Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 1035 - 1061

 

 CURRENT PROGRESS IN DYE-SENSITISED SOLAR CELLS (DSSCs) FEATURING DONOR-p-ACCEPTOR SYSTEM OF MIXED MOIETIES:

A REVIEW

 

(Kemajuan Terkini Sel Suria Peka Cahaya (DSSCs) Menampilkan Sistem Moiti Campuran Penderma-p-Penerima: Satu Ulasan)

 

Wan M. Khairul*, and Muhammad Aidil Zailani

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: wmkhairul@umt.edu.my

 

Received: 27 July 2023; Accepted: 13 September 2023; Published:  30 October 2023

 

Abstract

In recent years, the quest to propose an ideal molecular system acting as dye-sensitised solar cells (DSSCs) bearing single molecular system have attracted great interest. This is due to their promising potential to convert solar energy into electrical energy at low cost. The alteration of molecular framework is essential to propose a rigid rod donor-p-acceptor system in enhancing its electronic properties to be applied as active layer in this type of solar cells. In recent years, mixed moieties molecules are actively being proposed as this combination proven to provide better performance of efficiency. However, the molecules bearing different moieties with different atomic features are rather scarce. The extended conjugation and the push-pull phenomenon within the molecular backbones may provide efficient electronic properties with alteration from different substituents. The development of DSSCs featuring conjugated mixed moieties are relatively new and scarce. Thus, this review article provides an insight general idea on the fundamental aspects of DSSCs as its progresses in term of its essentials features and compositions which focusing on the utilisation of these moieties. It is hope that this contribution may equip one’s understanding in venturing similar work on this type of molecular system.

 

Keywords: DSSCs, conjugation, donor-p-acceptor, acetylene, azomethine

 

Abstrak

Sejak kebelakangan ini, pencarian untuk mencadangkan sistem molekul unggul yang bertindak sebagai sel suria peka cahaya (DSSC) menampilkan system molekul tunggal telah menarik perhatian yang tinggi. Ini adalah disebabkan kerana ia menjanjikan potensi untuk menukar tenaga suria kepada tenaga elektrik pada kos yang rendah. Pengubahsuaian kerangka molekul adalah penting bagi mencadangkan sistem penderma-p-penerima rod tegar dalam meningkatkan sifat elektroniknya untuk diaplikasikan sebagai lapisan aktif dalam sel suria ini. Sejak beberapa tahun lalu, molekul-molekul tercampur moiti secara aktifnya banyak dicadangkan kerana penggabungan ini telah membuktikan prestasi keberkesanan yang baik. Walau bagaimanapun, molekul-molekul yang menampilkan moiti berbeza dengan tampilan atom berlainan adalah amat jarang. Pemanjangan konjugasi dan fenomena tolak-tarik di dalam kerangka molekul mampu menyediakan sifat elektronik berkesan melalui pengubahsuian daripada pelbagai kumpulan pengganti. Pembangunan DSSC yang menonjolkan campuran moiti terkonjugat ialah agak baharu dan jarang dilaporkan. Oleh yang demikian, artikel ulasan ini menyediakan hala tuju idea secara umum terhadap aspek-aspek asas DSSC dan kemajuannya befokuskan ciri-ciri penting dan komposisinya yang memfokuskan penggunaan moiti-moiti ini. Diharapkan agar sumbangan ini dapat menlengkapkan pemahaman seseorang dalam penglibatan kerja yang sama terhadapa sistem molekul jenis ini.

 

Kata kunci: DSSC, konjugasi, penderma-p-penerima, asetilina, azometina

 

References

1.       Breeze, P. (2019). Power Generation Technologies (3rd ed.), Oxford: Elsevier: pp. 293-321.

2.       World Energy Council (2013). World Energy Resources: Solar. https://www.worldenergy.org/assets/images/imported/2013/10/WER_2013_8_Solar_revised.pdf.  [Access online 20 June 2023].

