Malaysian Journal of Analytical Sciences, Vol 27 No 5 (2023): 922 - 934

 

METABOLITE PROFILING AND BIOLOGICAL ACTIVITIES OF EXTRACTS FROM ENDOPHYTIC FUNGI ISOLATED FROM MANGROVE PLANT Avicennia lanata

 

(Profil Metabolit dan Aktiviti Biologi Ekstrak daripada Kulat Endofitik Dipencilkan daripada Tumbuhan Bakau Avicennia lanata)

 

Nurul Izzati Rosdi1 and Noor Wini Mazlan1,2*

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.

2Institute of Marine Biotechnology,

Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.

 

*Corresponding author: noorwini@umt.edu.my

 

 

Received: 4 April 2023; Accepted: 17 August 2023; Published:  30 October 2023

 

 

Abstract

Endophytic fungi are important in drug discovery for their unique secondary metabolites, besides the extract obtained are sustainable, reproducible and culturable under laboratory conditions as compared to their host plants. However, the use of single culture leads to the production of known compounds with similar bioactivities. Therefore, single culture and co-culture between Fusarium sp. and Curvularia sp. which have been isolated from mangrove plant Avicennia lanata were cultured on malt agar and rice media on 7, 15 and 30 days to trigger the production of metabolites that may absent in their single cultures. In this study, dereplication study was applied to speed up the identification of secondary metabolites in the extracts. Then, the data was processed utilising MZmine 2.40.1 and SIMCA P+ 15.0 software coupled with macro analysis and Dictionary of Natural Product (DNP) database for dereplication studies. The antioxidant activity of the extracts were evaluated by using DPPH scavenging assay. Amongst the extract obtained from malt agar medium, the extract of co-culture on day 7 (MAFC7) showed the most potent activity with IC50 value of 0.6 mg/mL. For the rice medium, the extract from single culture Curvularia sp. on day 15 showed the most significant activity with IC50 value of 1.1 mg/mL. While, the agar disk-diffusion method was used to evaluate the antibacterial activity of the extracts and the results indicated that the extracts exhibited activity against Gram-positive bacteria, specifically Micrococcus sp., Staphylococcus aureus, and Bacillus cereus. The antibacterial activity of the co-culture extracts were the most active with minimum inhibition concentration (MIC) values of 0.256 mg/mL 5.0 mg/mL. In conclusion, the extracts obtained from co-culture showed potent antioxidant and antibacterial activities that could be further scaled-up and investigated for future pharmacological properties.

 

Keywords: Fusarium sp., Curvularia sp., co-culture, antioxidant, antibacterial

 

Abstrak

Kulat endofit adalah penting dalam penemuan ubat untuk metabolit sekunder yang unik, selain itu ekstrak yang diperolehi adalah mampan, boleh dihasilkan semula dan dikultur di bawah keadaan makmal berbanding dengan tumbuhan perumah. Walau bagaimanapun, penggunaan kultur tunggal kebiasaannya membawa kepada penghasilan sebatian yang diketahui dengan bioaktiviti yang sama. Oleh itu, kultur tunggal dan kultur bersama antara Fusarium sp. dan Curvularia sp. yang telah dipencilkan daripada tumbuhan bakau Avicennia lanata telah dikulturkan pada agar malt dan media beras pada hari ke-7, 15 dan 30 hari untuk mencetuskan penghasilan metabolit yang berbeza yang mungkin tidak hadir dalam kultur tunggal mereka. Dalam kajian ini, kajian dereplikasi telah digunakan untuk mempercepatkan pengenalpastian metabolit sekunder dalam ekstrak. Kemudian, data telah dianalisis menggunakan perisian MZmine 2.40.1 dan SIMCA P+ 15.0 beserta analisis makro dan pengkalan data Kamus Bahan Semulajadi (DNP) bagi kajian dereplikasi. Aktiviti antioksidan bagi ekstrak telah dinilai menggunakan asai skaveng DPPH. Antara ekstrak yang diperolehi daripada medium agar malt, ekstrak kultur bersama pada hari ke-7 (MAFC7) menunjukkan aktiviti yang berpotensi dengan nilai IC50 sebanyak 0.6 mg/mL. Bagi medium beras, ekstrak daripada kultur tunggal Curvularia sp. pada hari ke-15 menunjukkan aktiviti yang paling ketara dengan nilai IC50 sebanyak 1.1 mg/mL. Sementara itu, kaedah penyerapan cakera agar telah digunakan untuk menilai aktiviti antibakteria ekstrak dan keputusan menunjukkan bahawa ekstrak menunjukkan aktiviti melawan bakteria Gram-positif termasuk Micrococcus sp., Staphylococcus aureus dan Bacillus cereus. Aktiviti antibakteria bagi ekstrak kultur bersama adalah yang paling aktif dengan nilai kepekatan rencat minima (MIC) pada 0.256 mg/mL 5.0 mg/mL. Kesimpulannya, ekstrak yang diperolehi daripada kultur bersama menunjukkan aktiviti antioksidan dan antibakteria yang bagus yang boleh dilanjutkan untuk skala besar dan disiasat untuk sifat farmakologi masa hadapan.

