Malaysian Journal of Analytical
Sciences, Vol 27
No 5 (2023): 922 - 934
METABOLITE PROFILING AND
BIOLOGICAL ACTIVITIES OF EXTRACTS FROM ENDOPHYTIC FUNGI ISOLATED FROM MANGROVE
PLANT Avicennia lanata
(Profil Metabolit dan Aktiviti Biologi Ekstrak daripada
Kulat Endofitik Dipencilkan daripada Tumbuhan Bakau Avicennia lanata)
Nurul
Izzati Rosdi1 and Noor Wini Mazlan1,2*
1Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
2Institute of Marine
Biotechnology,
Universiti Malaysia Terengganu, 21030,
Kuala Nerus, Terengganu, Malaysia.
*Corresponding author: noorwini@umt.edu.my
Received:
4 April 2023; Accepted: 17 August 2023; Published: 30 October 2023
Abstract
Endophytic fungi are important
in drug discovery for their unique secondary metabolites, besides the extract
obtained are sustainable, reproducible and culturable under laboratory
conditions as compared to their host plants. However, the use of single culture
leads to the production of known compounds with similar bioactivities.
Therefore, single culture and co-culture between Fusarium sp. and Curvularia sp. which have been isolated from mangrove
plant Avicennia lanata were
cultured on malt agar and rice media on 7, 15 and 30 days to trigger the
production of metabolites that may absent in their single cultures. In this
study, dereplication study was applied to speed up the identification of
secondary metabolites in the extracts. Then, the data was processed utilising MZmine 2.40.1 and SIMCA P+ 15.0 software coupled with macro
analysis and Dictionary of Natural Product (DNP) database for dereplication
studies. The antioxidant activity of the extracts were
evaluated by using DPPH scavenging assay. Amongst the extract obtained from
malt agar medium, the extract of co-culture on day 7 (MAFC7) showed the most
potent activity with IC50 value of 0.6 mg/mL.
For the rice medium, the extract from single culture Curvularia sp. on day 15 showed
the most significant activity with IC50 value of 1.1 mg/mL. While, the agar disk-diffusion method was used to
evaluate the antibacterial activity of the extracts and the results indicated
that the extracts exhibited activity against Gram-positive bacteria,
specifically Micrococcus sp., Staphylococcus aureus, and Bacillus cereus. The antibacterial
activity of the co-culture extracts were the most
active with minimum inhibition concentration (MIC) values of 0.256 mg/mL – 5.0 mg/mL.
In conclusion, the extracts obtained from co-culture showed potent antioxidant
and antibacterial activities that could be further scaled-up and investigated
for future pharmacological properties.
Keywords: Fusarium sp., Curvularia sp., co-culture, antioxidant,
antibacterial
Abstrak
Kulat endofit adalah penting dalam penemuan ubat untuk metabolit sekunder yang unik, selain itu ekstrak yang
diperolehi adalah mampan, boleh dihasilkan semula dan
dikultur di bawah keadaan makmal berbanding dengan
tumbuhan perumah. Walau bagaimanapun, penggunaan kultur tunggal kebiasaannya
membawa kepada penghasilan sebatian yang diketahui dengan bioaktiviti
yang sama. Oleh itu, kultur tunggal dan kultur bersama antara Fusarium sp. dan Curvularia sp. yang telah
dipencilkan daripada tumbuhan bakau Avicennia lanata telah dikulturkan pada
agar malt dan media beras pada hari ke-7, 15 dan 30
hari untuk mencetuskan penghasilan metabolit yang
berbeza yang mungkin tidak hadir dalam kultur tunggal mereka. Dalam kajian ini,
kajian dereplikasi telah digunakan untuk
mempercepatkan pengenalpastian metabolit sekunder
dalam ekstrak. Kemudian, data telah dianalisis menggunakan perisian MZmine 2.40.1 dan SIMCA P+ 15.0 beserta
analisis makro dan pengkalan data Kamus Bahan Semulajadi (DNP) bagi kajian dereplikasi.
Aktiviti antioksidan bagi ekstrak telah dinilai
menggunakan asai skaveng DPPH. Antara ekstrak yang
diperolehi daripada medium agar malt, ekstrak kultur
bersama pada hari ke-7 (MAFC7) menunjukkan aktiviti yang berpotensi dengan
nilai IC50 sebanyak 0.6 mg/mL. Bagi medium beras, ekstrak daripada kultur tunggal Curvularia sp. pada hari ke-15 menunjukkan aktiviti yang paling ketara
dengan nilai IC50 sebanyak 1.1 mg/mL. Sementara itu, kaedah penyerapan cakera agar telah
digunakan untuk menilai aktiviti antibakteria ekstrak dan keputusan menunjukkan
bahawa ekstrak menunjukkan aktiviti melawan bakteria Gram-positif termasuk Micrococcus sp., Staphylococcus aureus dan Bacillus cereus.
