Malaysian Journal of Analytical Sciences (MJAS) Published by Malaysian Analytical Sciences Society

STABILITY OF GREEN SYNTHESIS OF SILVER NANOPARTICLES BY USING Euphorbia milii (EUPHORBIACEAE) LEAVES EXTRACT WITH DIFFERENT SOLVENTS AND POLARITIES

(Kestabilan Sintesis Hijau Nanopartikel Perak dari Ekstrak Daun Euphorbia milii (Euphorbiaceae) menggunakan Pelarut dan Kekutuban yang Berbeza)

> Nur Rasyidah Ramli¹, Hanis Mohd Yusoff^{1,2}, Maulidiani Maulidiani¹, Asnuzilawati Asari^{1,2}, and Nurul Huda Abdul Wahab^{1,2*}

¹Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia ²Advanced Nano Materials (ANoMa) Research Group,Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

*Corresponding author: nhuda@umt.edu.my

Received: 15 January 2023; Accepted: 2 July 2023; Published: 22 August 2023

Abstract

Silver nanoparticle (AgNP) synthesis can be produced by chemical, physical, and green synthesis methods. In this study, green synthesis of AgNPs was conducted by using Euphorbia milii (E. milii) leaf extract as the reducing agent. E. milii, also called crown-of-thorn or in Malay 'Mahkota duri' was used as the targeted plant in this study due to its rich phytochemical contents. The leaves were extracted into six different solvents (hexane, chloroform, ethyl acetate, acetone, methanol and distilled water) by increasing polarities to extract different varieties of compounds that were applied as reducing agents in the synthesis of AgNPs. The crude extract was added to 1 mM AgNO₃ solution and kept in the dark at room temperature for 24 hours. The process was repeated for all crude extracts with different solvent polarities. The AgNPs solution obtained was analysed by using a UV-Vis spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The stability of the AgNPs was observed and compared between different extracts from different polarities. The wavelength of UV-Vis obtained for the 6 sets was between 415 nm and 485.5 nm. The formation of AgNPs based on the surface plasmon resonance band is proved by the peak that appeared around $\lambda = \sim 450$ nm. The FTIR spectroscopy of the various extracts indicated the presence of OH, C-H stretching, C=O stretching, C=C stretching and C-O stretching, respectively, as compared with the FTIR spectrum for AgNPs for the synthesis and stabilization of the AgNPs. SEM images showed the different sizes of AgNPs for different extracts, with a range of about 67 to 843 nm.

Keywords: green synthesis, reducing agent, green AgNPs, euphorbiaceae, Euphorbia milii

Abstrak

Sintesis nanopartikel perak (AgNPs) boleh dihasilkan melalui kaedah sintesis kimia, fizikal dan hijau. Dalam kajian ini, sintesis hijau AgNPs telah dijalankan menggunakan ekstrak daun Euphorbia milii (E. milii) yang bertindak sebagai agen penurunan. E. milii atau juga dipanggil mahkota duri atau dalam bahasa Melayunya 'Mahkota duri' telah digunakan sebagai tumbuhan sasaran dalam kajian ini kerana kandungan fitokimia yang kaya. Daun diekstrak ke dalam enam pelarut berbeza (heksana, kloroform, etil asetat, aseton, metanol, dan air suling) dengan meningkatkan kekutuban untuk mengekstrak pelbagai sebatian yang berbeza yang digunakan sebagai agen pengurangan dalam sintesis AgNPs. Ekstrak mentah telah ditambah ke dalam larutan 1 mM AgNO $_3$ dan disimpan dalam gelap pada suhu bilik selama 24 jam. Proses ini diulang untuk semua ekstrak mentah dengan kekutuban pelarut yang berbeza. Penyelesaian AgNP yang diperolehi dianalisis dengan menggunakan spektrofotometer UV-Vis, spektroskopi inframerah transformasi Fourier (FTIR), dan mikroskop elektron pengimbasan (SEM). Kestabilan AgNP diperhatikan dan dibandingkan dari ekstrak yang berbeza kekutubannya. Panjang gelombang UV-Vis yang diperoleh untuk 6 set adalah antara julat 415-485.5 nm. Pembentukan AgNP berdasarkan jalur resonans plasmon permukaan dibuktikan oleh puncak yang muncul sekitar $\lambda = \sim 450$ nm. Spektroskopi FTIR bagi pelbagai ekstrak menunjukkan kehadiran OH, regangan CH, regangan C=O, regangan C=C dan regangan CO, masing-masing berbanding dengan spektrum FTIR untuk AgNP untuk sintesis dan penstabilan AgNPs. Imej SEM menunjukkan saiz AgNP yang berbeza untuk ekstrak berbeza dengan julat kira-kira 67 hingga 843 nm.