3.       Ritchie, H. and Roser, M. (2020). Energy Production and Consumption. OurWorldInData. https://ourworldindata.org/energy-production-consumption.  [Access online 20 June 2023].

4.       Kumavat, P. P., Sonar, P. and Dalal, S. D. (2017). An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renewable and Sustainable Energy Reviews, 78: 1262- 1287.

5.       Rhodes, C. J. (2010). Solar energy: Principles and possibilities. Science Progress, 93(1): 37-112.

6.       American Physical Society (2009). This month in physics history - April 25, 1954: Bell Labs demonstrates the first practical silicon solar cell. https://www.aps.org/publications/apsnews/200904/physicshistory.cfm. [Access online 4 May 2023].

7.       Akinoglu, B. G., Tuncel, B. and Badescu, V. (2021). Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustainable Energy Technologies and Assessments. 46: 101287-101308.

8.       Simke, W.C. (2019). Development of photovoltaic technologies for global impact. Renewable Energy. 138: 911-914.

9.       Sharma, S., Jain, K. K. and Sharma, A. (2015). Solar cells: In research and applications—a review. Materials Sciences and Applications, 6(12): 1145-1155.

10.    Badawy, W. A. (2015). A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of Advanced Researchl, 6(2): 123-132.

11.    Tonui, P., Oseni, S. O., Sharma, G., Yan, Q. and Mola, G. T. (2018). Perovskites photovoltaic solar cells: An overview of current status. Renewable and Sustainable Energy Reviews, 91: 1025-1044.

12.    Sharma, K., Sharma, V. and Sharma, S. S. (2018). Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letters, 13(381):1-46.

13.    O’Regan, B. and Grätzel, M. (1991). A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353: 737-740.

14.    Lee, C.-P., Lin, C.-A., Wei, T.-C., Tsai, M.-L., Meng, Y., Li, C.-T., Ho, K.-C., Wu, C.-I, Lau, S.-P. and He, J.-H. (2015). Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 18: 109-117.

15.    Juang, S.S.-Y., Lin, P.-Y., Lin, Y.-C., Chen, Y.-S., Shen, P.-S., Guo, Y.-L., Wu, Y.-C. and Chen, P. (2019). Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells. Frontiers in Chemistry, 7(209):1-9.

16.    Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Petterson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11): 6595-6663.

17.    Nazeeruddin, M. K. (2011). Dye-sensitized solar cells: A brief overview. Solar Energy. 85(6): 1172-1178.

18.    Selvaraj, P., Baig, H., Mallick, T. K., Siviter, S., Montecucco, A., Li, W., Paul, M., Sweet, T., Gao, M., Knox, A. R. and Sundaram, S. (2018). Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Solar Energy Materials and Solar Cells, 175: 29-34.

19.    Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., and Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications. 51: 15894-15897.

20.    Fraunhofer Institute for Solar Energy Systems ISE (2021). Photovoltaics Report. https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html. [Access online 20 April 2023].

21.    Grand View Research (2020). Dye sensitized solar cell market size, share & trends analysis report by application (portable charging, BIPV/BAPV, embedded electronics, outdoor advertising, automotive (AIPV)), and segment forecasts, 2020 – 2027. https://www.grandviewresearch.com/industry-analysis/dye-sensitized-solar-cell-market. [Access online 15 May 2023].

22.    Belessiotis, G.V., Ibrahim, I., Karagianni, C. S. and Falaras, P. (2021). DSSCs for indoor environments: from lab scale experiments to real life applications. SVOA Materials Science & Technology. 3(1): 1-5.

23.    Salton, J. (2009). World’s first commercial application of DSSC solar technology is in the bag. New Atlas. https://newatlas.com/first-commercial-application-dssc-solar-technology/13100/. [Access online 20 June 2023].

24.    Solaronix.com (2022). Solaronix - innovative solutions for solar professionals. https://solaronix.com. [Access online 20 June 2023].

25.    Gong, J., Liang, J. and Sumathy, K. (2012). Review on dye sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8): 5848-5860.

