi keperluan julat ultraungu (UV) dan boleh dilihat. LED putih yang
kelihatan dan LED UV yang memancarkan antara spektrum 190 dan 600 nm telah
digunakan. Perintang bergantung cahaya (LDR) dan sensor UV GUVA-S12SD digunakan
sebagai pengesan cahaya. Sistem monokromator yang inovatif telah digabungkan
dengan gabungan motor pelangkah dan cakera DVD sebagai parut difraksi untuk
pemilihan panjang gelombang. Keberkesanan julat UV dalam peranti telah diuji
menggunakan bisphenol A (BPA) dan triclosan, manakala pewarna Reactive Orange
16 dan Reactive Red 120 untuk julat yang boleh dilihat. Peranti boleh mengesan
BPA dari 10 hingga 50 ppm kepekatan (diperolehi melalui graf linear luaran yang
menghasilkan R2 = 0.9970), manakala triclosan dari 1 hingga 5 ppm (R2
= 0.9971). Had pengesanan (LOD) dan had kuantiti (LOQ) untuk BPA ialah 7.01 ppm
dan 23.38 ppm, masing-masing. LOD dan LOQ untuk triclosan ialah 0.60 ppm dan
1.99 ppm, masing-masing. Keputusan yang diperoleh daripada peranti pada semua
analit telah disahkan dengan spektrofotometer UV-vis komersil. Kelinearan BPA
dari 10 hingga 50 ppm memperoleh korelasi R2 = 0.9941. Triclosan
menunjukkan R2 = 0.9965 untuk lineariti dari 1 hingga 5 ppm. LOD dan
LOQ masing-masing ialah 8.58 ppm dan 28.61 ppm. LOD dan LOQ pula untuk
triclosan masing-masing adalah 0.66 ppm
dan 2.19 ppm. Bagi julat yang boleh dilihat, spektrofotometer komersil boleh
mengesan Jingga Reaktif 16 daripada kepekatan 10 hingga 50 ppm (R2 =
0.9967) manakala Merah Reaktif 120 (R2 = 0.9958). LOD dan LOQ untuk
Oren Reaktif 16 masing-masing ialah 6.76 ppm dan 22.52 ppm. LOD dan LOQ untuk
Reactive Red 120 ialah 6.94 ppm dan 23.13 ppm, masing-masing. R2,
LOD dan LOQ yang hampir sama diperolehi untuk kedua-dua peranti Arduino yang
dibina sendiri dan spektrofotometer komersil. Data ini menunjukkan hasil
positif dengan peratusan ketepatan 95% dan 97.2% untuk BPA dan triclosan, 98.6%
dan 93.5% untuk Reactive Orange 16 dan Reactive Red 120 bagi pewarna
spektrofotometer Arduino yang dibina sendiri.
Kata kunci: arduino, binaan sendiri, spektrofotometer UV-cahaya
nampak, analisis pewarna, analisis bahan pencemar
References
1. Copaciu, F., Opriş, O., Coman, V., Ristoiu, D.,
Niinemets, Ü., and Copolovici, L. (2013). Diffuse
water pollution by anthraquinone and azo dyes in environment importantly alters
foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum).
Water, Air, & Soil Pollution, 224(3): 1-11.
2. Rafiq,
A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., and Maqbool, M. (2021).
Photocatalytic degradation of dyes using semiconductor photocatalysts to clean
industrial water pollution. Journal of
Industrial and Engineering Chemistry,
97: 111-128.
3. Chen, S., Zhang, J., Zhang, C., Yue, Q., Li, Y., and
Li, C. (2010). Equilibrium and kinetic
studies of methyl orange and methyl violet adsorption on activated carbon
derived from Phragmites australis. Desalination,
252(1-3): 149-156.
4. Ray,
S. C., and Jana, N. R. (2017). Application of carbon-based nanomaterials for
removal of biologically toxic materials. In Carbon
Nanomaterials for Biological and Medical Applications (pp. 43-86).
5. Perez-Urquiza, M., Ferrer, R., and Beltran, J. L.
(2000). Determination of sulfonated azo dyes
in river water samples by capillary zone electrophoresis. Journal of Chromatography A, 883:
277-283.
