Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 1035 - 1061
CURRENT
PROGRESS IN DYE-SENSITISED SOLAR CELLS (DSSCs) FEATURING
DONOR-p-ACCEPTOR SYSTEM OF MIXED MOIETIES:
A REVIEW
(Kemajuan Terkini Sel Suria Peka Cahaya
(DSSCs) Menampilkan Sistem Moiti Campuran Penderma-p-Penerima: Satu Ulasan)
Wan M. Khairul*, and Muhammad Aidil Zailani
Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
*Corresponding author: wmkhairul@umt.edu.my
Received: 27 July 2023; Accepted: 13 September
2023; Published: 30 October 2023
Abstract
In recent years,
the quest to propose an ideal molecular system acting as dye-sensitised solar
cells (DSSCs) bearing single molecular system have attracted great interest.
This is due to their promising potential to convert solar energy into
electrical energy at low cost. The alteration of molecular framework is
essential to propose a rigid rod donor-p-acceptor
system in enhancing its electronic properties to be applied as active layer in
this type of solar cells. In recent years, mixed moieties molecules are
actively being proposed as this combination proven to provide better
performance of efficiency. However, the molecules bearing different moieties
with different atomic features are rather scarce. The extended conjugation and
the push-pull phenomenon within the molecular backbones may provide efficient
electronic properties with alteration from different substituents. The
development of DSSCs featuring conjugated mixed moieties are relatively new and
scarce. Thus, this review article
provides an insight general idea on the fundamental aspects of DSSCs as its
progresses in term of its essentials features and compositions which focusing
on the utilisation of these moieties. It is hope that this contribution may
equip one’s understanding in venturing similar work on this type of molecular
system.
Keywords: DSSCs,
conjugation, donor-p-acceptor,
acetylene, azomethine
Abstrak
Sejak kebelakangan ini, pencarian untuk
mencadangkan sistem molekul unggul yang bertindak sebagai sel suria peka cahaya
(DSSC) menampilkan system molekul tunggal telah menarik perhatian yang tinggi.
Ini adalah disebabkan kerana ia menjanjikan potensi untuk menukar tenaga suria
kepada tenaga elektrik pada kos yang rendah. Pengubahsuaian kerangka molekul
adalah penting bagi mencadangkan sistem penderma-p-penerima rod tegar dalam meningkatkan
sifat elektroniknya untuk diaplikasikan sebagai lapisan aktif dalam sel suria
ini. Sejak beberapa tahun lalu, molekul-molekul tercampur moiti secara aktifnya
banyak dicadangkan kerana penggabungan ini telah membuktikan prestasi
keberkesanan yang baik. Walau bagaimanapun, molekul-molekul yang menampilkan
moiti berbeza dengan tampilan atom berlainan adalah amat jarang. Pemanjangan konjugasi
dan fenomena tolak-tarik di dalam kerangka molekul mampu menyediakan sifat
elektronik berkesan melalui pengubahsuian daripada pelbagai kumpulan pengganti.
Pembangunan DSSC yang menonjolkan campuran moiti terkonjugat ialah agak baharu
dan jarang dilaporkan. Oleh yang demikian, artikel ulasan ini menyediakan hala
tuju idea secara umum terhadap aspek-aspek asas DSSC dan kemajuannya befokuskan
ciri-ciri penting dan komposisinya yang memfokuskan penggunaan moiti-moiti ini.
Diharapkan agar sumbangan ini dapat menlengkapkan pemahaman seseorang dalam
penglibatan kerja yang sama terhadapa sistem molekul jenis ini.
Kata kunci: DSSC, konjugasi, penderma-p-penerima, asetilina, azometina
References
1.
Breeze, P. (2019). Power
Generation Technologies (3rd ed.), Oxford: Elsevier: pp. 293-321.
2.
World Energy Council (2013).
World Energy Resources: Solar. https://www.worldenergy.org/assets/images/imported/2013/10/WER_2013_8_Solar_revised.pdf. [Access online 20 June
2023].
3.
Ritchie, H. and Roser, M.