26.    Gorlov, M. and Kloo, L. (2008). Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Transactions. 20: 2655-2666.

27.    Yu, Z., Vlachopoulos, N., Gorlov, M. and Kloo, L. (2011). Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions. 40: 10289-10303.

28.    Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissörtel, F., Salbeck, J., Spreitzer, H. and Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 395: 583-585.

29.    Boschloo, G. (2019). Improving the performance of dye-sensitized solar cells. Frontiers in Chemistry. 7(77):1-9.

30.    Sun, K. C., Sahito, I. A., Noh, J. W., Yeo, S. Y., Im, J. N., Yi, S. C., Kim, Y. S. and Jeong, H. S. (2016). Highly efficient and durable dye-sensitized solar cells based on a wet-laid PET membrane electrolyte. Journals of Materials Chemistry A, 4(2): 458-465.

31.    Karim, N. A., Mehmood, U., Zahid, H. F. and Asif, T. (2019). Nanostructured photoanode and counter electrode materials for efficient dye-sensitized solar cells (DSSCs). Solar Energy. 185: 165-188.

32.    Papageorgiou, N. (2004). Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews. 248: 1421-1446.

33.    Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Luo, G., Lin, Y., Xie, Y. and Wei, Y. (2017). Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews. 46: 5975-6023.

34.    Fang, X., Ma, T., Guan, G., Akiyama, M., Tetsuya, K. and Abe, E. (2004). Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 570(2): 257-263.

35.    Thomas, S., Deepak, T. G., Anjusree, G. S., Arun, T. A., Nair, S. V. and Nair, A. S. (2014). A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A. 2: 4474-4490.

36.    Jeong, H., Pak, Y., Hwang, Y., Song, H., Lee, K. H., Ko, H.C. and Jung, G. Y. (2012). Enhancing the charge transfer of the counter electrode in dye-sensitized solar cells using periodically aligned platinum nanocups. Small, 8(24): 3757-3761.

37.    Ahmad, M. S., Pandey, A. K. and Rahim, N. A. (2017). Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews. 77: 89-108.

38.    Park, N.-G., van de Lagemaat, J. and Frank, A.J. (2000). Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 104(38): 8989-8994.

39.    Kusumawati, Y., Hosni, M., Martoprawiro, M. A., Cassaignon, S. and Pauporté, T. (2014). Charge transport and recombination in TiO2 brookite-based photoelectrodes. The Journal of Physical Chemistry C, 118(41): 23459-23467.

40.    Mohammadian-Sarcheshmeh, H., Arazi, R. and Mazloum-Ardakani, M. (2020). Application of bifunctional photoanode materials in DSSCs: A review. Renewable and Sustainable Energy Reviews. 134: 110249-110250.

41.    Raj, C.C. and Prasanth, R. (2016). A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. Journal of Power Sources. 317: 120-132.

42.    He, Y., Hu, J. and Xie, Y. (2015). High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures. Chemical Communications, 51(90): 16229-16232.

43.    Chou, T.P., Zhang, Q., Russo, B., Fryxell, G.E. and Cao, G. (2007). Titania particle size effect on the overall performance of dye-sensitized solar cells. The Journal of Physical Chemistry C, 111(17): 6296-6302.

44.    Dhungel, S. K. and Park, C. W. (2013). Impact of size distribution of nanoparticles in TiO2 paste for its application in dye sensitized solar cells. The Himalayan Physics, 4(4): 27-31.

45.    Wang, Z. S., Kawauchi, H., Kashima, T. and Arakawa, H. (2004). Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 248(13): 1381-1389

46.    Devadiga, D., Selvakumar, M., Shetty, P. and Santosh, M. S. (2021). Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review. Journal of Power Sources, 493: 229698-229755.

47.    Dahlan, D., Saad, S. K. M., Berli, A. U., Bajili, A. and Umar, A. A. (2017). Synthesis of two-dimensional nanowall of Cu-doped TiO2 and its application as photoanode in DSSCs. Physica E, 91: 185-189.

