Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1100 - 1110
GRATED COCONUT RESIDUE MODIFIED BY A CATIONIC
SURFACTANT FOR REMOVAL OF REACTIVE ORANGE 16 DYE
(Sisa Kelapa Parut Diubahsuai
oleh Surfaktan Kationik untuk
Menyingkirkan Pewarna Reaktif Oren 16)
Nur
Zara Syazana Zali1, Shariff Ibrahim2*, Megat Ahmad Kamal Megat Hanafiah3,
and Sabiha Hanim Saleh2
1Top Glove Worldwide Sdn. Bhd, 41050 Klang, Selangor, Malaysia
2School of Chemistry and Environment,
Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Faculty of Applied Sciences, Universiti Teknologi MARA, 264000
Jengka, Pahang, Malaysia
*corresponding author: sha88@uitm.edu.my
Received: 13 June 2023; Accepted: 17 September
2023; Published: 30 October 2023
Hexadecylpyridinium chloride
monohydrate, a cationic surfactant, was employed to chemically modify
coconut-grated residue to adsorb reactive orange 16 (RO16). The pH point of
zero charge (pHPZC) and surface area were used to characterise the raw coconut grated residue (RGC) and the
surfactant-modified grated coconut residue (SMGC). The pHPZC
was 5.5, and the Brunauer-Emmett-Teller surface area
was 1.86 m2 g-1. The dye solution pH and dose effects on
RO16 adsorption were tested in a batch adsorption system. Maximum sorption was
seen at an SGMC concentration of 10 g L-1, while optimal adsorption
was observed at a low pH. When dye-loaded SGMC was
exposed to a basic solution, the desorption percentage increased to almost 70%,
whereas low desorption was observed under acidic conditions. Furthermore, the
isotherm study discovered that the Freundlich model explained RO16 adsorption
of SMGC better than the Langmuir model. The Langmuir isotherm recorded a
maximum adsorption capacity of 9.72 mg g-1.
Keywords: cationic surfactant, coconut, reactive dye,
adsorption
Abstract
Heksadekilpiridinium klorida monohidrat, sejenis surfaktan kationik, telah digunakan untuk memodifikasi kimia sisa parut kelapa
untuk menjerap reaktif oren 16 (RO16). pH titik cas sifar
(pHPZC) dan luas permukaan digunakan untuk pencirian sisa parut kelapa
mentah (RGC) dan sisa parut kelapa yang dimodifikasi dengan surfaktan (SMGC). Nilai pHPZC adalah
5.5, dan luas permukaan Brunauer-Emmett-Teller adalah 1.86 m2 g-1. Kesan pH larutan pewarna dan dos terhadap penjerapan RO16 telah diuji dalam sistem
penjerapan kelompok. Penjerapan maksimum dilihat pada kepekatan
SGMC 10 g L-1, manakala penjerapan optimum diperhatikan pada pH rendah. Apabila SGMC yang memuatkan pewarna terdedah kepada larutan alkali, peratus penjerapan semula meningkat hampir ke 70%, manakala penjerapan rendah diperhatikan dalam keadaan berasid.
Selain itu, kajian isoterm menemui bahawa model Freundlich menjelaskan penjerapan RO16 pada SMGC dengan lebih baik daripada
model Langmuir. Isoterma Langmuir mencatatkan
kapasiti penjerapan maksimum sebanyak 9.72 mg g-1.
Kata kunci: surfaktan
kationik, kelapa, pewarna reaktif, penjerapan
References
1. Katheresan, V., Kansedo, J., and
Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods:
A review. Journal of Environmental
Chemical Engineering, 6(4): 4676-4697.
2. Abdi, J., Vossoughi, M., Mahmoodi, N. M., and
Alemzadeh, I. (2017). Synthesis of metal-organic framework hybrid
nanocomposites based on GO and CNT with high adsorption capacity for dye
removal. Chemical Engineering Journal, 326: 1145-1158.
3. Sreelatha, G., Ageetha,
V., Parmar, J., and Padmaja, P. (2011). Equilibrium and kinetic studies on
reactive dye adsorption using palm shell powder (an agrowaste)
and chitosan. Journal of Chemical &
Engineering Data, 56(1): 35-42.
4. Aksu,
Z. and Dönmez, G. (2003). A comparative study on the biosorption
characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere, 50: 1075-1083.
5. Allègre, C., Moulin, P., Maisseu, M., and Charbit, F.
(2006). Treatment and
reuse of reactive dyeing effluents. Journal
of Membrane Science, 269(1-2): 15-34.
6.
Chollom, M. N., Rathilal,
S., Alfa, D., and Pillay, V. L. (2015). The applicability of nanofiltration for
the treatment and reuse of textile reactive dye effluent. Water SA, 41(3): 398-405.
7.
Shindhal, T., Rakholiya, P., Varjani, S.,
Pandey, A., Ngo, H. H., Guo, W., ... and Taherzadeh,
M. J. (2021). A critical review on advances in the
practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1): 70-87.
8.
Bhatnagar, A., Jain, A. K., Gupta, V. K., Jain, S., and
Suhas, S. (2003). A comparative assessment of adsorbents prepared from
industrial wastes for the removal of cationic dye. Journal of the Indian Chemical Society, 80: 267-270.
9.
Demirbas, A. (2009). Agricultural based activated carbons for the removal of dyes
from aqueous solutions: a review. Journal
of Hazardous Materials, 167(1-3): 1-9.
10.
Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J.,
...and Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for
the removal of contaminants: A review. Chemosphere,
211: 235-253.
11.
