Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1160 - 1171
ENHANCING PRE-CONCENTRATION OF Pb(II) THROUGH
SYNTHESIS OF TANNIN ACID-CHITOSAN (TAC) AS SOLID PHASE EXTRACTION ADSORBENT
(Penambahbaikkan Pra-pemekatan
Pb(II) Melalui Sintesis Asid Tannin-Kitosan (TAC) Sebagai Penjerap Pengekstrakan
Fasa Pepejal)
Department of Chemistry, Faculty of Mathematics and
Natural Science, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281,
Indonesia
*Corresponding author: dsiswanta@mail.ugm.ac.id
Received: 24 May 2023; Accepted: 4
October 2023; Published: 30 October 2023
This
study was conducted to incorporate tannin acid-chitosan (TAC) in solid phase
method. The synthesized material was employed as an adsorbent to examine the
effectiveness of solid phase extraction for preconcentration of Pb(II) in
industrial wastewater. In addition, the parameters affecting extraction
optimization were investigated and TAC was performed using a mass ratio of
tannin acid and chitosan of 2:1 w/w. TAC absorbent was fully characterized
using FTIR to detect functional groups and SEM-EDX to assess morphology and
percentage of elements. The use of the optimal parameters for preconcentration
on the performance of SPE method was obtained with adsorption, desorption, and
enrichment factor at pH 5, a sample flow rate of 5 mL/min, Na2EDTA
eluent flow rate of 5 mL/min, a sample volume of 10 mL, Na2EDTA
eluent volume of 5 mL, sample concentration of 6 mg L–1 and Na2EDTA
concentration of 0.35 M. Furthermore, preconcentration application to Pb(II)
wastewater at 0.05 mg L–1, 0.06 mg L–1, and 0.07 mg L–1
were concentrated 0.28 mg L–1, 0.32 mg L–1, and 0.38 mg L–1
with a factor of 5.6, 5.35, and 5.45 times. The result showed that the proposed
method was effective for SPE with TAC adsorbent and Pb(II) preconcentration.
Keywords:
solid phase extraction, preconcentration, Pb(II), tannin acid-chitosan
Abstrak
Penyelidikan ini menggabungkan asid
tannin-kitosan (TAC) dalam kaedah fasa pepejal. Bahan tersintesis digunakan
sebagai penjerap dan bertujuan untuk mengkaji keberkesanan pengekstrakan fasa
pepejal untuk pra-pemekatan Pb(II) dalam air sisa industri. Di samping itu,
parameter yang mempengaruhi pengoptimuman pengekstrakan telah disiasat. Asid
tannin-kitosan (TAC) dilakukan menggunakan nisbah jisim asid tanin dan kitosan
2:1 b/b. Kemudian penyerap TAC dicirikan sepenuhnya menggunakan FTIR untuk
mengesan kumpulan berfungsi dan SEM-EDX untuk menilai morfologi dan peratusan
unsur yang terkandung di dalamnya. Menggunakan parameter optimum untuk
pra-pemekatan pada prestasi kaedah pengekstrakan fasa pepejal diperolehi,
dengan penjerapan, penyahjerapan, dan instrumen pengayaan pada pH 5 dengan
kadar aliran sampel 5 mL/min, kadar alir eluen Na2EDTA 5 mL/min, a
isipadu sampel 10 mL, isipadu eluen Na2EDTA 5 mL, kepekatan sampel 6
mg L–1 dan kepekatan Na2EDTA 0.35 M. Penggunaan
prapekatan pada air sisa Pb(II) pada kepekatan 0.05 mg L–1 boleh
ditumpukan kepada 0.28 mg L–1 dengan faktor kepekatan 5.6 kali, pada
kepekatan 0.06 mg L–1 boleh dipekatkan kepada 0.32 mg L–1
dengan faktor kepekatan 5.35 kali, dan pada kepekatan 0.07 mg L–1
boleh ditumpukan kepada 0.38 mg L–1 dengan faktor kepekatan 5.45
kali. Nilai faktor kepekatan yang diperoleh sepadan dengan teori, 6 kali,
masing-masing. Keputusan menunjukkan bahawa kaedah yang dicadangkan adalah
berkesan untuk pengekstrakan fasa pepejal dengan penjerap TAC dan pra-pemekatan
Pb(II).
Kata kunci: pengekstrakan fasa pepejal,
pra-pemekatan, Pb(II), asid tannin-kitosan
References
1. Manzoor, K., Ahmad, M.,
Ahmad, S., and Ikram, S. (2019). Removal of Pb(II) and Cd(II) from wastewater
using arginine crosslinked chitosan-carboxymethyl cellulose beads as green
adsorbent, RSC Advances, 9 (14): 7890-7902.