Aktiviti antibakteria bagi ekstrak kultur bersama adalah yang paling aktif
dengan nilai kepekatan rencat minima (MIC) pada 0.256
mg/mL–
5.0 mg/mL. Kesimpulannya,
ekstrak yang diperolehi daripada kultur bersama menunjukkan aktiviti antioksidan dan antibakteria yang bagus yang boleh
dilanjutkan untuk skala besar dan disiasat untuk sifat farmakologi masa
hadapan.
Kata kunci: Fusarium sp., Curvularia sp., kultur bersama, antioksidan, antibakteria
References
1.
Cruz, J. S., da Silva, C.
A., and Hamerski, L. (2020). Natural products from endophytic fungi associated
with Rubiaceae species. Journal of Fungi, 6(3): 128.
2. Farhat,
H., Urooj, F., Tariq, A., Sultana, V., Ansari, M., Ahmad, V. U., and
Ehteshamul-Haque, S. (2019). Evaluation of antimicrobial potential of
endophytic fungi associated with healthy plants and characterization of
compounds produced by endophytic Cephalosporium
and Fusarium solani. Biocatalysis and Agricultural Biotechnology,
18: 101043.
3. Basheer,
M., Mekawey, A., Kafrawy, S., and Abouzeid, M. (2018). Antimicrobial activities
of endophytic fungi of red sea aquatic plant Avicennia marina. Egyptian
Journal of Microbiology, 53(1):
231-240..
4. Zheng,
R., Li, S., Zhang, X., and Zhao, C. (2021). Biological activities of some new
secondary metabolites isolated from endophytic fungi: A review study. International Journal of Molecular Sciences,
22: 959.
5.
Tadpetch, K., Chukong,
C., Jeanmard, L., Thiraporn, A., Rukachaisirikul, V., Phongpaichit, S., and
Sakayaroj, J. (2015). Cytotoxic naphthoquinone and a new succinate ester from
the soil fungus Fusarium solani
PSU-RSPG227. Phytochemistry Letters, 11: 106-110.
6.
Li,
M., Yu, R., Bai, X., Wang, H., and Zhang, H. (2020). Fusarium
: A treasure trove of bioactive secondary metabolites. Natural Product Reports,
37: 905-923.
7.
Khiralla, A., Spina, R.,
Saliba, S., and Laurain-Mattar, D. (2019). Diversity of natural products of the
genera Curvularia and Bipolaris. Fungal Biology Reviews, 33(2):
101-122.
8.
Srivastava, A. K., Singh
Kapkoti, D., Gupta, M., Rout, P. K., Singh Bhakuni, R., and Samad, A. (2021).
Enhanced production of phytotoxic polyketides isolated from Curvularia lunata by applying chemical
stresses. Industrial Crops and Products, 160: 113156.
9.
Kaaniche, F., Hamed, A.,
Abdel-Razek, A., Wibberg, D., Abdissa, N., Zendah el Euch, I., and Sewald, N.
(2019). Bioactive secondary metabolites from new endophytic fungus Curvularia sp. isolated from Rauwolfia macrophylla. PLoS ONE, 14(6): e0217627.
10.
Wakefield, J., Hassan, H.
M., Jaspars, M., Ebel, R., and Rateb, M. E. (2017). Dual induction of new
microbial secondary metabolites by fungal bacterial co-cultivation. Frontiers in Microbiology, 8: 1284.
11.
Vinale,
F., Nicoletti, R., Borrelli, F., Mangoni, A., Parisi, O. A., Marra, R.,
Lombardi, N., Lacatena, F., Grauso, L., Finizio, S., Lorito, M., and Woo, S. L.
(2017). Co-culture of plant beneficial
microbes as source of bioactive metabolites. Scientifc Reports, 7(1): 14330.
12.
Caudal, F.,
Tapissier-Bontemps, N., and Edrada-Ebel, R. (2022). Impact of co-culture on the
metabolism of marine microorganisms. Marine
Drugs, 20: 153.
13.
Chagas, F. O., and Pupo,
M. T. (2018). Chemical interaction of endophytic fungi and actinobacteria from Lychnophora ericoides in co-cultures. Microbiology Research, 212-213: 10-16.
14.
Li, X., Zhang, X., Ye,
L., Kang, Z., Jia, D., Yang, L., and Zhang, B. (2019). LC-MS-Based metabolomic
approach revealed the significantly different metabolic profiles of five commercial
truffle species. Frontier Microbiology, 10:
2227.
15.
Nagarajan, K., Ibrahim,
B., Ahmad Bawadikji, A., Lim, J. W., Tong, W. Y., Leong, C. R., Khaw, K. Y.,
and Tan, W. N. (2021). Recent developments in metabolomics studies of
endophytic fungi. Journal Fungi (Basel), 8(1):
28.
16.
Mazlan, N. W., R. Tate,
Y. M. Yusoff, , C. Clements and R. Edrada-Ebel (2019). Metabolomics-guided
isolation of anti-trypanosomal compounds from endophytic fungi of the mangrove
plant Avicennia Lanata. Current Medicinal Chemistry, 27(11): 1815-1835.
17.
Macintyre, L., Zhang, T.,
Viegelmann, C., Juarez Martinez, I., Cheng, C., Dowdells, C., Abde mohsen, U.