(2020). Energy Production and Consumption. OurWorldInData.
https://ourworldindata.org/energy-production-consumption. [Access online 20 June
2023].
4.
Kumavat, P.
P., Sonar, P. and Dalal, S. D. (2017). An overview on basics of organic and dye
sensitized solar cells, their mechanism and recent improvements. Renewable and Sustainable Energy Reviews, 78:
1262- 1287.
5.
Rhodes, C. J. (2010). Solar
energy: Principles and possibilities. Science
Progress, 93(1): 37-112.
6.
American Physical Society
(2009). This month in physics history - April 25, 1954: Bell Labs demonstrates
the first practical silicon solar cell. https://www.aps.org/publications/apsnews/200904/physicshistory.cfm. [Access online 4 May 2023].
7.
Akinoglu, B.
G., Tuncel, B. and Badescu, V. (2021). Beyond 3rd generation solar
cells and the full spectrum project. Recent advances and new emerging solar
cells. Sustainable Energy Technologies
and Assessments. 46: 101287-101308.
8.
Simke, W.C.
(2019). Development of photovoltaic technologies for global impact. Renewable Energy. 138: 911-914.
9.
Sharma, S., Jain, K. K. and
Sharma, A. (2015). Solar cells: In research and applications—a review. Materials Sciences and Applications, 6(12):
1145-1155.
10.
Badawy, W. A. (2015). A review
on solar cells from Si-single crystals to porous materials and quantum dots. Journal of Advanced Researchl,
6(2): 123-132.
11.
Tonui, P., Oseni, S. O.,
Sharma, G., Yan, Q. and Mola, G. T. (2018). Perovskites photovoltaic solar
cells: An overview of current status. Renewable
and Sustainable Energy Reviews, 91: 1025-1044.
12.
Sharma, K., Sharma, V. and
Sharma, S. S. (2018). Dye-sensitized solar cells: Fundamentals and current
status. Nanoscale Research Letters, 13(381):1-46.
13.
O’Regan, B. and Grätzel, M. (1991). A low cost, high-efficiency solar cell
based on dye-sensitized colloidal TiO2 films. Nature. 353: 737-740.
14.
Lee, C.-P., Lin, C.-A., Wei,
T.-C., Tsai, M.-L., Meng, Y., Li, C.-T., Ho, K.-C., Wu, C.-I, Lau, S.-P. and
He, J.-H. (2015). Economical low-light photovoltaics by using the Pt-free
dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 18: 109-117.
15.
Juang, S.S.-Y., Lin, P.-Y.,
Lin, Y.-C., Chen, Y.-S., Shen, P.-S., Guo, Y.-L., Wu, Y.-C. and Chen, P.
(2019). Energy harvesting under dim-light condition with dye-sensitized and
perovskite solar cells. Frontiers in
Chemistry, 7(209):1-9.
16.
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Petterson, H. (2010).
Dye-sensitized solar cells. Chemical
Reviews, 110(11): 6595-6663.
17.
Nazeeruddin, M.
K. (2011). Dye-sensitized solar cells: A brief overview. Solar Energy. 85(6): 1172-1178.
18.
Selvaraj, P., Baig, H.,
Mallick, T. K., Siviter, S., Montecucco, A., Li, W.,
Paul, M., Sweet, T., Gao, M., Knox, A. R. and Sundaram, S. (2018). Enhancing
the efficiency of transparent dye-sensitized solar cells using concentrated
light. Solar Energy Materials and Solar
Cells, 175: 29-34.
19.
Kakiage, K., Aoyama, Y., Yano,
T., Oya, K., Fujisawa, J., and Hanaya, M. (2015). Highly-efficient
dye-sensitized solar cells with collaborative sensitization by silyl-anchor and
carboxy-anchor dyes. Chemical
Communications. 51: 15894-15897.
20.
Fraunhofer Institute for Solar
Energy Systems ISE (2021). Photovoltaics
Report. https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html. [Access online 20 April 2023].
21.
Grand View Research (2020).