Anastopoulos, I., Bhatnagar, A., Hameed, B. H., Ok,
Y. S., and Omirou, M. (2017). A review on
waste-derived adsorbents from sugar industry for pollutant removal in water and
wastewater. Journal of Molecular Liquids,
240, 179-188.
12.
Liu, G., Dai, Z., Liu, X., Dahlgren, R. A., and Xu,
J. (2022). Modification of agricultural wastes to improve sorption capacities
for pollutant removal from water–a review. Carbon
Research, 1(1): 24.
13.
Rasheed, T., Shafi, S., Bilal, M., Hussain, T.,
Sher, F., and Rizwan, K. (2020). Surfactants-based remediation as an effective
approach for removal of environmental pollutants—A review. Journal of Molecular Liquids, 318: 113960.
14.
Kosaiyakanon, C., and Kungsanant, S. (2020). Adsorption of reactive dyes from
wastewater using cationic surfactant-modified coffee husk biochar. Environment and Natural Resources Journal,
18(1): 21-32.
15.
Ibrahim, S., Shuy, W. Z.,
Ang, H. M., and Wang, S. (2010). Preparation of bioadsorbents
for effective adsorption of a reactive dye in aqueous solution. Asia‐Pacific Journal of Chemical
Engineering, 5(4): 563-569.
16.
Karaman, C., Karaman, O., Show, P. L., Karimi-Maleh,
H., and Zare, N. (2022). Congo red dye removal from aqueous environment by
cationic surfactant modified-biomass derived carbon: equilibrium, kinetic, and
thermodynamic modeling, and forecasting via artificial neural network approach.
Chemosphere, 290: 133346.
17.
Ofomaja, A. E., &
Ho, Y. S. (2007). Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials, 139(2):
356-362.
18.
Rahim, A. R. A., Rabat, N. E., Johari, K., Saman,
N., and Mat, H. (2019). Removal of lead (II) ions from aqueous solution using
desiccated coconut waste as low-cost adsorbent. CET Journal-Chemical Engineering Transactions, 72.
19.
Saleem, M., Wongsrisujarit,
N., and Boonyarattanakalin, S. (2016). Removal of
nickel (II) ion by adsorption on coconut copra meal biosorbent. Desalination and Water Treatment, 57(12):
5623-5635.
20.
Khalid, K., and Hanafiah,
M. A. K. M. (2014). Kinetic and isotherm adsorption studies of methylene blue
on sulfuric acid treated spent grated coconut (Cocos nucifera). Advanced
Materials Research, 970: 192-197.
21.
Saidin, N. S., Hanafiah,
M. A. K. M., Fatimah, I, Shaharudin, S. F., and
Ibrahim, S. (2022). Utilisation of cationic
surfactant modified grated coconut residue for the removal of reactive orange
16 dye from aqueous solutions: A fixed-bed column study. Malaysian Journal of Chemistry, 24: 150-157.
22.
Kooh, M. R. R.,
Dahri, M. K., and Lim, L. B. (2017). Removal of the methyl violet 2B dye from
aqueous solution using sustainable adsorbent Artocarpus odoratissimus
stem axis. Applied Water Science, 7: 3573-3581.
23.
Santos, S. C., Vilar, V. J., and Boaventura, R. A.
(2008). Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, 153(3):
999-1008.
24.
Navya, A., Nandhini, S., Sivamani,
S., Vasu, G., Sivarajasekar, N., and Hosseini-Bandegharaei, A. (2020). Preparation and characterization
of cassava stem biochar for mixed reactive dyes removal from simulated
effluent. Desalination and Water
Treatment, 189: 440-451.
25.
Namasivayam, C., and
Sureshkumar, M. V. (2008). Removal of chromium (VI) from water and wastewater
using surfactant modified coconut coir pith as a biosorbent. Bioresource Technology, 99(7):
2218-2225.
26.
Chen, H., Zhao, J., Wu, J., and Dai, G. (2011).
Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl
orange by surfactant modified silkworm exuviae. Journal of Hazardous Materials, 192(1): 246-254.
27.
Abdelwahab, N. A., Shukry,
N., and El-Kalyoubi, S. F. (2021). Separation of emulsified oil from wastewater
using polystyrene and surfactant modified sugarcane bagasse wastes blend. Clean Technologies and Environmental Policy,
23: 235-249.
28.
Khatibi, A. D., Yilmaz, M., Mahvi,
A. H., Balarak, D., and Salehi, S. (2022). Evaluation
of surfactant-modified bentonite for Acid Red 88 dye adsorption in batch mode:
kinetic, equilibrium, and thermodynamic studies. Desalination and Water Treatment, 271: 48-57.
29.
Yagub, M. T., Sen, T. K., Afroze, S., and Ang, H. M.
(2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science,
209: 172-184.
30.
Langmuir,
I. (1916). The constitution and fundamental properties of solids and liquids.
Part I. Solids. Journal of the American
Chemical Society, 38: 2221-2295.
31.
Freundlich, H. M. F. (1906). Over the adsorption in
solution. The Journal of Physical
Chemistry, 57: 385-471.
32.
Suhaimi, N., Kooh, M. R.
R., Lim, C. M., Chou Chao, C. T., Chou Chau, Y. F., Mahadi, A. H., ... and Thotagamuge, R. (2022). The use of gigantochloa
bamboo-derived biochar for the removal of methylene blue from aqueous solution.
Adsorption Science & Technology,
202: 1-12.
33.
Li, Q., Yue, Q. Y., Su, Y., Gao, B. Y., and Li, J.
(2009). Two-step kinetic study on the adsorption and desorption of reactive
dyes at cationic polymer/bentonite. Journal
of Hazardous Materials, 165(1-3): 1170-1178.