2. Taylor, P., Jinadasa, B.
K. K. K., and Edirisinghe, E. M. R. K. B. (2014). Cadmium, lead and total
mercury in Tilapia sp. in Sri Lankan reservoirs. Food Additives &
Contaminants : Part B : Surveillance, 7 (1): 90-94.
3. Quinn, C. W., Cate, D.
M., Miller-Lionberg, D. D., Reilly, T., Volckens, J., and Henry, C. S. (2018).
Solid-phase extraction coupled to a paper-based technique for trace copper
detection in drinking water. Environmental Science Technology, 52(6):
3567-3573.
4. Bhuyan, M. S., Bakar, M.
A., Akhtar, A., Hossain, M. B., Ali, M. M., and Islam, M. S. (2017). Heavy
metal contamination in surface water and sediment of the Meghna River,
Bangladesh. Environmental Nanotechnology, Monitoring Management, 8(4):
273-279.
5. Yavuz, E.,
Tokalioʇlu, Ş., Şahan, H., and Patat, Ş. (2016). Nanosized
spongelike Mn3O4 as an adsorbent for preconcentration by
vortex assisted solid phase extraction of copper and lead in various food and
herb samples. Food Chemistry, 194: 463-469.
6. Taylor, P., Aini, W.,
Ibrahim, W., Imad, L., Ali, A., Sulaiman, A., Sanagi, M. M., Aboul-enein, H.
Y., Aini, W., Ibrahim, W., Imad, L., Ali, A., Sulaiman, A., Sanagi, M. M., and
Aboul-enein, H. Y. (2014). Application of solid-phase extraction for trace elements
in environmental and biological samples: A review. Critical Reviews in
Analytical Chemistry, 44(5): 233-254.
7. Camel, V. (2003). Solid
phase extraction of trace elements. Spectrochimica Acta Part B: Atomic
Spectroscopy, 58: 1177-1233.
8. Das, D., and Pal, A.
(2016). Adsolubilization phenomenon perceived in chitosan beads leading to a
fast and enhanced malachite green removal. Chemical Engineering Journal,
290: 371-380.
9. Wang, G., Chen, Y., Xu,
G., and Pei, Y. (2019). Effective removing of methylene blue from aqueous
solution by tannins immobilized on cellulose microfibers. International
Journal Biology Macromolecules, 129: 198-206.
10. Petins, M. M. C.,
Sarria-Villa, R. A., Benítez, R. B., and Corredor, J. A. G. (2021). Chemical
modified tannins from Pinus patula bark for selective biosorption of
gold in aqueous media. Journal Environmental Chemical Engineering, 9(5):
106162.
11. Su, C. K., and Lin, J. Y.
(2020). 3D-printed column with porous monolithic packing for online solid-phase
extraction of multiple trace metals in environmental water samples. Analytical
Chemistry, 92(14): 9640-9648.
12. M aranata, G. J., Surya,
N. O., and Hasanah, A. N. (2021). Optimising factors affecting solid phase
extraction performances of molecular imprinted polymer as recent sample
preparation technique. Heliyon, 7(1): e05934.
13. Daşbaşi, T.,
Saçmaci, Ş., Ülgen, A., and Kartal, Ş. (2015). A solid phase
extraction procedure for the determination of Cd(II) and Pb(II) ions in food
and water samples by flame atomic absorption spectrometry. Food Chemistry,
174: 591-596.
14. Sanmartín, R., Romero,
V., Lavilla, I., and Bendicho, C. (2022). Ultrasound-assisted dispersive
micro-solid phase extraction of Pb(II) in water samples with in situ synthesis
of magnetic Fe3O4-PbS nanocomposites followed by
electrothermal atomic absorption spectrometry determination. Spectrochimica
Acta - Part B Atomic Spectroscopy, 188: 106349.
15. Zhou, Z., Liu, F., Huang,
Y., Wang, Z., and Li, G. (2015). Biosorption of palladium(II) from aqueous
solution by grafting chitosan on persimmon tannin extract. International
Journal Biological Macromolecular, 77: 336-343.
16. Utami, U. B. L.,
Mujiyanti, D. R., and Normilawati, (2015). Kajian adsorpsi Cd(II) oleh arang
apu-apu termodifikasi kitosan-glutaraldehida. Sains dan Terapi Kimia,
9(2): 12-22.
17. Abdulsahib, H. T., Taobi,
A. H., and Hashem, S. S. (2015). A novel adsorbent based on lignin and tannin
for the removal of heavy metals from wastewater. Research Journal
Pharmacognosy Phytochemistry, 7(1): 38.