 

Kata kunci: Fusarium sp., Curvularia sp., kultur bersama, antioksidan, antibakteria

 


References

1.       Cruz, J. S., da Silva, C. A., and Hamerski, L. (2020). Natural products from endophytic fungi associated with Rubiaceae species. Journal of Fungi, 6(3): 128.

2.       Farhat, H., Urooj, F., Tariq, A., Sultana, V., Ansari, M., Ahmad, V. U., and Ehteshamul-Haque, S. (2019). Evaluation of antimicrobial potential of endophytic fungi associated with healthy plants and characterization of compounds produced by endophytic Cephalosporium and Fusarium solani. Biocatalysis and Agricultural Biotechnology, 18: 101043.

3.       Basheer, M., Mekawey, A., Kafrawy, S., and Abouzeid, M. (2018). Antimicrobial activities of endophytic fungi of red sea aquatic plant Avicennia marina. Egyptian Journal of Microbiology, 53(1): 231-240..

4.       Zheng, R., Li, S., Zhang, X., and Zhao, C. (2021). Biological activities of some new secondary metabolites isolated from endophytic fungi: A review study. International Journal of Molecular Sciences, 22: 959.

5.       Tadpetch, K., Chukong, C., Jeanmard, L., Thiraporn, A., Rukachaisirikul, V., Phongpaichit, S., and Sakayaroj, J. (2015). Cytotoxic naphthoquinone and a new succinate ester from the soil fungus Fusarium solani PSU-RSPG227. Phytochemistry Letters, 11: 106-110.

6.       Li, M., Yu, R., Bai, X., Wang, H., and Zhang, H. (2020). Fusarium : A treasure trove of bioactive secondary metabolites. Natural Product Reports, 37: 905-923.

7.       Khiralla, A., Spina, R., Saliba, S., and Laurain-Mattar, D. (2019). Diversity of natural products of the genera Curvularia and Bipolaris. Fungal Biology Reviews, 33(2): 101-122.

8.       Srivastava, A. K., Singh Kapkoti, D., Gupta, M., Rout, P. K., Singh Bhakuni, R., and Samad, A. (2021). Enhanced production of phytotoxic polyketides isolated from Curvularia lunata by applying chemical stresses. Industrial Crops and Products, 160: 113156.

9.       Kaaniche, F., Hamed, A., Abdel-Razek, A., Wibberg, D., Abdissa, N., Zendah el Euch, I., and Sewald, N. (2019). Bioactive secondary metabolites from new endophytic fungus Curvularia sp. isolated from Rauwolfia macrophylla. PLoS ONE, 14(6): e0217627.

10.    Wakefield, J., Hassan, H. M., Jaspars, M., Ebel, R., and Rateb, M. E. (2017). Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Frontiers in Microbiology, 8: 1284.

11.    Vinale, F., Nicoletti, R., Borrelli, F., Mangoni, A., Parisi, O. A., Marra, R., Lombardi, N., Lacatena, F., Grauso, L., Finizio, S., Lorito, M., and Woo, S. L. (2017). Co-culture of plant beneficial microbes as source of bioactive metabolites. Scientifc Reports, 7(1): 14330.

12.    Caudal, F., Tapissier-Bontemps, N., and Edrada-Ebel, R. (2022). Impact of co-culture on the metabolism of marine microorganisms. Marine Drugs, 20: 153.

13.    Chagas, F. O., and Pupo, M. T. (2018). Chemical interaction of endophytic fungi and actinobacteria from Lychnophora ericoides in co-cultures. Microbiology Research, 212-213: 10-16.

14.    Li, X., Zhang, X., Ye, L., Kang, Z., Jia, D., Yang, L., and Zhang, B. (2019). LC-MS-Based metabolomic approach revealed the significantly different metabolic profiles of five commercial truffle species. Frontier Microbiology, 10: 2227.

15.    Nagarajan, K., Ibrahim, B., Ahmad Bawadikji, A., Lim, J. W., Tong, W. Y., Leong, C. R., Khaw, K. Y., and Tan, W. N. (2021). Recent developments in metabolomics studies of endophytic fungi. Journal Fungi (Basel), 8(1): 28.