Dye sensitized solar cell market size, share & trends analysis report by
application (portable charging, BIPV/BAPV, embedded electronics, outdoor
advertising, automotive (AIPV)), and segment forecasts, 2020 – 2027. https://www.grandviewresearch.com/industry-analysis/dye-sensitized-solar-cell-market. [Access online 15 May 2023].
22.
Belessiotis,
G.V., Ibrahim, I., Karagianni, C. S. and Falaras, P.
(2021). DSSCs for indoor environments: from lab scale experiments to real life
applications. SVOA Materials Science
& Technology. 3(1): 1-5.
23.
Salton, J. (2009). World’s
first commercial application of DSSC solar technology is in the bag. New Atlas.
https://newatlas.com/first-commercial-application-dssc-solar-technology/13100/. [Access online 20 June 2023].
24.
Solaronix.com (2022). Solaronix - innovative
solutions for solar professionals. https://solaronix.com. [Access online 20 June 2023].
25.
Gong, J., Liang, J. and
Sumathy, K. (2012). Review on dye sensitized solar cells (DSSCs): Fundamental
concepts and novel materials. Renewable
and Sustainable Energy Reviews, 16(8): 5848-5860.
26.
Gorlov, M.
and Kloo, L. (2008). Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Transactions. 20: 2655-2666.
27.
Yu, Z., Vlachopoulos, N., Gorlov, M. and Kloo, L. (2011). Liquid electrolytes for
dye-sensitized solar cells. Dalton
Transactions. 40: 10289-10303.
28.
Bach, U., Lupo, D., Comte, P.,
Moser, J.E., Weissörtel, F., Salbeck,
J., Spreitzer, H. and Grätzel, M. (1998). Solid-state
dye-sensitized mesoporous TiO2 solar cells with high
photon-to-electron conversion efficiencies. Nature.
395: 583-585.
29.
Boschloo, G.
(2019). Improving the performance of dye-sensitized solar cells. Frontiers in Chemistry. 7(77):1-9.
30.
Sun, K. C., Sahito, I. A., Noh, J. W., Yeo, S. Y., Im,
J. N., Yi, S. C., Kim, Y. S. and Jeong, H. S. (2016). Highly efficient and
durable dye-sensitized solar cells based on a wet-laid PET membrane
electrolyte. Journals of Materials
Chemistry A, 4(2): 458-465.
31.
Karim, N. A., Mehmood, U.,
Zahid, H. F. and Asif, T. (2019). Nanostructured photoanode and counter
electrode materials for efficient dye-sensitized solar cells (DSSCs). Solar Energy. 185: 165-188.
32.
Papageorgiou, N. (2004).
Counter-electrode function in nanocrystalline photoelectrochemical cell
configurations. Coordination Chemistry
Reviews. 248: 1421-1446.
33.
Wu, J., Lan, Z., Lin, J.,
Huang, M., Huang, Y., Fan, L., Luo, G., Lin, Y., Xie, Y. and Wei, Y. (2017).
Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews. 46: 5975-6023.
34.
Fang, X., Ma, T., Guan, G.,
Akiyama, M., Tetsuya, K. and Abe, E. (2004). Effect of the thickness of the Pt
film coated on a counter electrode on the performance of a dye-sensitized solar
cell. Journal of Electroanalytical
Chemistry, 570(2): 257-263.
35.
Thomas, S., Deepak, T. G., Anjusree, G. S., Arun, T. A., Nair, S. V. and Nair, A. S.
(2014). A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A. 2:
4474-4490.
36.
Jeong, H., Pak, Y., Hwang, Y.,
Song, H., Lee, K. H., Ko, H.C. and Jung, G. Y. (2012). Enhancing the charge
transfer of the counter electrode in dye-sensitized solar cells using
periodically aligned platinum nanocups. Small, 8(24): 3757-3761.
37.
Ahmad, M. S., Pandey, A. K.
and Rahim, N. A. (2017). Advancements in the development of TiO2
photoanodes and its fabrication methods for dye sensitized solar cell (DSSC)
applications. A review. Renewable and
Sustainable Energy Reviews. 77: 89-108.