Kata kunci: sintesis hijau, agen penurun, AgNPs hijau, euphorbiaceae, Euphorbia milii

Introduction

Silver nanoparticles (AgNPs) are useful in various applications that have attracted much interest among researchers [1]. The production of AgNPs can involve chemical, physical, biological, and photochemical methods [2]. For the production of AgNPs, chemical and physical methods are usually used at the industrial level [3]. However, this method was a concern in biomedical applications because of the toxicity of reducing and capping agents, high temperature, and pressure in the protocol [4]. Capping agents such as alkylamines and alkanethiols had the function to stabilise the AgNPs from aggregation. The use of this capping agent and the reduction from this method can result in hazardous byproduct formation that can affect the use of AgNPs in biomedical fields and chemical applications. To overcome this problem, green synthesis methods are used as a substitute for chemical and physical procedures [3] by using biological extracts such as plants, bacteria, or other potential natural reducing agents [5].

Plants provide a better platform for nanoparticle synthesis as they are free from toxic chemicals and natural capping agents [6]. In this study, *Euphorbia milii* (*E. milii*) was chosen as a targeted plant because it is rich in bioactive compounds and has high total flavonoid content [7]. Euphorbia is the largest genus, widely distributed primarily in tropical countries that acts as medicinal plants. *E. milii* is a flowering plant commonly known as the "Christ plant" or "Christ thrown" [8] and is widely used in folk medicine for the treatment of warts (South Brazil), cancer, and hepatitis (China). A previous study on *E. milii* was carried out on polar crude extract

to isolate the active chemical components [7]. *E. milii* leaves act as reducing biological agents and bind together with silver metal ion solutions to form AgNPs. The reducing agents are widely distributed in the biological system [4]. The study presented here describes the effect of different polarities in the crude extract on the stability of the AgNPs.

Materials and Methods

Materials and instrumentation

Silver nitrate (AgNO₃) was purchased from Sigma Aldrich. The absorption spectra of synthesized AgNPs were recorded by using UV-visible spectroscopy from 300-800 nm (Shimadzu UV-1800). The Fourier Transform Infrared (FTIR) extracts and AgNPs were taken by Perkin Elmer Spectrum 100 by using the ATR method and recorded between 4000 and 400 cm⁻¹. The Scanning Electron Microscope (SEM) images were taken by JEOL 6360 LA with working distance and accelerating voltage, 15 mm and 15 kV, respectively. The sample for SEM was sonicated 3 times (15 minutes each) before it was mounted on an Indium tin oxide (ITO) substrate. Then, the sample was coated with metal gold.

Collection of the plant sample

The sample of *Euphorbia milii* leaves was collected from Kota Sarang Semut, Kedah (November 2020). The botanical identity of the plant specimen of *E. milii* leaves was confirmed by the Biological Laboratory, Universiti Malaysia Terengganu.

