Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1079 - 1088

 

THE LATENT CYTOTOXICITY EFFICIENCY OF THE CHEMICAL CONSTITUENTS OF Morus Rubra LINN. BARK ON CANCER

CELL LINES

 

(Keberkesanan Kesitotoksian Laten Bahan Kimia daripada Jujukan Kulit Morus rubra Linn. ke atas Titisan Sel Kanser)

 

Maria Carmen Tan1*, Jasmine Ting1, and Glenn Oyong2

 

1Chemistry Department,

De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines

2Molecular Science Unit Laboratory Center for Natural Sciences and Environmental Research,

De la Salle University, 2401 Taft Avenue, Manila 1004, Philippines

 

*Corresponding author: maria.carmen.tan@dlsu.edu.ph

 

 

Received: 18 April 2023; Accepted: 7 September 2023; Published:  30 October 2023

 

 

Abstract

Owing to the intricate nature of cancer treatment, traditional herbal medicines are being regarded as potential anticancer agents, primarily due to their reported low toxicity in normal cells. With this in mind, this study's primary objective was to identify the constituents present in the semi-purified 15% ethyl acetate fraction of Morus rubra bark (M1) and to investigate its antiproliferative property on immortalized cell lines (HT- 29, HepG2, BxPC-3, MCF-7, HeLa, and THP-1) by an in vitro cell viability assay with Zeocin and dimethylsulfoxide (DMSO) as the positive and negative controls. The chemical constituents present in M1 were identified using gas chromatography-mass spectrometry (GC-EI-MS). The NIST library v 2.0 was used to putatively identify the thirteen (13) compounds observed in the GC-EI-MS chromatogram which were primarily tocopherols (27.58%) and phytosterols (44.06%). M1 exhibited high cytotoxicity in HepG2 cell lines (IC50 = 7.09 μg/mL) and was followed by MCF-7 (IC50 = 7.12 μg/mL), HT-29 (IC50 = 7.98 μg/mL), HeLa (IC50 = 16.63 μg/mL), BxPC-3 (IC50 = 16.89 μg/mL) and THP-1(IC50 = 17.43 μg/mL). M1 did not exhibit cytotoxicity on normal HDFn while Zeocin on normal cells were exceedingly disruptive. The data generated from this work suggests that M1 could be an effective chemotherapeutic agent due to the presence of phytosterols and tocopherols.

 

Keywords: Moraceae, Morus rubra, gas chromatography-electron ionization-mass spectrometry, retention index, cell viability assays

 

References

1.       Hussain, F., Rana, Z., Shafique, H., Malik, A., and Hussain, Z. (2017). Phytopharmacological potential of different species of Morus alba and their bioactive phytochemical: A review. Asian Pacific Journal of Tropical Biomedicine, 7(10): 950-956.

2.       Ercisli, S., and Orhan, E. (2001). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry.103(4):1380-1384.

3.       Ercisli, S., Tosun, M., Duralija, B., Voća, S., Sengul, M., and Turan, M. (2008). Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technology and Biotechnology, 48(1):102-106.

4.       Koca, I., Ustun, N. S., Koca, A. F., and Karadeniz, B. (2008). Chemical composition, antioxidant activity and anthocyanin profiles of purple mulberry (Morus rubra) fruits. Journal of Food Agriculture and Environment, 6(2): 39.

5.       Gundogdu, M., Muradoglu, F., Sensoy, R.G., and Yilmaz, H. (2011). Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Scientia Horticulturae, 132: 37-41.

6.       Xiao, N. S., Guan, G. Y., and Jiang, Y. (2012). Advances in studies on pharmacological effects of plants in Morus L. Yao Xue Xue Bao, 27(1): 70-74.

7.       Yang, S., Wang, B. L., and Li, Y. (2014). Advances in the pharmacological study of Morus alba L. Acta Pharmaceutica Sinica, 49(6): 824-831.

8.       Sharma, S. B., Gupta, S., Ac, R., and Singh, U. R., Rajpoot, R., and Shukla, S. K. (2010). Antidiabetogenic action of Morus rubra L. leaf extract in streptozotocininduced diabetic rats. Journal of Pharmacy and Pharmacology, 62(2): 247-55.

9.       Reuter, S., Gupta, S. C., Chaturvedi, M. M., and Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked?. Free Radical Biology and Medicine, 49(11): 1603-1616.

