Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1079 - 1088
THE LATENT CYTOTOXICITY
EFFICIENCY OF THE CHEMICAL CONSTITUENTS OF Morus
Rubra LINN. BARK ON CANCER
CELL LINES
(Keberkesanan Kesitotoksian Laten Bahan Kimia daripada Jujukan
Kulit Morus rubra Linn. ke atas Titisan Sel Kanser)
Maria Carmen Tan1*, Jasmine
Ting1, and Glenn Oyong2
1Chemistry Department,
De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
2Molecular Science Unit Laboratory
Center for Natural Sciences and Environmental Research,
De la Salle University, 2401 Taft
Avenue, Manila 1004, Philippines
*Corresponding author:
maria.carmen.tan@dlsu.edu.ph
Received: 18 April 2023; Accepted: 7 September
2023; Published: 30 October 2023
Abstract
Owing to the intricate nature of cancer treatment,
traditional herbal medicines are being regarded as potential anticancer agents,
primarily due to their reported low toxicity in normal cells. With this in
mind, this study's primary objective was to identify the constituents present
in the semi-purified 15% ethyl acetate fraction of Morus rubra bark (M1)
and to investigate its antiproliferative property on immortalized cell lines
(HT- 29, HepG2, BxPC-3, MCF-7, HeLa, and THP-1) by an in vitro cell viability assay with Zeocin and dimethylsulfoxide
(DMSO) as the positive and negative controls. The chemical constituents present
in M1 were identified using gas
chromatography-mass spectrometry (GC-EI-MS). The NIST library v 2.0 was used to
putatively identify the thirteen (13) compounds observed in the GC-EI-MS
chromatogram which were primarily tocopherols (27.58%) and phytosterols (44.06%).
M1 exhibited high cytotoxicity in
HepG2 cell lines (IC50 = 7.09 μg/mL) and was followed by MCF-7
(IC50 = 7.12 μg/mL), HT-29 (IC50 = 7.98 μg/mL),
HeLa (IC50 = 16.63 μg/mL), BxPC-3 (IC50 = 16.89
μg/mL) and THP-1(IC50 = 17.43 μg/mL). M1 did not exhibit cytotoxicity on normal HDFn while Zeocin on
normal cells were exceedingly disruptive. The data generated from this work
suggests that M1 could be an
effective chemotherapeutic agent due to the presence of phytosterols and
tocopherols.
Keywords: Moraceae, Morus
rubra, gas chromatography-electron ionization-mass spectrometry, retention
index, cell viability assays
References
1. Hussain, F., Rana, Z., Shafique, H., Malik, A., and
Hussain, Z. (2017). Phytopharmacological potential of different species of Morus alba and their bioactive
phytochemical: A review. Asian Pacific
Journal of Tropical Biomedicine, 7(10): 950-956.
2. Ercisli, S., and Orhan, E. (2001). Chemical
composition of white (Morus alba),
red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry.103(4):1380-1384.
3. Ercisli, S., Tosun, M., Duralija, B., Voća,
S., Sengul, M., and Turan, M. (2008). Phytochemical content of some black (Morus
nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technology and Biotechnology,
48(1):102-106.
4. Koca, I., Ustun, N. S., Koca, A. F., and Karadeniz,
B. (2008). Chemical composition, antioxidant activity and anthocyanin profiles
of purple mulberry (Morus rubra)
fruits. Journal of Food Agriculture and
Environment, 6(2): 39.
5. Gundogdu, M., Muradoglu, F., Sensoy, R.G., and
Yilmaz, H. (2011). Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra
L. by HPLC. Scientia Horticulturae,
132: 37-41.
6. Xiao, N. S., Guan, G. Y., and Jiang, Y. (2012).
Advances in studies on pharmacological effects of plants in Morus L. Yao Xue Xue Bao, 27(1):
70-74.
7. Yang, S., Wang, B. L., and Li, Y. (2014). Advances
in the pharmacological study of Morus
alba L. Acta Pharmaceutica Sinica,
49(6): 824-831.
8. Sharma, S. B., Gupta, S., Ac, R., and Singh, U. R.,
Rajpoot, R., and Shukla, S. K. (2010). Antidiabetogenic action of Morus rubra L. leaf extract in
streptozotocin‐induced diabetic rats. Journal of Pharmacy and Pharmacology,
62(2): 247-55.
9. Reuter, S., Gupta, S. C., Chaturvedi, M. M., and
Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are
they linked?. Free Radical Biology and
Medicine, 49(11): 1603-1616.