16.    Mazlan, N. W., R. Tate, Y. M. Yusoff, , C. Clements and R. Edrada-Ebel (2019). Metabolomics-guided isolation of anti-trypanosomal compounds from endophytic fungi of the mangrove plant Avicennia Lanata. Current Medicinal Chemistry, 27(11): 1815-1835.

17.    Macintyre, L., Zhang, T., Viegelmann, C., Juarez Martinez, I., Cheng, C., Dowdells, C., Abde mohsen, U. R., Gernert, C., Hentschel, U., and Edrada-Ebel, R. (2014). Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Marine Drugs, 12(6), 3416-3448.

18.    Wright, G. D. (2019). Unlocking the potential of natural products in drug discovery. Microbiology Biotechnology, 12(1): 55-57.

19.    Marcellano, J., Collanto, A., and Fuentes, R. (2017). Antibacterial activity of endophytic fungi isolated from the bark of Cinnamomum mercadoi. Pharmacognosy Journal, 9: 405-409.

20.    Li, J., Lu, C., and Shen, Y. (2010). Macrolides of the bafilomycin family produced by Streptomyces sp. CS. The Journal of Antibiotics, 63(10): 595-599.

21.    Lu, C., and Shen, Y. (2004). Two new macrolides produced by Streptomyces sp. CS. Journal of Antibiotics (Tokyo), 57(9): 597-600.

22.    Sugiura, Y., Sugita-Konishi, Y., Kumagai, S., and Reiss, E. (2003). Experimental murine hyalohyphomycosis with soil-derived isolates of Fusarium solani. Medical mycology: Official publication of the International Society for Human and Animal Mycology, 41: 241-247.

23.    Moussaïf, M., Jacques, P., Schaarwächter, P., Budzikiewicz, H., and Thonart, P. (1997). Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Applied and Environmental Microbiology, 63: 1739-1743.

24.    Halldórsdóttir, E., Jaroszewski, J., and Olafsdottir, E. (2009). Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the icelandic Lycopodium annotinum spp. alpestre. Phytochemistry, 71: 149-157.

25.    Zhu, L., Pang, C., Chen, L., and Zhu, X. (2018). Antibacterial activity of a novel depsipeptide and prodigiosine of Serratia marcescans S823. Natural Products Chemistry & Research, 6(2): 312.

26.    Savi, D., Noriler, S., Ponomareva, L., Thorson, J., Rohr, J., Glienke, C., and Shaaban, K. (2019). Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens. Folia Microbiologica, 65: 381-392.

27.    Chen, M.-J., Narkunan, K., and Liu, R.-S. (1999). Total synthesis of natural bicyclic lactones (+)-dihydrocanadensolide, (±)-avenociolide, and (±)-isoavenociolide via tungsten−π-allyl complexes. The Journal of Organic Chemistry, 64(22): 8311-8318.

28.    Bastida, J., Codina, C., Francesc, V., Rubiralta, M., Quirion, J.-C., and Weniger, B. (1992). Narcissus alkaloids, XIV. (+)-8-O-acetylhomolycorine and vasconine, two novel alkaloids from Narcissus vasconicus. Journal of Natural Products, 55: 122-125.

29.    Li, B., Wever, W., Walsh, C., and Bowers, A. (2014). Dithiolopyrrolones: Biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. Natural Product Reports, 31(7): 905-923.

30.    Clements, T., Ndlovu, T., and Khan, W. (2019). Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiological Research, 229: 126329.

31.    Tianpanich, K., Prachya, S., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., and Kittakoop, P. (2010). Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. Journal of Natural Products, 74: 79-81.

32.  Marion, O., Gao, X., Marcus, S., and Hall, D. (2008). Synthesis and preliminary antibacterial evaluation of simplified thiomarinol analogs. Bioorganic & medicinal chemistry, 17: 1006-1017.

33.  Pinheiro, E., Pina, J., Feitosa, A., Carvalho, J., Borges, F., Marinho, P., and Marinho, A. (2017). Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis. Revista Argentina de Microbiología, 49(1): 3-6.

34.  Quiroga, J., Romo, P. E., Ortiz, A., Isaza, J. H., Insuasty, B., Abonia, R., and Cobo, J. (2016). Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids. Journal of Molecular Structure, 1120: 294-301.

35.  Kannan, K. P., Govindasamy, R., Rajendran, R., Manoharan, S., and Dhakshinamoorthy, M. (2016). Hydrocarbons from Curvularia lunata-a novel promising endophytic fungi isolated from Solanum trilobatum linn. International Journal of Chemistry, Pharmacy & Technology, 1: 10-17.

36.  Varma, G. B., Fatope, M. O., Marwah, R. G., Deadman, M. E., and Al-Rawahi, F. K. (2006). Production of phenylacetic acid derivatives and 4-epiradicinol in culture by Curvularia lunata. Phytochemistry, 67(17): 1925-1930.