38.
Park, N.-G., van de Lagemaat, J. and Frank, A.J. (2000). Comparison of
dye-sensitized rutile- and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 104(38):
8989-8994.
39.
Kusumawati, Y.,
Hosni, M., Martoprawiro, M. A., Cassaignon,
S. and Pauporté, T. (2014). Charge transport and
recombination in TiO2 brookite-based photoelectrodes. The Journal of Physical Chemistry C, 118(41):
23459-23467.
40.
Mohammadian-Sarcheshmeh, H., Arazi, R. and Mazloum-Ardakani,
M. (2020). Application of bifunctional photoanode materials in DSSCs: A review.
Renewable and Sustainable Energy Reviews.
134: 110249-110250.
41.
Raj, C.C. and Prasanth, R.
(2016). A critical review of recent developments in nanomaterials for
photoelectrodes in dye sensitized solar cells. Journal of Power Sources. 317: 120-132.
42.
He, Y., Hu, J. and Xie, Y.
(2015). High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma
treatment of ZnO nanostructures. Chemical Communications, 51(90): 16229-16232.
43.
Chou, T.P., Zhang, Q., Russo,
B., Fryxell, G.E. and Cao, G. (2007). Titania particle size effect on the
overall performance of dye-sensitized solar cells. The Journal of Physical Chemistry C, 111(17): 6296-6302.
44.
Dhungel, S. K. and Park, C. W.
(2013). Impact of size distribution of nanoparticles in TiO2 paste
for its application in dye sensitized solar cells. The Himalayan Physics, 4(4): 27-31.
45.
Wang, Z. S., Kawauchi, H.,
Kashima, T. and Arakawa, H. (2004). Significant influence of TiO2
photoelectrode morphology on the energy conversion efficiency of N719
dye-sensitized solar cell. Coordination
Chemistry Reviews, 248(13): 1381-1389
46.
Devadiga, D., Selvakumar, M.,
Shetty, P. and Santosh, M. S. (2021). Recent progress in dye sensitized solar
cell materials and photo-supercapacitors: A review. Journal of Power Sources, 493: 229698-229755.
47.
Dahlan, D., Saad, S. K. M., Berli, A. U., Bajili, A. and
Umar, A. A. (2017). Synthesis of two-dimensional nanowall
of Cu-doped TiO2 and its application as photoanode in DSSCs. Physica E, 91: 185-189.
48.
Mahmoud, M. S., Akhtar, M. S.,
Mohamed, I. M. A., Hamdan, R., Dakka, Y. A. and
Barakat, N. A. M. (2018). Demonstrated photons to electron activity of S-doped
TiO2 nanofibers as photoanode in the DSSC. Materials Letters, 225: 77-81.
49.
Prabavathy, N., Balasundaraprabhu, R., Balaji, G., Malikaramage,
A. U., Prasanna, S., Sivakumaran, K., Kumara, G. R. A., Rajapakse, R. M. G. and
Velauthapillai, D. (2019). Investigations on the
photo catalytic activity of calcium doped TiO2 photo electrode for
enhanced efficiency of anthocyanins-based dye sensitized solar cells. Journal of Photochemistry & Photobiology
A: Chemistry, 377: 43-57.
50.
Chen, X., Du, Q., Yang, W.,
Liu, W., Miao. Z. and Yang, P. (2017). A double-layered photoanode made of ZnO/TiO2 composite nanoflowers and TiO2
nanorods for high efficiency dye-sensitized solar cells. Journal of Solid State Electrochemistry, 22: 685-691.
51.
Bakr, Z. H., Wali, Q., Ismail,
J., Elumalai, N. K., Uddin, A. and Jose, R. (2018). Synergistic combination of
electronic and electrical properties of SnO2 and TiO2 in
a single SnO2-TiO2 composite nanofiber for dye-sensitized
solar cells. Electrochimica Acta, 263:
524-532.
52.
Chatterjee, S., Webre, W. A.,
Patra, S., Rout, B., Glass, G. A., D’Souza, F. and Chatterjee, S. (2020).