48.    Mahmoud, M. S., Akhtar, M. S., Mohamed, I. M. A., Hamdan, R., Dakka, Y. A. and Barakat, N. A. M. (2018). Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Materials Letters, 225: 77-81.

49.    Prabavathy, N., Balasundaraprabhu, R., Balaji, G., Malikaramage, A. U., Prasanna, S., Sivakumaran, K., Kumara, G. R. A., Rajapakse, R. M. G. and Velauthapillai, D. (2019). Investigations on the photo catalytic activity of calcium doped TiO2 photo electrode for enhanced efficiency of anthocyanins-based dye sensitized solar cells. Journal of Photochemistry & Photobiology A: Chemistry, 377: 43-57.

50.    Chen, X., Du, Q., Yang, W., Liu, W., Miao. Z. and Yang, P. (2017). A double-layered photoanode made of ZnO/TiO2 composite nanoflowers and TiO2 nanorods for high efficiency dye-sensitized solar cells. Journal of Solid State Electrochemistry, 22: 685-691.

51.    Bakr, Z. H., Wali, Q., Ismail, J., Elumalai, N. K., Uddin, A. and Jose, R. (2018). Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanofiber for dye-sensitized solar cells. Electrochimica Acta, 263: 524-532.

52.    Chatterjee, S., Webre, W. A., Patra, S., Rout, B., Glass, G. A., D’Souza, F. and Chatterjee, S. (2020). Achievement of superior efficiency of TiO2 nanorod-nanoparticle composite photoanode in dye sensitized solar cell. Journal of Alloys and Compounds. 826: 154188-154196.

53.    Zhang, S., Yang, X., Numata, Y. and Han, L. (2013). Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy & Environmental Science, 6: 1443-1464.

54.    Bhattacharya, S. and John, S. (2019). Beyond 30% conversion efficiency in silicon solar cells: A numerical demonstration. Scientific Reports. 9: 12482-12497.

55.    Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S. and Prasanna, S. (2016). Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): A review. International Journal of Energy Research, 40(10): 1303-1320.

56.    Galoppini, E. (2004). Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 248: 1283-1297.

57.    Zhang, L. and Cole, J. M. (2015). Anchoring groups for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 7(6): 3427-3455.

58.    Cahen, D., Hodes, G., Grätzel, M., Guillemoles, J. F. and Riess, I. (2000). Nature of photovoltaic action in dye-sensitized solar cells. The Journal of Physical Chemistry B, 104(9): 2053-2059.

59.    Ooyama, Y. and Harima, Y. (2012). Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. ChemPhysChem, 13(18): 4032-4080.

60.    Asghar, M. I., Miettunen, K., Halme, J., Vahermaa, P., Toivola, M., Aitola, K. and Lund, P. (2010) Review of stability for advanced dye solar cells. Energy & Environmental Science, 3(4): 418-426.

61.    Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N. and Grätzel, M. (1993). Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 115(14): 6382-6390.

62.    Nazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C.-H. and Grätzel, M. (1999). Acid-base equilibria of (2,2-bipyridyl-4,4-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 38(26): 6298-6305.

63.    Swetha, T., Reddy, K. R. and Singh, S. P. (2015). Osmium polypyridyl complexes and their applications to dye-sensitized solar cells. The Chemical Records, 15(2): 457-474.

64.    Sauvé, G., Cass, M. E., Coia, G., Doig, S. J., Lauermann, I., Pomykal, K. E. and Lewis, N. S. (2000). Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. The Journal of Physical Chemistry B, 104(29): 6821-6836.

65.    Alebbi, M., Bignozzi, C. A., Heimer, T. A., Hasselmann, G. M. and Meyer, G. J. (1998). The limiting role of iodide oxidation in cis-Os(dcb)2(CN)2/TiO2 photoelectrochemical cells. The Journal of Physical Chemistry B, 102(39): 7577-7581.

66.    Kuciauskas, D., Freund, M. S., Gray, H. B., Winkler, J. R. and Lewis, N. S. (2001). Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. The Journal of Physical Chemistry B, 105(2): 392-403.

