Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1160 - 1171

 

ENHANCING PRE-CONCENTRATION OF Pb(II) THROUGH SYNTHESIS OF TANNIN ACID-CHITOSAN (TAC) AS SOLID PHASE EXTRACTION ADSORBENT

 

(Penambahbaikkan Pra-pemekatan Pb(II) Melalui Sintesis Asid Tannin-Kitosan (TAC) Sebagai Penjerap Pengekstrakan Fasa Pepejal)

 

Dewi Fortuna, Dwi Siswanta*, and Nurul Hidayat Aprilita

Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia

 

*Corresponding author: dsiswanta@mail.ugm.ac.id 

 

 

Received: 24 May 2023; Accepted: 4 October 2023; Published:  30 October 2023

 

 

Abstract

This study was conducted to incorporate tannin acid-chitosan (TAC) in solid phase method. The synthesized material was employed as an adsorbent to examine the effectiveness of solid phase extraction for preconcentration of Pb(II) in industrial wastewater. In addition, the parameters affecting extraction optimization were investigated and TAC was performed using a mass ratio of tannin acid and chitosan of 2:1 w/w. TAC absorbent was fully characterized using FTIR to detect functional groups and SEM-EDX to assess morphology and percentage of elements. The use of the optimal parameters for preconcentration on the performance of SPE method was obtained with adsorption, desorption, and enrichment factor at pH 5, a sample flow rate of 5 mL/min, Na2EDTA eluent flow rate of 5 mL/min, a sample volume of 10 mL, Na2EDTA eluent volume of 5 mL, sample concentration of 6 mg L–1 and Na2EDTA concentration of 0.35 M. Furthermore, preconcentration application to Pb(II) wastewater at 0.05 mg L–1, 0.06 mg L–1, and 0.07 mg L–1 were concentrated 0.28 mg L–1, 0.32 mg L–1, and 0.38 mg L–1 with a factor of 5.6, 5.35, and 5.45 times. The result showed that the proposed method was effective for SPE with TAC adsorbent and Pb(II) preconcentration.

 

Keywords: solid phase extraction, preconcentration, Pb(II), tannin acid-chitosan

 

Abstrak

Penyelidikan ini menggabungkan asid tannin-kitosan (TAC) dalam kaedah fasa pepejal. Bahan tersintesis digunakan sebagai penjerap dan bertujuan untuk mengkaji keberkesanan pengekstrakan fasa pepejal untuk pra-pemekatan Pb(II) dalam air sisa industri. Di samping itu, parameter yang mempengaruhi pengoptimuman pengekstrakan telah disiasat. Asid tannin-kitosan (TAC) dilakukan menggunakan nisbah jisim asid tanin dan kitosan 2:1 b/b. Kemudian penyerap TAC dicirikan sepenuhnya menggunakan FTIR untuk mengesan kumpulan berfungsi dan SEM-EDX untuk menilai morfologi dan peratusan unsur yang terkandung di dalamnya. Menggunakan parameter optimum untuk pra-pemekatan pada prestasi kaedah pengekstrakan fasa pepejal diperolehi, dengan penjerapan, penyahjerapan, dan instrumen pengayaan pada pH 5 dengan kadar aliran sampel 5 mL/min, kadar alir eluen Na2EDTA 5 mL/min, a isipadu sampel 10 mL, isipadu eluen Na2EDTA 5 mL, kepekatan sampel 6 mg L–1 dan kepekatan Na2EDTA 0.35 M. Penggunaan prapekatan pada air sisa Pb(II) pada kepekatan 0.05 mg L–1 boleh ditumpukan kepada 0.28 mg L–1 dengan faktor kepekatan 5.6 kali, pada kepekatan 0.06 mg L–1 boleh dipekatkan kepada 0.32 mg L–1 dengan faktor kepekatan 5.35 kali, dan pada kepekatan 0.07 mg L–1 boleh ditumpukan kepada 0.38 mg L–1 dengan faktor kepekatan 5.45 kali. Nilai faktor kepekatan yang diperoleh sepadan dengan teori, 6 kali, masing-masing. Keputusan menunjukkan bahawa kaedah yang dicadangkan adalah berkesan untuk pengekstrakan fasa pepejal dengan penjerap TAC dan pra-pemekatan Pb(II).