Preparation and extraction of E. milii leaves

E. milii leaves (70 g) were cleaned under running tap

water and dried at room temperature for seven days before grounded into powder form by using a grinder. Then, the powders were soaked with the first non-polar solvent, which is hexane and filtered to collect the hexane extract. The residue from hexane was repeated with different solvents by increasing the polarity (chloroform<ethyl acetate<acetone<methanol<distilled water) using the same method continuously at room temperature for 72 hours. Each extract was concentrated by using a rotary evaporator (Büchi Rotavap R-200 CH-9230, Switzerland) under reduced pressure (337-218 mbar) at 35-40 °C for 15-30 min. The six crude extracts obtained were weighed and stored in a chiller (4 °C) for

further analysis.

Green synthesis of AgNPs

The green synthesis followed the method developed by Alsalhi, et al. with some modifications. To prepare AgNPs, 10 mg crude extract was added to 10 ml Mili-Q water. Then, it was filtered by using a syringe filter (0.2 µm). The mixture (5 ml) was added to 1 mM AgNPs solution (50 mL) [9]. The mixture was kept in the dark at room temperature for one day (until the color changed from colorless to brown). The process was repeated with different crude extracts, as shown in Figure 1.

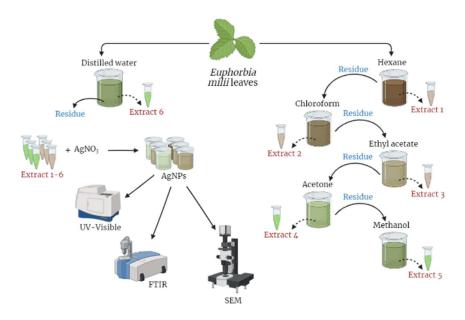


Figure 1. Overall experimental process

Results and Discussion Green synthesis of AgNPs

The present study explored green synthesis of AgNPs was by using *E. milii* leaf extracts as a reducing agent. The reaction mixture turned from colorless to yellowish brown, which is the preliminary indication of the synthesis of AgNPs. Six conjugated AgNPs were made from AgNO₃ with different crude extracts. These conjugates were characterised as AgNPs-hexane extract (SH), AgNPs-chloroform extract (SC), AgNPs-ethyl acetate extract (SE), AgNPs-acetone extract (SA), AgNPs-methanol extract (SM) and AgNPs-distilled water extract (SDW-reference). AgNPs synthesis was

confirmed with SEM analysis and discussed in a later section.

Characterization of AgNPs: Fourier-transform infrared spectroscopy (FTIR)

Fourier-Transform Infrared Spectroscopy (FTIR) analysis of the obtained crude extracts (Figure 2) revealed different characteristic peak values with various functional compounds. Table 1 shows the peak assignment for six extracts. The major bands at 3341 cm⁻¹, 3248 cm⁻¹, and 3333 cm⁻¹ represented the O-H group of carboxylic acid. The absorption band observed at ~2926 cm⁻¹ corresponded to the stretching vibration of

the C-H bond in the aliphatic hydrocarbon chains. The band at ~1636 cm⁻¹ was attributed to C=C stretching vibrations of phenolic compounds such as polyphenols and flavonoids [10]. The C-H aliphatic band at approximately 1358-1396 cm⁻¹ showed the presence of alkyl halides. The C-N bands at 1211 cm⁻¹, 1219 cm⁻¹, 1242 cm⁻¹, and 1258 cm⁻¹ showed the presence of aliphatic amines. Lastly, the C-O bands at 1026 cm⁻¹, 1042 cm⁻¹ and 1072 cm⁻¹ showed the presence of alcohol, carboxylic acids, esters and ethers. The

carboxyl and hydroxyl ions in the molecules develop a protective layer on the surface of AgNPs [9].

The FTIR spectra were carried out to recognize the existence of different functional groups. As shown in Figure 3, all conjugated samples compared to reference samples showed the formation of the O-H group (3333 cm⁻¹), C=C carbonyl-carbonyl group (1636 cm⁻¹), and C-H oop aromatic band (664 cm⁻¹).