67.    Islam, A., Sugihara, H., Hara, K., Singh, L. P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S. and Arakawa, H. (2000). New platinum(II) polypyridyl photosensitizers for TiO2 solar cells. New Journal of Chemistry. 24(6): 343-345.

68.    Siu, C.-H., Lee, L.T.L., Yiu, S.-C., Ho, P.-Y., Zhou, P., Ho, C.-L., Chen, T., Liu, J., Han, K. and Wong, W.-Y. (2015). Synthesis and characterization of phenothiazine-based platinum(II)–acetylide photosensitizers for efficient dye-sensitized solar cells. Chemistry: A European Journal. 22: 3750-3757.

69.    Dai, F.-R., Chen, Y.-C., Lai, L.-F., Wu, W.-J., Cui, C.-H., Tan, G.-P., Wang, X.-Z., Lin, J.-T., Tian, H. and Wong, W.-Y. (2012). Unsymmetric platinum(II) bis(aryleneethynylene) complexes as photosensitizers for dye-sensitized solar cells. Chemistry: An Asian Journal, 7(6): 1426-1434.

70.    Lee, C.-P., Li, C.-T. and Ho, K.-C. (2017). Use of organic materials in dye-sensitized solar cells. Materials Today, 20(5): 267-283.

71.    Yahya, M., Bouziani, A., Ocak, C., Seferoğlu, Z. and Sillanpää, M. (2021). Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes and Pigments, 192: 109227-109265.

72.    Ning, Z., Fu, Y. and Tian, H. (2010). Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy & Environmental Science, 3(9): 1170-1181.

73.    Kim, B.-G., Chung, K. and Kim, J. (2013). Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chemistry - A European Journal, 19(17): 5220-523.

74.    Ndaleh, D. N. D., Nugegoda, D., Watson, J., Cheema, H. and Delcamp, J. H. (2021). Donor group influence on dye-sensitized solar cell device performances: balancing dye loading and donor size. Dyes and Pigments, 187: 109074-109082.\

75.    Mahmood, A., Khan, S.U.-D., Rana, U.A. and Tahir, M.H. (2019). Red shifting of absorption maxima of phenothiazine based dyes by incorporating electron-deficient thiadiazole derivatives as p-spacer. Arabian Journal of Chemistry, 12(7): 1447-1453.

76.    Yu, Q.-Y., Liao, J.-Y., Zhou, S.-M., Shen, Y., Liu, J.-M., Kuang, D.-B. and Su, C.-Y. (2011). Effect of hydrocarbon chain length of disubstituted triphenyl-amine-based organic dyes on dye-sensitized solar cells. The Journal of Physical Chemistry C, 115(44): 22002-22008.

77.    Khairul, W. M., Wahab, F. F. A., Che Soh, S. K., Shamsuddin, M. and Daud, A. I., (2020). Palladium(II)-pivaloyl thiourea complexes: synthesis, characterisation and their catalytic activity in mild Sonogashira cross-coupling reaction. Chemical Physics Letters, 756: 137842-137850.

78.    Zaini, M. F., Khairul, W. M., Arshad, S., Abdullah, M., Zainuri, D. A., Rahamathullah, R., Rosli, M. I., Aziz, M. S. A. and Razak, I. A. (2020). The structure-property studies and mechanism of optical limiting action of methyl 4-((4-aminophenyl)ethynyl)benzoate crystal under continuous wave laser excitation. Optical Materials, 107: 110087-110105.

79.    Song, J., Zhang, F., Li, C., Liu, W., Li, B., Huang, Y. and Bo, Z. (2009). Phenylethyne-bridged dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 113(30): 13391-13397.

80.    Jasman, S. M., Khairul, W.M., Tagg, T., Kubulat, K., Rahamathullah R., Arshad, S., Razak, I. A. and Tahir, M. I. M. (2015). Synthesis, crystal structure, and electrical studies of naphthoyl-thiourea as potential organic light emitting diode, Journal of Chemical Crystallography, 45: 338-349.