Achievement of superior efficiency of TiO2 nanorod-nanoparticle
composite photoanode in dye sensitized solar cell. Journal of Alloys and Compounds. 826: 154188-154196.
53.
Zhang, S., Yang, X., Numata,
Y. and Han, L. (2013). Highly efficient dye-sensitized solar cells: Progress
and future challenges. Energy &
Environmental Science, 6: 1443-1464.
54.
Bhattacharya, S. and John, S.
(2019). Beyond 30% conversion efficiency in silicon solar cells: A numerical
demonstration. Scientific Reports. 9:
12482-12497.
55.
Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy,
N., Senthilarasu, S. and Prasanna, S. (2016). Status
and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): A
review. International Journal of Energy
Research, 40(10): 1303-1320.
56.
Galoppini, E.
(2004). Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 248:
1283-1297.
57.
Zhang, L. and Cole, J. M.
(2015). Anchoring groups for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 7(6): 3427-3455.
58.
Cahen, D., Hodes, G., Grätzel, M., Guillemoles, J. F.
and Riess, I. (2000). Nature of photovoltaic action in dye-sensitized solar
cells. The Journal of Physical Chemistry
B, 104(9): 2053-2059.
59.
Ooyama, Y.
and Harima, Y. (2012). Photophysical and electrochemical properties, and
molecular structures of organic dyes for dye-sensitized solar cells. ChemPhysChem, 13(18): 4032-4080.
60.
Asghar, M. I., Miettunen, K.,
Halme, J., Vahermaa, P., Toivola, M., Aitola, K. and Lund, P. (2010) Review of stability for
advanced dye solar cells. Energy &
Environmental Science, 3(4): 418-426.
61.
Nazeeruddin, M.
K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller,
E., Liska, P., Vlachopoulos, N. and Grätzel, M.
(1993). Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)
charge-transfer sensitizers (X = Cl-, Br-, I-,
CN-, and SCN-) on nanocrystalline TiO2
electrodes. Journal of the American
Chemical Society, 115(14): 6382-6390.
62.
Nazeeruddin, M.
K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek,
M., Liska, P., Vlachopoulos, N., Shklover, V.,
Fischer, C.-H. and Grätzel, M. (1999). Acid-base
equilibria of (2,2-bipyridyl-4,4-dicarboxylic acid)ruthenium(II) complexes and
the effect of protonation on charge-transfer sensitization of nanocrystalline
titania. Inorganic Chemistry, 38(26):
6298-6305.
63.
Swetha, T., Reddy, K. R. and
Singh, S. P. (2015). Osmium polypyridyl complexes and their applications to
dye-sensitized solar cells. The Chemical
Records, 15(2): 457-474.
64.
Sauvé, G., Cass, M. E., Coia,
G., Doig, S. J., Lauermann, I., Pomykal, K. E. and Lewis, N. S. (2000). Dye
sensitization of nanocrystalline titanium dioxide with osmium and ruthenium
polypyridyl complexes. The Journal of
Physical Chemistry B, 104(29): 6821-6836.
65.
Alebbi, M., Bignozzi, C. A., Heimer, T. A., Hasselmann, G. M. and
Meyer, G. J. (1998). The limiting role of iodide oxidation in cis-Os(dcb)2(CN)2/TiO2
photoelectrochemical cells. The Journal
of Physical Chemistry B, 102(39): 7577-7581.
66.
Kuciauskas, D.,
Freund, M. S., Gray, H. B., Winkler, J. R. and Lewis, N. S. (2001). Electron
transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized
with ruthenium or osmium polypyridyl complexes. The Journal of Physical Chemistry B, 105(2): 392-403.
67.
Islam, A., Sugihara, H., Hara,
K., Singh, L. P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S. and
Arakawa, H. (2000). New platinum(II) polypyridyl photosensitizers for TiO2
solar cells. New Journal of Chemistry. 24(6):
343-345.
68.
