Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1100 - 1110

 

GRATED COCONUT RESIDUE MODIFIED BY A CATIONIC SURFACTANT FOR REMOVAL OF REACTIVE ORANGE 16 DYE

 

(Sisa Kelapa Parut Diubahsuai oleh Surfaktan Kationik untuk

Menyingkirkan Pewarna Reaktif Oren 16)

 

Nur Zara Syazana Zali1, Shariff Ibrahim2*, Megat Ahmad Kamal Megat Hanafiah3,

and Sabiha Hanim Saleh2

 

1Top Glove Worldwide Sdn. Bhd, 41050 Klang, Selangor, Malaysia

2School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Faculty of Applied Sciences, Universiti Teknologi MARA, 264000 Jengka, Pahang, Malaysia

 

*corresponding author: sha88@uitm.edu.my

 

 

Received: 13 June 2023; Accepted: 17 September 2023; Published:  30 October 2023

 

 

Abstract

Hexadecylpyridinium chloride monohydrate, a cationic surfactant, was employed to chemically modify coconut-grated residue to adsorb reactive orange 16 (RO16). The pH point of zero charge (pHPZC) and surface area were used to characterise the raw coconut grated residue (RGC) and the surfactant-modified grated coconut residue (SMGC). The pHPZC was 5.5, and the Brunauer-Emmett-Teller surface area was 1.86 m2 g-1. The dye solution pH and dose effects on RO16 adsorption were tested in a batch adsorption system. Maximum sorption was seen at an SGMC concentration of 10 g L-1, while optimal adsorption was observed at a low pH. When dye-loaded SGMC was exposed to a basic solution, the desorption percentage increased to almost 70%, whereas low desorption was observed under acidic conditions. Furthermore, the isotherm study discovered that the Freundlich model explained RO16 adsorption of SMGC better than the Langmuir model. The Langmuir isotherm recorded a maximum adsorption capacity of 9.72 mg g-1.

 

Keywords: cationic surfactant, coconut, reactive dye, adsorption

 

Abstract

Heksadekilpiridinium klorida monohidrat, sejenis surfaktan kationik, telah digunakan untuk memodifikasi kimia sisa parut kelapa untuk menjerap reaktif oren 16 (RO16). pH titik cas sifar (pHPZC) dan luas permukaan digunakan untuk pencirian sisa parut kelapa mentah (RGC) dan sisa parut kelapa yang dimodifikasi dengan surfaktan (SMGC). Nilai pHPZC adalah 5.5, dan luas permukaan Brunauer-Emmett-Teller adalah 1.86 m2 g-1. Kesan pH larutan pewarna dan dos terhadap penjerapan RO16 telah diuji dalam sistem penjerapan kelompok. Penjerapan maksimum dilihat pada kepekatan SGMC 10 g L-1, manakala penjerapan optimum diperhatikan pada pH rendah. Apabila SGMC yang memuatkan pewarna terdedah kepada larutan alkali, peratus penjerapan semula meningkat hampir ke 70%, manakala penjerapan rendah diperhatikan dalam keadaan berasid. Selain itu, kajian isoterm menemui bahawa model Freundlich menjelaskan penjerapan RO16 pada SMGC dengan lebih baik daripada model Langmuir. Isoterma Langmuir mencatatkan kapasiti penjerapan maksimum sebanyak 9.72 mg g-1.

 

Kata kunci: surfaktan kationik, kelapa, pewarna reaktif, penjerapan

 

References

1.       Katheresan, V., Kansedo, J., and Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): 4676-4697.

2.       Abdi, J., Vossoughi, M., Mahmoodi, N. M., and Alemzadeh, I. (2017). Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal326: 1145-1158.

3.       Sreelatha, G., Ageetha, V., Parmar, J., and Padmaja, P. (2011). Equilibrium and kinetic studies on reactive dye adsorption using palm shell powder (an agrowaste) and chitosan. Journal of Chemical & Engineering Data, 56(1): 35-42.

4.       Aksu, Z. and Dönmez, G. (2003). A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere, 50: 1075-1083.

5.       Allègre, C., Moulin, P., Maisseu, M., and Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269(1-2): 15-34.

6.       Chollom, M. N., Rathilal, S., Alfa, D., and Pillay, V. L. (2015). The applicability of nanofiltration for the treatment and reuse of textile reactive dye effluent. Water SA41(3): 398-405.

7.       Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., ... and Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1): 70-87.

8.       Bhatnagar, A., Jain, A. K., Gupta, V. K., Jain, S., and Suhas, S. (2003). A comparative assessment of adsorbents prepared from industrial wastes for the removal of cationic dye. Journal of the Indian Chemical Society, 80: 267-270.

