Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1062 - 1078

 

OPTIMIZATION OF SUNFLOWER OIL HYDROLYSIS USING THE D-OPTIMAL DESIGN

 

(Pengoptimuman Hidrolisis Minyak Bunga Matahari Menggunakan Reka Bentuk D-Optimal)

 

Muhammad Muizzuddin Khairuddin1, Asiah Abdullah1,2, Nur Nadia Dzulkifli1,2, and Nurazira Mohd Nor1,2*

 

1School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Material, Inorganic and Oleochemistry (MaterOleo) Research Group,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: nurazira@uitm.edu.my

 

 

Received: 24 May 2023; Accepted: 7 September 2023; Published:  xx October 2023

 

 

Abstract

The hydrolysis process of sunflower oil (SFO) was carried out to produce sunflower oil fatty acids (SFOFAs). The optimization of reaction parameters was performed using response surface methodology (RSM) via D-optimal design. The optimization parameters were varied from 1.0 to 2.5 M molarity of ethanolic KOH, 50 to 70°C of reaction temperature and 0.5 to 2.5 hours of reaction time. The highest percentage of SFOFAs yield was 96.68% with a free fatty acid (FFA) of 103.23%, which was achieved at optimal conditions: 2.3 M ethanolic KOH concentration, reaction temperature of 50.14°C and 0.97 hours of reaction time. The structure of SFO and SFOFAs were confirmed using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). SFOFAs was monitored by the absence of C=O (ester) at 1746.33 cm-1 and the existence of C=O (carboxylic acid) at 1710.23 cm-1 with OH stretching at 2400-3400 cm-1 in SFOFAs FTIR spectrum. Under the NMR spectrum of SFOFAs, the absence peak of ester (C=O) at 172.79 to 173.21 ppm (13C NMR), the emergence peak of OH at 10.61 ppm (1H NMR) and the peak of carbon for carboxylic acid (C=O) (13C NMR) at 180.45 ppm showed that the fatty acid was successfully obtained.

 

Keywords: D-optimal design, hydrolysis, response surface methodology, saponification, sunflower oil

 

Abstrak

Proses hidrolisis minyak bunga matahari (SFO) telah dijalankan untuk menghasilkan asid lemak minyak bunga matahari (SFOFA). Pengoptimuman parameter tindak balas dilakukan menggunakan kaedah permukaan tindak balas (RSM) melalui reka bentuk D-optimal. Parameter pengoptimuman telah diubah daripada 1.0 hingga 2.5 M kemolaran etanol KOH, 50 hingga 70 °C suhu tindak balas dan 0.5 hingga 2.5 jam masa tindak balas. Peratusan tertinggi hasil SFOFAs ialah 96.68% dengan asid lemak bebas (FFA) sebanyak 103.23%, yang dicapai pada keadaan optimum: kepekatan KOH etanol 2.3 M, suhu tindak balas 50.14 °C dan 0.97 jam masa tindak balas. Struktur SFO dan SFOFAs telah disahkan menggunakan spektroskopi infra-merah transformasi Fourier (FTIR) dan resonans magnetik nuklear (NMR). SFOFAs dilihat dengan ketiadaan C=O (ester) pada 1746.33 cm-1 dan kewujudan C=O (asid karboksilik) pada 1710.23 cm-1 dengan regangan OH pada 2400-3400 cm-1 dalam spektrum FTIR SFOFAs. Di bawah spektrum NMR SFOFAs, kehilangan puncak ester (C=O) pada 172.79 hingga 173.21 ppm (13C NMR), kemunculan puncak OH pada 10.61 ppm (1H NMR) dan puncak karbon untuk asid karboksilik (C=O) (13C NMR) pada 180.45 ppm menunjukkan bahawa asid lemak berjaya diperolehi.

 

Kata kunci: reka bentuk D-optimal, hidrolisis, kaedah permukaan tindak balas, penyabunan, minyak bunga matahari

 

References

1.     Fernandes, K. V., Papadaki, A., da Silva, J. A. C., Fernandez-Lafuente, R., Koutinas, A. A., and Freire, D. M. G. (2018). Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Industrial Crops and Products, 116(2): 90-96.

2.     Sharma, A., Sharma, P., Sharma, A., Tyagi, R., and Dixit, A. (2017). Hazardous Effects of petrochemical industries: A review. Recent Advances in Petrochemical Science, 3(2): 25-27.

3.     Katopodis, T., and Sfetsos, A. (2019). A review of climate change impacts to oil sector critical services and suggested recommendations for industry uptake. Infrastructures, 4(4): 74.