 

Kata kunci: pengekstrakan fasa pepejal, pra-pemekatan, Pb(II), asid tannin-kitosan

 

References

1.       Manzoor, K., Ahmad, M., Ahmad, S., and Ikram, S. (2019). Removal of Pb(II) and Cd(II) from wastewater using arginine crosslinked chitosan-carboxymethyl cellulose beads as green adsorbent, RSC Advances, 9 (14): 7890-7902.

2.       Taylor, P., Jinadasa, B. K. K. K., and Edirisinghe, E. M. R. K. B. (2014). Cadmium, lead and total mercury in Tilapia sp. in Sri Lankan reservoirs. Food Additives & Contaminants : Part B : Surveillance, 7 (1): 90-94.

3.       Quinn, C. W., Cate, D. M., Miller-Lionberg, D. D., Reilly, T., Volckens, J., and Henry, C. S. (2018). Solid-phase extraction coupled to a paper-based technique for trace copper detection in drinking water. Environmental Science Technology, 52(6): 3567-3573.

4.       Bhuyan, M. S., Bakar, M. A., Akhtar, A., Hossain, M. B., Ali, M. M., and Islam, M. S. (2017). Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environmental Nanotechnology, Monitoring Management, 8(4): 273-279.

5.       Yavuz, E., Tokalioʇlu, Ş., Şahan, H., and Patat, Ş. (2016). Nanosized spongelike Mn3O4 as an adsorbent for preconcentration by vortex assisted solid phase extraction of copper and lead in various food and herb samples. Food Chemistry, 194: 463-469.

6.       Taylor, P., Aini, W., Ibrahim, W., Imad, L., Ali, A., Sulaiman, A., Sanagi, M. M., Aboul-enein, H. Y., Aini, W., Ibrahim, W., Imad, L., Ali, A., Sulaiman, A., Sanagi, M. M., and Aboul-enein, H. Y. (2014). Application of solid-phase extraction for trace elements in environmental and biological samples: A review. Critical Reviews in Analytical Chemistry, 44(5): 233-254.

7.       Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta Part B: Atomic Spectroscopy, 58: 1177-1233.

8.       Das, D., and Pal, A. (2016). Adsolubilization phenomenon perceived in chitosan beads leading to a fast and enhanced malachite green removal. Chemical Engineering Journal, 290: 371-380.

9.       Wang, G., Chen, Y., Xu, G., and Pei, Y. (2019). Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. International Journal Biology Macromolecules, 129: 198-206.

10.    Petins, M. M. C., Sarria-Villa, R. A., Benítez, R. B., and Corredor, J. A. G. (2021). Chemical modified tannins from Pinus patula bark for selective biosorption of gold in aqueous media. Journal Environmental Chemical Engineering, 9(5): 106162.

11.    Su, C. K., and Lin, J. Y. (2020). 3D-printed column with porous monolithic packing for online solid-phase extraction of multiple trace metals in environmental water samples. Analytical Chemistry, 92(14): 9640-9648.

12.    M aranata, G. J., Surya, N. O., and Hasanah, A. N. (2021). Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. Heliyon, 7(1): e05934.

13.    Daşbaşi, T., Saçmaci, Ş., Ülgen, A., and Kartal, Ş. (2015). A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry. Food Chemistry, 174: 591-596.

14.    Sanmartín, R., Romero, V., Lavilla, I., and Bendicho, C. (2022). Ultrasound-assisted dispersive micro-solid phase extraction of Pb(II) in water samples with in situ synthesis of magnetic Fe3O4-PbS nanocomposites followed by electrothermal atomic absorption spectrometry determination. Spectrochimica Acta - Part B Atomic Spectroscopy, 188: 106349.

15.    Zhou, Z., Liu, F., Huang, Y., Wang, Z., and Li, G. (2015). Biosorption of palladium(II) from aqueous solution by grafting chitosan on persimmon tannin extract. International Journal Biological Macromolecular, 77: 336-343.