9.       Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. Journal of Hazardous Materials, 167(1-3): 1-9.

10.    Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., ...and Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 211: 235-253.

11.    Anastopoulos, I., Bhatnagar, A., Hameed, B. H., Ok, Y. S., and Omirou, M. (2017). A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. Journal of Molecular Liquids, 240, 179-188.

12.    Liu, G., Dai, Z., Liu, X., Dahlgren, R. A., and Xu, J. (2022). Modification of agricultural wastes to improve sorption capacities for pollutant removal from water–a review. Carbon Research, 1(1): 24.

13.    Rasheed, T., Shafi, S., Bilal, M., Hussain, T., Sher, F., and Rizwan, K. (2020). Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. Journal of Molecular Liquids, 318: 113960.

14.    Kosaiyakanon, C., and Kungsanant, S. (2020). Adsorption of reactive dyes from wastewater using cationic surfactant-modified coffee husk biochar. Environment and Natural Resources Journal, 18(1): 21-32.


15.    Ibrahim, S., Shuy, W. Z., Ang, H. M., and Wang, S. (2010). Preparation of bioadsorbents for effective adsorption of a reactive dye in aqueous solution. Asia‐Pacific Journal of Chemical Engineering, 5(4): 563-569.

16.    Karaman, C., Karaman, O., Show, P. L., Karimi-Maleh, H., and Zare, N. (2022). Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere, 290: 133346.

17.    Ofomaja, A. E., & Ho, Y. S. (2007). Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials, 139(2): 356-362.

18.    Rahim, A. R. A., Rabat, N. E., Johari, K., Saman, N., and Mat, H. (2019). Removal of lead (II) ions from aqueous solution using desiccated coconut waste as low-cost adsorbent. CET Journal-Chemical Engineering Transactions, 72.

19.    Saleem, M., Wongsrisujarit, N., and Boonyarattanakalin, S. (2016). Removal of nickel (II) ion by adsorption on coconut copra meal biosorbent. Desalination and Water Treatment, 57(12): 5623-5635.

20.    Khalid, K., and Hanafiah, M. A. K. M. (2014). Kinetic and isotherm adsorption studies of methylene blue on sulfuric acid treated spent grated coconut (Cocos nucifera). Advanced Materials Research, 970: 192-197.

21.    Saidin, N. S., Hanafiah, M. A. K. M., Fatimah, I, Shaharudin, S. F., and Ibrahim, S. (2022). Utilisation of cationic surfactant modified grated coconut residue for the removal of reactive orange 16 dye from aqueous solutions: A fixed-bed column study. Malaysian Journal of Chemistry, 24: 150-157.

22.    Kooh, M. R. R., Dahri, M. K., and Lim, L. B. (2017). Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis. Applied Water Science, 7: 3573-3581.

23.    Santos, S. C., Vilar, V. J., and Boaventura, R. A. (2008). Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, 153(3): 999-1008.

24.    Navya, A., Nandhini, S., Sivamani, S., Vasu, G., Sivarajasekar, N., and Hosseini-Bandegharaei, A. (2020). Preparation and characterization of cassava stem biochar for mixed reactive dyes removal from simulated effluent. Desalination and Water Treatment, 189: 440-451.

25.    Namasivayam, C., and Sureshkumar, M. V. (2008). Removal of chromium (VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresource Technology, 99(7): 2218-2225.

26.    Chen, H., Zhao, J., Wu, J., and Dai, G. (2011). Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. Journal of Hazardous Materials, 192(1): 246-254.

27.    Abdelwahab, N. A., Shukry, N., and El-Kalyoubi, S. F. (2021). Separation of emulsified oil from wastewater using polystyrene and surfactant modified sugarcane bagasse wastes blend. Clean Technologies and Environmental Policy, 23: 235-249.

28.    Khatibi, A. D., Yilmaz, M., Mahvi, A. H., Balarak, D., and Salehi, S. (2022). Evaluation of surfactant-modified bentonite for Acid Red 88 dye adsorption in batch mode: kinetic, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 271: 48-57.

29.    Yagub, M. T., Sen, T. K., Afroze, S., and Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science, 209: 172-184.

30.     Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38: 2221-2295.

31.    Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57: 385-471.

32.    Suhaimi, N., Kooh, M. R. R., Lim, C. M., Chou Chao, C. T., Chou Chau, Y. F., Mahadi, A. H., ... and Thotagamuge, R. (2022). The use of gigantochloa bamboo-derived biochar for the removal of methylene blue from aqueous solution. Adsorption Science & Technology, 202:  1-12.

33.    Li, Q., Yue, Q. Y., Su, Y., Gao, B. Y., and Li, J. (2009). Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite. Journal of Hazardous Materials, 165(1-3): 1170-1178.