Siu, C.-H., Lee, L.T.L., Yiu, S.-C., Ho, P.-Y., Zhou, P., Ho, C.-L., Chen, T., Liu,
J., Han, K. and Wong, W.-Y. (2015). Synthesis and characterization of
phenothiazine-based platinum(II)–acetylide photosensitizers for efficient
dye-sensitized solar cells. Chemistry: A
European Journal. 22: 3750-3757.
69.
Dai, F.-R., Chen, Y.-C., Lai,
L.-F., Wu, W.-J., Cui, C.-H., Tan, G.-P., Wang, X.-Z., Lin, J.-T., Tian, H. and
Wong, W.-Y. (2012). Unsymmetric platinum(II) bis(aryleneethynylene)
complexes as photosensitizers for dye-sensitized solar cells. Chemistry: An Asian Journal, 7(6):
1426-1434.
70.
Lee, C.-P., Li, C.-T. and Ho,
K.-C. (2017). Use of organic materials in dye-sensitized solar cells. Materials Today, 20(5): 267-283.
71.
Yahya, M., Bouziani, A., Ocak,
C., Seferoğlu, Z. and Sillanpää, M. (2021).
Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC):
Recent developments, new trends, and future perceptions. Dyes and Pigments, 192: 109227-109265.
72.
Ning, Z., Fu, Y. and Tian, H.
(2010). Improvement of dye-sensitized solar cells: what we know and what we
need to know. Energy & Environmental
Science, 3(9): 1170-1181.
73.
Kim, B.-G., Chung, K. and Kim,
J. (2013). Molecular design principle of all-organic dyes for dye-sensitized
solar cells. Chemistry - A European
Journal, 19(17): 5220-523.
74.
Ndaleh, D.
N. D., Nugegoda, D., Watson, J., Cheema, H. and Delcamp, J. H. (2021). Donor
group influence on dye-sensitized solar cell device performances: balancing dye
loading and donor size. Dyes and
Pigments, 187: 109074-109082.\
75.
Mahmood, A., Khan, S.U.-D.,
Rana, U.A. and Tahir, M.H. (2019). Red shifting of absorption maxima of
phenothiazine based dyes by incorporating electron-deficient thiadiazole derivatives as p-spacer. Arabian Journal of Chemistry, 12(7): 1447-1453.
76.
Yu, Q.-Y., Liao, J.-Y., Zhou,
S.-M., Shen, Y., Liu, J.-M., Kuang, D.-B. and Su, C.-Y. (2011). Effect of
hydrocarbon chain length of disubstituted triphenyl-amine-based organic dyes on
dye-sensitized solar cells. The Journal
of Physical Chemistry C, 115(44): 22002-22008.
77.
Khairul, W. M., Wahab, F. F.
A., Che Soh, S. K., Shamsuddin, M. and Daud, A. I., (2020).
Palladium(II)-pivaloyl thiourea complexes: synthesis, characterisation and
their catalytic activity in mild Sonogashira
cross-coupling reaction. Chemical Physics
Letters, 756: 137842-137850.
78.
Zaini, M. F., Khairul, W. M.,
Arshad, S., Abdullah, M., Zainuri, D. A., Rahamathullah, R., Rosli, M. I., Aziz, M. S. A. and Razak,
I. A. (2020). The structure-property studies and mechanism of optical limiting
action of methyl 4-((4-aminophenyl)ethynyl)benzoate crystal under continuous
wave laser excitation. Optical Materials,
107: 110087-110105.
79.
Song, J., Zhang, F., Li, C.,
Liu, W., Li, B., Huang, Y. and Bo, Z. (2009). Phenylethyne-bridged
dyes for dye-sensitized solar cells. The
Journal of Physical Chemistry C, 113(30): 13391-13397.
80.
Jasman,
S. M., Khairul, W.M., Tagg, T., Kubulat, K., Rahamathullah R., Arshad, S., Razak, I. A. and Tahir, M. I.
M. (2015). Synthesis, crystal structure, and electrical studies of naphthoyl-thiourea as potential organic light emitting
diode, Journal of Chemical
Crystallography, 45: 338-349.
81.
