Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1062 - 1078
OPTIMIZATION OF SUNFLOWER OIL HYDROLYSIS USING THE
D-OPTIMAL DESIGN
(Pengoptimuman
Hidrolisis Minyak Bunga Matahari Menggunakan Reka Bentuk D-Optimal)
Muhammad Muizzuddin Khairuddin1, Asiah
Abdullah1,2, Nur Nadia Dzulkifli1,2, and Nurazira Mohd
Nor1,2*
1School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
2Material, Inorganic and Oleochemistry (MaterOleo)
Research Group,
Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus
Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
*Corresponding
author: nurazira@uitm.edu.my
Received: 24 May 2023; Accepted: 7 September
2023; Published: xx October 2023
Abstract
The
hydrolysis process of sunflower oil (SFO) was carried out to produce sunflower
oil fatty acids (SFOFAs). The optimization of reaction parameters was performed
using response surface methodology (RSM) via D-optimal design. The optimization
parameters were varied from 1.0 to 2.5 M molarity of ethanolic KOH, 50 to 70°C
of reaction temperature and 0.5 to 2.5 hours of reaction time. The highest
percentage of SFOFAs yield was 96.68% with a free fatty acid (FFA) of 103.23%,
which was achieved at optimal conditions: 2.3 M ethanolic KOH concentration,
reaction temperature of 50.14°C and 0.97 hours of reaction time. The structure
of SFO and SFOFAs were confirmed using Fourier Transform Infrared Spectroscopy
(FTIR) and Nuclear Magnetic Resonance (NMR). SFOFAs was monitored by the
absence of C=O (ester) at 1746.33 cm-1 and the existence of C=O
(carboxylic acid) at 1710.23 cm-1 with OH stretching at 2400-3400 cm-1
in SFOFAs FTIR spectrum. Under the NMR spectrum of SFOFAs, the absence peak of
ester (C=O) at 172.79 to 173.21 ppm (13C NMR), the emergence peak of
OH at 10.61 ppm (1H NMR) and the peak of carbon for carboxylic acid
(C=O) (13C NMR) at 180.45 ppm showed that the fatty acid was
successfully obtained.
Keywords: D-optimal design, hydrolysis, response surface
methodology, saponification, sunflower oil
Abstrak
Proses hidrolisis minyak bunga matahari (SFO) telah
dijalankan untuk menghasilkan asid lemak minyak bunga matahari (SFOFA).
Pengoptimuman parameter tindak balas dilakukan menggunakan kaedah permukaan
tindak balas (RSM) melalui reka bentuk D-optimal. Parameter pengoptimuman telah
diubah daripada 1.0 hingga 2.5 M kemolaran etanol KOH, 50 hingga 70 °C suhu
tindak balas dan 0.5 hingga 2.5 jam masa tindak balas. Peratusan tertinggi
hasil SFOFAs ialah 96.68% dengan asid lemak bebas (FFA) sebanyak 103.23%, yang
dicapai pada keadaan optimum: kepekatan KOH etanol 2.3 M, suhu tindak balas
50.14 °C dan 0.97 jam masa tindak balas. Struktur SFO dan SFOFAs telah disahkan
menggunakan spektroskopi infra-merah transformasi Fourier (FTIR) dan resonans
magnetik nuklear (NMR). SFOFAs dilihat dengan ketiadaan C=O (ester) pada
1746.33 cm-1 dan kewujudan C=O (asid karboksilik) pada 1710.23 cm-1
dengan regangan OH pada 2400-3400 cm-1 dalam spektrum FTIR SFOFAs.
Di bawah spektrum NMR SFOFAs, kehilangan puncak ester (C=O) pada 172.79 hingga
173.21 ppm (13C NMR), kemunculan puncak OH pada 10.61 ppm (1H
NMR) dan puncak karbon untuk asid karboksilik (C=O) (13C NMR) pada
180.45 ppm menunjukkan bahawa asid lemak berjaya diperolehi.
Kata kunci: reka bentuk D-optimal,
hidrolisis, kaedah
permukaan tindak balas, penyabunan,
minyak bunga matahari
References
1. Fernandes, K. V., Papadaki, A., da Silva,
J. A. C., Fernandez-Lafuente, R., Koutinas, A. A., and Freire, D. M. G. (2018).
Enzymatic
esterification of palm fatty-acid distillate for the production of polyol
esters with biolubricant properties. Industrial Crops and Products, 116(2): 90-96.
2. Sharma,
A., Sharma, P., Sharma, A., Tyagi, R., and Dixit, A. (2017). Hazardous Effects
of petrochemical industries: A review. Recent Advances in Petrochemical
Science, 3(2): 25-27.
3. Katopodis,
T., and Sfetsos, A. (2019). A review of climate change impacts to oil sector
critical services and suggested recommendations for industry uptake. Infrastructures,
4(4): 74.
4. Bahadi,
M., Yusoff, M. F., Salimon, J., and Derawi, D. (2020). Optimization of response
surface methodology by d-optimal design for alkaline hydrolysis of crude palm
kernel oil. Sains Malaysiana, 49(1):
29-41.