16.    Utami, U. B. L., Mujiyanti, D. R., and Normilawati, (2015). Kajian adsorpsi Cd(II) oleh arang apu-apu termodifikasi kitosan-glutaraldehida. Sains dan Terapi Kimia, 9(2): 12-22.

17.    Abdulsahib, H. T., Taobi, A. H., and Hashem, S. S. (2015). A novel adsorbent based on lignin and tannin for the removal of heavy metals from wastewater. Research Journal Pharmacognosy Phytochemistry, 7(1): 38.

18.    Zhao, Y., Ren, Y., Wang, X., Xiao, P., Tian, E., Wang, X., and Li, J., (2016). An initial study of EDTA complex based draw solutes in forward osmosis process. Desalination, 378: 28-36.

19.    Khoramzadeh, E., Nasernejad, B., and Halladj, R. (2013). Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal Taiwan Institute Chemical Engineering, 44(2): 266-269.

20.    Petrović, M., Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović, M., Stanojević, M., and Stanković, S. (2016). Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. Journal Taiwan Institute Chemical Engineering, 58: 407-416.

21.    Fei, J., Wu, X., Sun, Y., Zhao, L., Min, H., Cui, X., Chen, Y., Liu, S., Lian, H., and Li, C. (2021). Preparation of a novel amino functionalized ion-imprinted hybrid monolithic column for the selective extraction of trace copper followed by ICP-MS detection, Analytica Chimica Acta, 1162: 338477.

22.    Sadeghi, S., and Jahani, M. (2013). Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of Florfenicol in food samples, Food Chemistry, 141(2): 1242-1251.

23.    Yuniar. and Yanti, H. (2021). Peningkatan limit deteksi metode pengujian logam Pb secara kolom ekstraksi fase padat menggunakan resin DOWEX 50WX2: Pengaruh pH, laju alir dan volume eluen. Jurnal Penelitian Sains, 21(3): 46-51.

24.    Zari, N., Hassan, J., Tabar-Heydar, K., and Ahmadi, S. H. (2016). On-line green solid phase extraction of trace rare earth elements and uranium in environmental samples and ICP OES detection, Journal Brazilian Chemical Society, 27(10): 1881-1888.

25.    Imran, K., Harinath, Y., Naik, B. R., Kumar, N. S., and Seshaiah, K. (2019). A new hybrid sorbent 2, 2'-pyridil functionalized SBA-15 ( Pyl-SBA-15 ) synthesis and its applications in solid phase extraction of Cu (II) from water samples. Journal of Environmental Chemical Engineering, 7(3): 103170.

26.    Liu, Q., Shi, J., Zeng, L., Wang, T., Cai, Y., and Jiang, G. (2011). Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. Journal of Chromatography A, 1218(2): 197-204.

27.    Sanagi, M. M., Salleh, S., Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., Hussain, I., and Aboul-Enein, H. Y. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples, Journal Food Composition Analysis, 32(2): 155-161.

28.    Jiménez-Soto, J. M., Cárdenas, S., and Valcárcel, M. (2009). Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction, Journal of Chromatography A, 1216(30): 5626-5633.


29.    Yuvaraja, G., Pang, Y., Chen, D. Y., Kong, L. J., Mehmood, S., Subbaiah, M. V., Rao, D. S., Mouli Pavuluri, C., Wen, J. C., and Reddy, G. M. (2019). Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment. International Journal Biology Macromolecules, 136: 177-188.

30.    Guan, Y. T., Wang, S. H., Wang, M. H., Hou, Z. X., Hu, X. D., Wang, H., Fan, H. L., and Zhang, N. (2014). Effect of initial concentration of Cu2+ on the adsorption performance of hydroxyapatite. Advances Materials Research, 989-994: 312-315.

31.    Jiang, X., An, Q., Xiao, Z., Zhai, S., and Shi, Z. (2019). Versatile core/shell-like alginate @ polyethylenimine composites for efficient removal of multiple heavy metal ions (Pb2+,Cu2+, CrO42+): Batch and fixed-bed studies. Materials Research Bulletin, 118(6): 110526.

32.    Chen, A., Yang, C., Chen, C., Chen, C., and Chen, C. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal Hazardous Materials, 163: 1068-1075.