Lee, S. T., Khairul, W. M.,
Lee, O. J., Rahamathullah, R., Daud, A. I., Ku Bulat,
K. H., Sapari, S., Razak, F. A. I and Krishnan, G.
(2021). Electronic, reactivity and third order nonlinear optical properties of
thermally-stable push-pull chalcones for optoelectronic interest: experimental
and DFT assessments. Journal of Physics and Chemistry of
Solids, 159: 110276-110290.
82.
Teng, C., Yang, X., Yang, C.,
Tian, H., Li, S., Wang, X., Hagfeldt, A. and Sun, L.
(2010). Influence of triple bonds as π-spacer units in metal-free organic
dyes for dye-sensitized solar cells. The
Journal of Physical Chemistry C, 114(25): 11305-11313.
83.
Lokhande, P.K.M., Sonigara, K.K., Jadhav, M.M., Patil, D.S., Soni, S.S. and
Sekar, N. (2019). Multi-dentate carbazole based schiff
base dyes with chlorovinylene group in spacer for
dye-sensitized solar cells: A combined theoretical and experimental study. Chemistry Select, 4(14): 4044-4056.
84.
Delgado-Montiel, T.,
Soto-Rojo, R., Baldenebro-López, J. and Glossman-Mitnik, D. (2019). Theoretical study of the effect
of different π bridges including an azomethine group in
triphenylamine-based dye for dye-sensitized solar cells. Molecules, 24(21): 3897-3913.
85.
Sarswat, P.
K., Sathyapalan, A., Zhu, Y. and Free, M. L. (2013).
Design, synthesis, and characterization of TPA-thiophene-based amide or imine
functionalized molecule for potential optoelectronic devices. Journal of Theoretical and Applied Physics, 7(4):1-9.
86.
Stalder, R., Mei, J., Graham,
K. R., Estrada, L. A. and Reynolds, J. R. (2014). Isoindigo, a versatile
electron-deficient unit for high-performance organic electronics. Chemistry of Materials, 26(1): 664-678.
87.
Hadsadee, S., Promarak, V., Sudyoadsuk, T., Keawin, T., Kungwan, N. and Jungsuttiwong, S. (2020). Theoretical study on factors influencing the
efficiency of d–π′–a′–π–a isoindigo-based sensitizer for dye-sensitized solar cells. Journal of Electronic Materials, 49: 318-332.
88.
Fernandes, S. S. M., Belsley,
M., Pereira, A. I., Ivanou, D., Mendes, A., Justino,
L. L. G., Burrows, H. D. and Raposo, M. M. M. (2018). Push−pull n,n‑diphenylhydrazones bearing bithiophene or thienothiophene spacers as nonlinear optical second
harmonic generators and as photosensitizers for nanocrystalline TiO2
dye sensitized solar cells. ACS Omega,
3: 12893-12904.
89.
Mustafa, F. M., Abdel-Latif,
M. K., Abdel-Khalek, A. A. and Kühn, O. (2023). Efficient
D-π-π-A-type dye sensitizer based on a benzothiadiazole moiety: A
computational study. Molecules,
28(13): 5185-5197.
90.
Kacimi, R., Raftani, M., Abram, T., Azaid,
A., Ziyat, H., Bejjit, L., Bennani, M. N., and Bouachrine, M. (2021). Theoretical design of D-π-A
system new dyes candidate for DSSC application. Heliyon, 7: e07171-e707181.
91.
Mantur, S.,
Patil, M. K., Nadaf, A. A., Najare, M. S., Yaseen,
M., Inamdar, S. R. and Khazi, I. A. (2020). Synthesis, characterization and
photophysical properties of π-conjugated novel phenothiazine substituted
acrylonitrile D–A derivatives: Orange to red emission. Chemical Data Collections, 30: 100543-100556.
92.
Fernandes, S. S. M., Castro,
M. C. R., Ivanou, D., Mendes, A. and Raposo, M. M. M.
(2022). Push-pull heterocyclic dyes based on pyrrole and thiophene: Synthesis
and evaluation of their optical, redox and photovoltaic properties. Coatings, 12: 34-46.