6. Carneiro,
P. A., Umbuzeiro, G. A., Oliveira, D. P., and Zanoni, M. V. (2010). Assessment
of water contamination caused by a mutagenic textile effluent/dyehouse effluent
bearing disperse dyes. Journal Hazardous
Materials, 174(1-3): 694-699.
7. Rajabnejad,
S.-H., Badibostan, H., Verdian, A., Karimi, G. R., Fooladi, E., and Feizy, J.
(2020). Aptasensors as promising new tools in bisphenol A detection - An
invisible pollution in food and environment. Microchemical Journal, 155:
104722.
8. Zhang,
Y., Causserand, C., Aimar, P., and Cravedi, J. P. (2006). Removal of bisphenol
A by a nanofiltration membrane in view of drinking water production. Water Research, 40(20), 3793-3799.
9. Boas,
M., Feldt-Rasmussen, U., and Main, K. M. (2012). Thyroid effects of endocrine
disrupting chemicals. Molecular Cellular
Endocrinology, 355(2): 240-248.
10. Oketola,
A. A., and Fagbemigun, T. K. (2013). Determination of nonylphenol, octylphenol
and bisphenol-a in water and sediments of two major rivers in Lagos, Nigeria. Journal of Environmental Protection, 4:
38- 45.
11. Zheng, G., Yu, B., Wang, Y., Ma, C., and Chen, T.
(2020). Removal of triclosan during
wastewater treatment process and sewage sludge composting-A case study in the
middle reaches of the Yellow River. Environmental
International, 134: 105300.
12.
Kamińska, G.,
Marszałek, A., Kudlek, E., Adamczak, M., and Puszczało, E. (2022).
Innovative treatment of wastewater containing of triclosan – SBR followed by
ultrafiltration/adsorption/advanced oxidation processes. Journal of Water Process Engineering, 50: 103282.
13. Han,
M., Wang, Y., Tang, C., Fang, H., Yang, D., Wu, J., and Jiang, Q. (2021).
Association of triclosan and triclocarban in urine with obesity risk in Chinese
school children. Environmental
International, 157: 106846.
14. Nandikes,
G., Pathak, P., Razak, A. S., Narayanamurthy, V., and Singh, L. (2022).
Occurrence, environmental risks and biological remediation mechanisms of
Triclosan in wastewaters: Challenges and perspectives. Journal of Water Process Engineering, 49: 103078.
15. Dong,
X., He, Y., Peng, X., and Jia, X. (2021). Triclosan in contact with activated
sludge and its impact on phosphate removal and microbial community. Bioresource Technology, 319: 124134.
16. Poh,
J.-J., Wu, W.-L., Goh, N. W.-J., Tan, S. M.-X., and Gan, S. K.-E. (2021).
Spectrophotometer on-the-go: The development of a 2-in-1 UV–vis portable
arduino-based spectrophotometer. Sensors
and Actuators A: Physical, 325:
112698.
17. Morais,
C. d. L. M. d., Carvalho, J. C., Sant’Anna, C., Eugênio, M., Gasparotto, L. H.
S., and Lima, K. M. G. (2015). A low-cost microcontrolled photometer with one
color recognition sensor for selective detection of Pb2+ using gold
nanoparticles. Analytical Methods, 7(18): 7917-7922.
18.
Mabbott, G. A. (2014).
Teaching electronics and laboratory automation using microcontroller boards. Journal of Chemical Education, 91(9): 1458-1463.
19. Singh,
H., Singh, G., Mahajan, D. K., Kaur, N., and Singh, N. (2020). A low-cost
device for rapid ‘color to concentration’ quantification of cyanide in real
samples using paper-based sensing chip. Sensors
and Actuators B: Chemical, 322:
128622.
20. Widiatmoko,
E., Budiman, M., and Abdullah, M. (2011). A simple spectrophotometer using
common materials and a digital camera. Physics Education, 46(3): 332.
21. Zhang, X., Fang, Y., and Zhao, Y. (2013). A portable
spectrophotometer for water quality analysis. Sensors & Transducers,
148(1): 47.