5. Hasanuddin,
N. I., Dzulkifli, N. N., Sarijo, S. H., and Ghazali, S. A. I. S. M. (2020).
Physicochemical characterization and controlled release formulation on
intercalated 2-methyl-4-chlorophenoxy acetic acid-graphite oxide (MCPA-GO)
nanocomposite. Indonesian Journal of Chemistry, 20(2): 299-306.
6. Pawar,
R. V., Hulwan, D. B., and Mandale, M. B. (2022). Recent advancements in
synthesis, rheological characterization, and tribological performance of
vegetable oil-based lubricants enhanced with nanoparticles for sustainable
lubrication. Journal of Cleaner Production, 378(9): 134454.
7. Hermansyah,
H., Kubo, M., Shibasaki-kitakawa, N., and Yonemoto, T. (2006). Mathematical
model for stepwise hydrolysis of triolein using Candida rugosa lipase in
biphasic oil – water system. Biochemical Engineering Journal, 31: 125-132.
8. Salimon,
J., Abdullah, B. M., and Salih, N. (2011). Hydrolysis optimization and
characterization study of preparing fatty acids from Jatropha curcas seed oil. Chemistry
Central Journal, 5(67):
1-9.
9. Samidin,
S., Salih, N., and Salimon, J. (2021). Synthesis and characterization of
trimethylolpropane based esters as green biolubricant basestock. Biointerface
Research in Applied Chemistry, 11(5):
13638-13651.
10. Nor, N. M., Salih, N., and Salimon, J. (2022). Optimization and
lubrication properties of Malaysian crude palm oil fatty acids based neopentyl
glycol diester green biolubricant. Renewable Energy, 200(8): 942-956.
11. Wai, P. T., and Jiang, P. (2019). Catalytic developments in the
epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC
Advances, 9(65):
38119-38136.
12. Salimon, J., Abdullah, B. M., and Salih, N. (2012). D-optimal
design optimization of Jatropha curcas
L. seed oil hydrolysis via alkali-catalyzed reactions. Sains Malaysiana, 41(6): 731-738.
13. Nor, N. M., Derawi, D., and Salimon, J. (2019). Esterification and
evaluation of palm oil as biolubricant base stock. Malaysian Journal of
Chemistry, 21(2): 28-35.
14. Ferreira, M. M., de Oliveira, G. F., Basso, R. C., Mendes, A. A.,
and Hirata, D. B. (2019). Optimization of free fatty acid production by
enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum
candidum. Bioprocess and Biosystems Engineering, 42(10): 1647-1659.
15. Anand, A., and Weatherley, L. R. (2018). The performance of
microbial lipase immobilized onto polyolefin supports for hydrolysis of high
oleate sunflower oil. Process Biochemistry, 68: 100-107.
16. Primožič, M., Habulin, M., and Knez, Ž. (2003). Parameter
optimization for the enzymatic hydrolysis of sunflower oil in high-pressure
reactors. Journal of the American Oil Chemists’ Society, 80(7): 643-646.
17. Zakaria, F., Tan, J. K., Mohd Faudzi, S. M., Abdul Rahman, M. B.,
and Ashari, S. E. (2021). Ultrasound-assisted extraction conditions
optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrasonics
Sonochemistry, 81: 105851.
18. Salimon, J., Abdullah, B. M., and Salih, N. (2016). Optimization of
the oxirane ring opening reaction in biolubricant base oil production. Arabian
Journal of Chemistry, 9:
S1053-S1058.
19. Nor, N. M., Derawi, D., and Salimon, J. (2018). The optimization of
RBD palm oil epoxidation process using D-optimal design. Sains Malaysiana, 47(7): 1359-1367.
20. Japir, A. A. W., Salimon, J., Derawi, D., Yahaya, B. H., Bahadi,
M., Al-Shuja’A, S., and Yusop, M. R. (2018). A highly efficient separation and
physicochemical characteristics of saturated fatty acids from crude palm oil
fatty acids mixture using methanol crystallisation method. OCL - Oilseeds
and Fats, Crops and Lipids, 25(2): 203.
21. Borugadda, V. B., and Goud, V. V. (2015). Response surface
methodology for optimization of bio-lubricant basestock synthesis from high
free fatty acids castor oil. Energy Science and Engineering, 3(4): 371-383.
22. Japir, A. A. W., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’A,
S., and Yusop, M. R. (2017). Physicochemical characteristics of high free fatty
acid crude palm oil. OCL - Oilseeds and Fats, Crops and Lipids, 24(5):
506.
23. Shah, S. A. A., Ahammad, N. A., Din, E. M. T. E., Gamaoun, F., Awan,
A. U., & Ali, B. (2022). Bio-convection effects on prandtl hybrid nanofluid
flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials, 12(13): 2174.
24. Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. R.
(2015). Introduction to
spectroscopy (5th edition). Cengage Learning.
25. Chiplunkar, P. P., and Pratap, A. P. (2016). Utilization of
sunflower acid oil for synthesis of alkyd resin. Progress in Organic
Coatings, 934): 61-67.