10. Demir, S., Turan, I., Aliyazicioglu, Y., Kilinc,
K., Yaman, S. O., Ayazoglu, Demir, E., Arslan, A., Mentese, A., and Deger, O.
(2017). Morus rubra extract induces
cell cycle arrest and apoptosis in human colon cancer cells through endoplasmic
reticulum stress and telomerase. Nutrition
and Cancer, 69(1):74-83.
11. Demir, S., Turan, I., Aliyazicioglu, Y., Kilinc,
K., Yaman, S. O., Ayazoglu Demir, E., ... and Deger, O. (2017). Morus rubra
extract induces cell cycle arrest and apoptosis in human colon cancer cells
through endoplasmic reticulum stress and telomerase. Nutrition and Cancer,
69(1): 74-83.
12. Abbas, G. M., Abdel, Bar, F. M., Baraka, H. N.,
Gohar, A. A., and Lahloub, M. F. (2014). A new antioxidant stilbene and other
constituents from the stem bark of Morus
nigra L. Natural product research,
28(13): 952-959.
13. Tan, M. C., Carranza, M. S., Linis, V. C., Malabed,
R. S., and Oyong, G. G. (2019). Antioxidant, cytotoxicity, and antiophidian
potential of Alstonia macrophylla
bark. ACS omega, 4(5): 9488-9496.
14. The Pherobase: Database of pheromones and
semiochemicals. c2021. Available from http://www.pherobase.com. Access date
[2021 Sept 13].
15. Islam, M. T., Ali, E. S., Uddin, S .J., Shaw, S.,
Islam, M. A., Ahmed, M. I., Shill, M. C., Karmakar, U. K., Yarla, N. S., Khan,
I. N., and Billah, M. M. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121:
82-94.
16. Saleem, M. (2009). Lupeol, a novel
anti-inflammatory and anti-cancer dietary triterpene. Cancer Letters, 285(2):109-115.
17. Ferdosh, M. S. U., Haque, S., Akanda, M. J.,
Ghafoor, K., Ah, R., Ali, M. E., Kamaruzzaman, B. Y. M. B. F., Shaarani, S.,
and Islam Sarker, M. Z. (2018). Techniques for the extraction of phytosterols
and their benefits in human health: a review. Separation Science and Technology, 53(14): 2206-2223.
18. Shahzad, N., Khan, W., Shadab, M. D., Ali, A.,
Saluja, S. S., Sharma, S., Al-Allaf, F. A., Abduljaleel, Z., Ibrahim, I. A.,
Abdel-Wahab, A. F., and Afify, M. A. (2017). Phytosterols as a natural
anticancer agent: Current status and future perspective. Biomedicine & Pharmacotherapy, 88: 786-794.
19. Sundarraj, S,, Thangam, R,, Sreevani, V,, Kaveri,
K,, Gunasekaran, P,, Achiraman, S., and Kannan, S. (2012). γ-sitosterol
from Acacia nilotica L. induces G2/M
cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549
cells. Journal of Ethnopharmacology,
141(3): 803-809.
20. Roy, M. K., Kobori, M., Takenaka, M., Nakahara, K.,
Shinmoto, H., and Tsushida, T. (2006). Inhibition of colon cancer (HT-29) cell
proliferation by a triterpenoid isolated from Azadirachta indica is
accompanied by cell cycle arrest and up-regulation of p21. Planta medica, 72(10): 917-923.
21. Vázquez, L. H., Palazon, J., and Navarro-Ocaña, A.
(2012). The pentacyclic triterpenes α,β-amyrins: A review of sources
and biological activities. Phytochemicals-A
Global Perspective of Their Role in Nutrition And Health. IntechOpen:
pp: 487-502.
22. Ronco, A. L., and De Stéfani,
E. (2013). Squalene: a multi-task
link in the crossroads of cancer and aging. Functional
Foods in Health and Disease, 3(12): 462-476.
23. Lim, W. M., and Teo, S. S. (2019). Identification
of antioxidant properties of Morus rubra.
International Journal of Complementary
& Alternative Medicine, 12(1): 31-34.
24. Zingg, J. M. (2019). Vitamin E: Regulatory role on
signal transduction. IUBMB Life,
71(4): 456-478.
25. Azzi, A. (2019). Many tocopherols, one vitamin E. Molecular Aspects of Medicine, 61:
92-103.
26.
Singh,
N., Baby, D., Rajguru, J. P., Patil, P. B., Thakkannavar, S. S., and Pujari, V.
B. (2019). Inflammation and cancer. Annals
of African Medicine, 18(3): 121.