4.     Bahadi, M., Yusoff, M. F., Salimon, J., and Derawi, D. (2020). Optimization of response surface methodology by d-optimal design for alkaline hydrolysis of crude palm kernel oil. Sains Malaysiana, 49(1): 29-41.


5.     Hasanuddin, N. I., Dzulkifli, N. N., Sarijo, S. H., and Ghazali, S. A. I. S. M. (2020). Physicochemical characterization and controlled release formulation on intercalated 2-methyl-4-chlorophenoxy acetic acid-graphite oxide (MCPA-GO) nanocomposite. Indonesian Journal of Chemistry, 20(2): 299-306.

6.     Pawar, R. V., Hulwan, D. B., and Mandale, M. B. (2022). Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. Journal of Cleaner Production, 378(9): 134454.

7.     Hermansyah, H., Kubo, M., Shibasaki-kitakawa, N., and Yonemoto, T. (2006). Mathematical model for stepwise hydrolysis of triolein using Candida rugosa lipase in biphasic oil – water system. Biochemical Engineering Journal, 31: 125-132. 

8.     Salimon, J., Abdullah, B. M., and Salih, N. (2011). Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chemistry Central Journal, 5(67): 1-9.

9.     Samidin, S., Salih, N., and Salimon, J. (2021). Synthesis and characterization of trimethylolpropane based esters as green biolubricant basestock. Biointerface Research in Applied Chemistry, 11(5): 13638-13651.

10.  Nor, N. M., Salih, N., and Salimon, J. (2022). Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant. Renewable Energy, 200(8): 942-956.

11.   Wai, P. T., and Jiang, P. (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Advances, 9(65): 38119-38136.

12.  Salimon, J., Abdullah, B. M., and Salih, N. (2012). D-optimal design optimization of Jatropha curcas L. seed oil hydrolysis via alkali-catalyzed reactions. Sains Malaysiana, 41(6): 731-738.

13.  Nor, N. M., Derawi, D., and Salimon, J. (2019). Esterification and evaluation of palm oil as biolubricant base stock. Malaysian Journal of Chemistry, 21(2): 28-35.

14.  Ferreira, M. M., de Oliveira, G. F., Basso, R. C., Mendes, A. A., and Hirata, D. B. (2019). Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess and Biosystems Engineering, 42(10): 1647-1659.

15.  Anand, A., and Weatherley, L. R. (2018). The performance of microbial lipase immobilized onto polyolefin supports for hydrolysis of high oleate sunflower oil. Process Biochemistry, 68: 100-107.

16.  Primožič, M., Habulin, M., and Knez, Ž. (2003). Parameter optimization for the enzymatic hydrolysis of sunflower oil in high-pressure reactors. Journal of the American Oil Chemists’ Society, 80(7): 643-646.

17.  Zakaria, F., Tan, J. K., Mohd Faudzi, S. M., Abdul Rahman, M. B., and Ashari, S. E. (2021). Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrasonics Sonochemistry, 81: 105851.

18.  Salimon, J., Abdullah, B. M., and Salih, N. (2016). Optimization of the oxirane ring opening reaction in biolubricant base oil production. Arabian Journal of Chemistry, 9: S1053-S1058.

19.  Nor, N. M., Derawi, D., and Salimon, J. (2018). The optimization of RBD palm oil epoxidation process using D-optimal design. Sains Malaysiana, 47(7): 1359-1367.

20.  Japir, A. A. W., Salimon, J., Derawi, D., Yahaya, B. H., Bahadi, M., Al-Shuja’A, S., and Yusop, M. R. (2018). A highly efficient separation and physicochemical characteristics of saturated fatty acids from crude palm oil fatty acids mixture using methanol crystallisation method. OCL - Oilseeds and Fats, Crops and Lipids, 25(2): 203.

21.  Borugadda, V. B., and Goud, V. V. (2015). Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids castor oil. Energy Science and Engineering, 3(4): 371-383.

22.  Japir, A. A. W., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’A, S., and Yusop, M. R. (2017). Physicochemical characteristics of high free fatty acid crude palm oil. OCL - Oilseeds and Fats, Crops and Lipids, 24(5): 506.

23. Shah, S. A. A., Ahammad, N. A., Din, E. M. T. E., Gamaoun, F., Awan, A. U., & Ali, B. (2022). Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials, 12(13): 2174.

24.  Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. R. (2015). Introduction to spectroscopy (5th edition). Cengage Learning.

25.  Chiplunkar, P. P., and Pratap, A. P. (2016). Utilization of sunflower acid oil for synthesis of alkyd resin. Progress in Organic Coatings, 934): 61-67.