10.    Demir, S., Turan, I., Aliyazicioglu, Y., Kilinc, K., Yaman, S. O., Ayazoglu, Demir, E., Arslan, A., Mentese, A., and Deger, O. (2017). Morus rubra extract induces cell cycle arrest and apoptosis in human colon cancer cells through endoplasmic reticulum stress and telomerase. Nutrition and Cancer, 69(1):74-83.

11.    Demir, S., Turan, I., Aliyazicioglu, Y., Kilinc, K., Yaman, S. O., Ayazoglu Demir, E., ... and Deger, O. (2017). Morus rubra extract induces cell cycle arrest and apoptosis in human colon cancer cells through endoplasmic reticulum stress and telomerase. Nutrition and Cancer, 69(1): 74-83.

12.    Abbas, G. M., Abdel, Bar, F. M., Baraka, H. N., Gohar, A. A., and Lahloub, M. F. (2014). A new antioxidant stilbene and other constituents from the stem bark of Morus nigra L. Natural product research, 28(13): 952-959.

13.    Tan, M. C., Carranza, M. S., Linis, V. C., Malabed, R. S., and Oyong, G. G. (2019). Antioxidant, cytotoxicity, and antiophidian potential of Alstonia macrophylla bark. ACS omega, 4(5): 9488-9496.

14.    The Pherobase: Database of pheromones and semiochemicals. c2021. Available from http://www.pherobase.com. Access date [2021 Sept 13].

15.    Islam, M. T., Ali, E. S., Uddin, S .J., Shaw, S., Islam, M. A., Ahmed, M. I., Shill, M. C., Karmakar, U. K., Yarla, N. S., Khan, I. N., and Billah, M. M. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121: 82-94.

16.    Saleem, M. (2009). Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Letters, 285(2):109-115.

17.    Ferdosh, M. S. U., Haque, S., Akanda, M. J., Ghafoor, K., Ah, R., Ali, M. E., Kamaruzzaman, B. Y. M. B. F., Shaarani, S., and Islam Sarker, M. Z. (2018). Techniques for the extraction of phytosterols and their benefits in human health: a review. Separation Science and Technology, 53(14): 2206-2223.

18.    Shahzad, N., Khan, W., Shadab, M. D., Ali, A., Saluja, S. S., Sharma, S., Al-Allaf, F. A., Abduljaleel, Z., Ibrahim, I. A., Abdel-Wahab, A. F., and Afify, M. A. (2017). Phytosterols as a natural anticancer agent: Current status and future perspective. Biomedicine & Pharmacotherapy, 88: 786-794.

19.    Sundarraj, S,, Thangam, R,, Sreevani, V,, Kaveri, K,, Gunasekaran, P,, Achiraman, S., and Kannan, S. (2012). γ-sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. Journal of Ethnopharmacology, 141(3): 803-809.

20.    Roy, M. K., Kobori, M., Takenaka, M., Nakahara, K., Shinmoto, H., and Tsushida, T. (2006). Inhibition of colon cancer (HT-29) cell proliferation by a triterpenoid isolated from Azadirachta indica is accompanied by cell cycle arrest and up-regulation of p21. Planta medica, 72(10): 917-923.

21.    Vázquez, L. H., Palazon, J., and Navarro-Ocaña, A. (2012). The pentacyclic triterpenes α,β-amyrins: A review of sources and biological activities. Phytochemicals-A Global Perspective of Their Role in Nutrition And Health. IntechOpen: pp: 487-502.

22.    Ronco, A. L., and De Stéfani, E. (2013). Squalene: a multi-task link in the crossroads of cancer and aging. Functional Foods in Health and Disease, 3(12): 462-476.

23.    Lim, W. M., and Teo, S. S. (2019). Identification of antioxidant properties of Morus rubra. International Journal of Complementary & Alternative Medicine, 12(1): 31-34.

24.    Zingg, J. M. (2019). Vitamin E: Regulatory role on signal transduction. IUBMB Life, 71(4): 456-478.

25.    Azzi, A. (2019). Many tocopherols, one vitamin E. Molecular Aspects of Medicine, 61: 92-103.

26.    Singh, N., Baby, D., Rajguru, J. P., Patil, P. B., Thakkannavar, S. S., and Pujari, V. B. (2019). Inflammation and cancer. Annals of African Medicine, 18(3): 121.