R., Gernert, C., Hentschel, U., and Edrada-Ebel, R. (2014). Metabolomic tools
for secondary metabolite discovery from marine microbial symbionts. Marine Drugs, 12(6), 3416-3448.
18.
Wright, G. D. (2019).
Unlocking the potential of natural products in drug discovery. Microbiology Biotechnology, 12(1): 55-57.
19.
Marcellano,
J., Collanto, A., and Fuentes, R. (2017). Antibacterial
activity of endophytic fungi isolated from the bark of Cinnamomum mercadoi. Pharmacognosy
Journal, 9: 405-409.
20.
Li, J., Lu, C., and Shen,
Y. (2010). Macrolides of the bafilomycin family produced by Streptomyces sp. CS. The Journal of Antibiotics, 63(10): 595-599.
21.
Lu, C., and Shen, Y.
(2004). Two new macrolides produced by Streptomyces
sp. CS. Journal of Antibiotics (Tokyo), 57(9): 597-600.
22.
Sugiura,
Y., Sugita-Konishi, Y., Kumagai, S., and Reiss, E. (2003). Experimental
murine hyalohyphomycosis with soil-derived isolates of Fusarium solani. Medical
mycology: Official publication of the International Society for Human and
Animal Mycology, 41: 241-247.
23.
Moussaïf, M., Jacques,
P., Schaarwächter, P., Budzikiewicz, H., and Thonart, P. (1997). Cyclosporin C
is the main antifungal compound produced by Acremonium
luzulae. Applied and Environmental
Microbiology, 63: 1739-1743.
24.
Halldórsdóttir, E.,
Jaroszewski, J., and Olafsdottir, E. (2009). Acetylcholinesterase inhibitory
activity of lycopodane-type alkaloids from the icelandic Lycopodium annotinum spp. alpestre.
Phytochemistry, 71: 149-157.
25.
Zhu, L., Pang, C., Chen,
L., and Zhu, X. (2018). Antibacterial activity of a novel depsipeptide and
prodigiosine of Serratia marcescans S823. Natural Products Chemistry & Research, 6(2): 312.
26.
Savi, D., Noriler, S.,
Ponomareva, L., Thorson, J., Rohr, J., Glienke, C., and Shaaban, K. (2019).
Dihydroisocoumarins produced by Diaporthe
cf. heveae LGMF1631 inhibiting citrus pathogens. Folia Microbiologica, 65:
381-392.
27.
Chen, M.-J., Narkunan,
K., and Liu, R.-S. (1999). Total synthesis of natural bicyclic lactones
(+)-dihydrocanadensolide, (±)-avenociolide, and (±)-isoavenociolide via
tungsten−π-allyl complexes. The
Journal of Organic Chemistry, 64(22):
8311-8318.
28.
Bastida, J., Codina, C.,
Francesc, V., Rubiralta, M., Quirion, J.-C., and Weniger, B. (1992). Narcissus alkaloids, XIV.
(+)-8-O-acetylhomolycorine and vasconine, two novel alkaloids from Narcissus vasconicus. Journal of Natural Products, 55: 122-125.
29.
Li, B., Wever, W., Walsh,
C., and Bowers, A. (2014). Dithiolopyrrolones: Biosynthesis, synthesis, and
activity of a unique class of disulfide-containing antibiotics. Natural Product Reports, 31(7): 905-923.
30.
Clements, T., Ndlovu, T., and Khan, W. (2019). Broad-spectrum
antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiological Research, 229:
126329.
31.
Tianpanich, K., Prachya,
S., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., and Kittakoop, P. (2010).
Radical scavenging and antioxidant activities of isocoumarins and a phthalide
from the endophytic fungus Colletotrichum
sp. Journal of Natural Products, 74: 79-81.
32. Marion, O., Gao, X., Marcus, S., and Hall, D.
(2008). Synthesis and preliminary antibacterial evaluation of simplified
thiomarinol analogs. Bioorganic &
medicinal chemistry, 17:
1006-1017.
33. Pinheiro, E., Pina, J., Feitosa, A., Carvalho,
J., Borges, F., Marinho, P., and Marinho, A. (2017). Bioprospecting of
antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis. Revista Argentina de Microbiología, 49(1): 3-6.
34. Quiroga, J., Romo, P. E., Ortiz, A., Isaza, J.
H., Insuasty, B., Abonia, R., and Cobo, J. (2016). Synthesis, structures,
electrochemical studies and antioxidant activity of
5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids. Journal of Molecular Structure, 1120: 294-301.
35. Kannan, K. P., Govindasamy, R., Rajendran, R.,
Manoharan, S., and Dhakshinamoorthy, M. (2016). Hydrocarbons from Curvularia lunata-a novel promising
endophytic fungi isolated from Solanum
trilobatum linn. International
Journal of Chemistry, Pharmacy & Technology, 1: 10-17.
36. Varma, G. B., Fatope, M. O., Marwah, R. G.,
Deadman, M. E., and Al-Rawahi, F. K. (2006). Production of phenylacetic acid
derivatives and 4-epiradicinol in culture by Curvularia lunata. Phytochemistry,
67(17): 1925-1930.