81.    Lee, S. T., Khairul, W. M., Lee, O. J., Rahamathullah, R., Daud, A. I., Ku Bulat, K. H., Sapari, S., Razak, F. A. I and Krishnan, G. (2021). Electronic, reactivity and third order nonlinear optical properties of thermally-stable push-pull chalcones for optoelectronic interest: experimental and DFT assessments. Journal of Physics and Chemistry of Solids, 159: 110276-110290.

82.    Teng, C., Yang, X., Yang, C., Tian, H., Li, S., Wang, X., Hagfeldt, A. and Sun, L. (2010). Influence of triple bonds as π-spacer units in metal-free organic dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 114(25): 11305-11313.

83.    Lokhande, P.K.M., Sonigara, K.K., Jadhav, M.M., Patil, D.S., Soni, S.S. and Sekar, N. (2019). Multi-dentate carbazole based schiff base dyes with chlorovinylene group in spacer for dye-sensitized solar cells: A combined theoretical and experimental study. Chemistry Select, 4(14): 4044-4056.

84.    Delgado-Montiel, T., Soto-Rojo, R., Baldenebro-López, J. and Glossman-Mitnik, D. (2019). Theoretical study of the effect of different π bridges including an azomethine group in triphenylamine-based dye for dye-sensitized solar cells. Molecules, 24(21): 3897-3913.

85.    Sarswat, P. K., Sathyapalan, A., Zhu, Y. and Free, M. L. (2013). Design, synthesis, and characterization of TPA-thiophene-based amide or imine functionalized molecule for potential optoelectronic devices. Journal of Theoretical and Applied Physics, 7(4):1-9.

86.    Stalder, R., Mei, J., Graham, K. R., Estrada, L. A. and Reynolds, J. R. (2014). Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chemistry of Materials, 26(1): 664-678.

87.    Hadsadee, S., Promarak, V., Sudyoadsuk, T., Keawin, T., Kungwan, N. and Jungsuttiwong, S. (2020). Theoretical study on factors influencing the efficiency of dπ′–a′–πa isoindigo-based sensitizer for dye-sensitized solar cells. Journal of Electronic Materials, 49: 318-332.

88.    Fernandes, S. S. M., Belsley, M., Pereira, A. I., Ivanou, D., Mendes, A., Justino, L. L. G., Burrows, H. D. and Raposo, M. M. M. (2018). Push−pull n,n‑diphenylhydrazones bearing bithiophene or thienothiophene spacers as nonlinear optical second harmonic generators and as photosensitizers for nanocrystalline TiO2 dye sensitized solar cells. ACS Omega, 3: 12893-12904.

89.    Mustafa, F. M., Abdel-Latif, M. K., Abdel-Khalek, A. A. and Kühn, O. (2023). Efficient D-π-π-A-type dye sensitizer based on a benzothiadiazole moiety: A computational study. Molecules, 28(13): 5185-5197.

90.    Kacimi, R., Raftani, M., Abram, T., Azaid, A., Ziyat, H., Bejjit, L., Bennani, M. N., and Bouachrine, M. (2021). Theoretical design of D-π-A system new dyes candidate for DSSC application. Heliyon, 7: e07171-e707181.

91.    Mantur, S., Patil, M. K., Nadaf, A. A., Najare, M. S., Yaseen, M., Inamdar, S. R. and Khazi, I. A. (2020). Synthesis, characterization and photophysical properties of π-conjugated novel phenothiazine substituted acrylonitrile D–A derivatives: Orange to red emission. Chemical Data Collections, 30: 100543-100556.

92.    Fernandes, S. S. M., Castro, M. C. R., Ivanou, D., Mendes, A. and Raposo, M. M. M. (2022). Push-pull heterocyclic dyes based on pyrrole and thiophene: Synthesis and evaluation of their optical, redox and photovoltaic properties. Coatings, 12: 34-46.