18. Zhao, Y., Ren, Y., Wang,
X., Xiao, P., Tian, E., Wang, X., and Li, J., (2016). An initial study of EDTA
complex based draw solutes in forward osmosis process. Desalination,
378: 28-36.
19. Khoramzadeh, E.,
Nasernejad, B., and Halladj, R. (2013). Mercury biosorption from aqueous
solutions by sugarcane bagasse. Journal Taiwan Institute Chemical
Engineering, 44(2): 266-269.
20. Petrović, M.,
Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović,
M., Stanojević, M., and Stanković, S. (2016). Removal of Pb2+
ions by raw corn silk (Zea mays L.) as a novel biosorbent. Journal
Taiwan Institute Chemical Engineering, 58: 407-416.
21. Fei, J., Wu, X., Sun, Y.,
Zhao, L., Min, H., Cui, X., Chen, Y., Liu, S., Lian, H., and Li, C. (2021).
Preparation of a novel amino functionalized ion-imprinted hybrid monolithic
column for the selective extraction of trace copper followed by ICP-MS detection,
Analytica Chimica Acta, 1162: 338477.
22. Sadeghi, S., and Jahani,
M. (2013). Selective solid-phase extraction using molecular imprinted polymer
sorbent for the analysis of Florfenicol in food samples, Food Chemistry,
141(2): 1242-1251.
23. Yuniar. and Yanti, H.
(2021). Peningkatan limit deteksi metode pengujian logam Pb secara kolom
ekstraksi fase padat menggunakan resin DOWEX 50WX2: Pengaruh pH, laju alir dan
volume eluen. Jurnal Penelitian Sains, 21(3): 46-51.
24. Zari, N., Hassan, J.,
Tabar-Heydar, K., and Ahmadi, S. H. (2016). On-line green solid phase
extraction of trace rare earth elements and uranium in environmental samples
and ICP OES detection, Journal Brazilian Chemical Society, 27(10):
1881-1888.
25. Imran, K., Harinath, Y.,
Naik, B. R., Kumar, N. S., and Seshaiah, K. (2019). A new hybrid sorbent 2,
2'-pyridil functionalized SBA-15 ( Pyl-SBA-15 ) synthesis and its applications
in solid phase extraction of Cu (II) from water samples. Journal of Environmental Chemical Engineering, 7(3): 103170.
26. Liu, Q., Shi, J., Zeng,
L., Wang, T., Cai, Y., and Jiang, G. (2011). Evaluation of graphene as an
advantageous adsorbent for solid-phase extraction with chlorophenols as model
analytes. Journal of Chromatography A, 1218(2): 197-204.
27. Sanagi, M. M., Salleh,
S., Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., Hussain, I., and
Aboul-Enein, H. Y. (2013). Molecularly imprinted polymer solid-phase extraction
for the analysis of organophosphorus pesticides in fruit samples, Journal
Food Composition Analysis, 32(2): 155-161.
28. Jiménez-Soto, J. M.,
Cárdenas, S., and Valcárcel, M. (2009). Evaluation of carbon nanocones/disks as
sorbent material for solid-phase extraction, Journal of Chromatography A,
1216(30): 5626-5633.
29. Yuvaraja, G., Pang, Y.,
Chen, D. Y., Kong, L. J., Mehmood, S., Subbaiah, M. V., Rao, D. S., Mouli
Pavuluri, C., Wen, J. C., and Reddy, G. M. (2019). Modification of chitosan
macromolecule and its mechanism for the removal of Pb(II) ions from aqueous
environment. International Journal Biology Macromolecules, 136: 177-188.
30. Guan, Y. T., Wang, S. H.,
Wang, M. H., Hou, Z. X., Hu, X. D., Wang, H., Fan, H. L., and Zhang, N. (2014).
Effect of initial concentration of Cu2+ on the adsorption
performance of hydroxyapatite. Advances Materials Research, 989-994:
312-315.
31. Jiang, X., An, Q., Xiao,
Z., Zhai, S., and Shi, Z. (2019). Versatile core/shell-like alginate @
polyethylenimine composites for efficient removal of multiple heavy metal ions
(Pb2+,Cu2+, CrO42+): Batch and
fixed-bed studies. Materials Research Bulletin, 118(6): 110526.
32. Chen, A., Yang, C., Chen,
C., Chen, C., and Chen, C. (2009). The chemically crosslinked metal-complexed
chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions
in aqueous medium. Journal Hazardous
Materials, 163: 1068-1075.