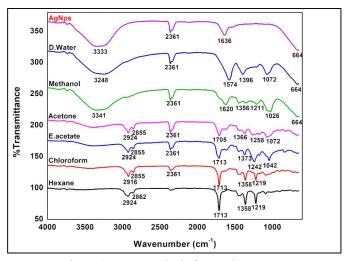


Figure 2. FTIR analysis for crude extracts

Table 1. Peak assignment for crude extracts

Peak Assignment	Wavenumber (cm ⁻¹)							
	Hexane	Chloroform	Ethyl Acetate	Acetone	Methanol	D. Water	AgNPs	
O-H stretching	-	-	-	-	3341	3248	3333	
C-H stretching	2926	2916	2924	2924	-	-	-	
C=O stretching	1713	1713	1713	1705	-	-	-	
C=C stretching	-	-	-	-	1620	1574	1636	
C-H aliphatic	1358	1358	1373	1366	1356	1396	-	
C-N	1219	1219	1242	1258	1211	-	-	
C-O	-	-	1042	1072	1026	1072	-	
C-H oop aromatic band	-	-	-	-	664	664	664	

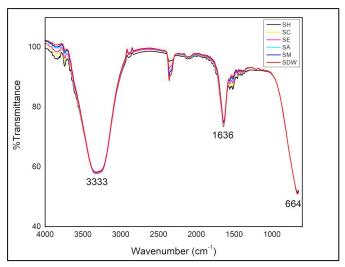


Figure 3. FTIR analysis for conjugated AgNPs

Ultraviolet-visible spectroscopy

The common phenomenon of surface plasmon resonance (SPR) in AgNPs has been studied in metal nanoparticles where electrons are excited by photons of incident light [2]. When excited by light, the induced charges characteristic of surface plasmons can propagate as an electromagnetic wave parallel to the metal surface. The most important factor in determining the frequency and intensity of plasmon resonance is their surface polarization. This is because it provides the main restoring force for electron oscillation [11]. All six conjugates were characterised by using UV-Vis spectroscopy to confirm the formation of the AgNPs. Based on all solvent systems, SH was the most unstable because the peak occurred only in 3 days. There was also

no color change after the synthesis. While SC, SE, SA, SM, and SDW were more stable than SH because their peak occurred in 7, 42, 63, 63, and 64 days respectively (Figure 4 - Figure 8). As can be seen in UV-Vis spectra, the range of wavelength is from 401 to 456 nm. Table 2 shows the wavelength of AgNPs for each extract. The surface plasmon resonance band for spherical AgNPs was usually in the range of 390-450 nm [2] and 410-455 [12]. The optical properties of spherical AgNPs were highly dependent on the nanoparticle diameter. Smaller nanospheres primarily absorbed light and had peaks near 400 nm, while larger spheres had peaks that broadened and shifted towards longer wavelengths (known as redshifting) [13]. Table 3 shows the references from other studies.

Table 2. Maximum peak for each AgNP

Conjugated AgNPs	Wavelength	Stability	
	(nm)	(Day)	
AgNPs-hexane extract (SH)	427	3	
AgNPs-chloroform extract (SC)	416	63	
AgNPs-ethyl acetate extract (SE)	436	63	
AgNPs-acetone extract (SA)	415	7	
AgNPs-methanol extract (SM)	In-plane dipole: 401	64	
	In-plane quadrupole: 485		
AgNPs-distilled water extract (SDW)	456	42	

Table 3. References for the maximum peak from other studies

Plant	Solvent Extract	Wavelength	Stability	Reference
		(nm)	(Day)	
Ipomoea carnea Jacq.	Methanol	300-550	1	[14]
Terminalia catappa	n-Hexane	419	1	[15]
Terminalia catappa	Chloroform	418	7	[15]
Terminalia catappa	Ethyl acetate	264	1	[15]

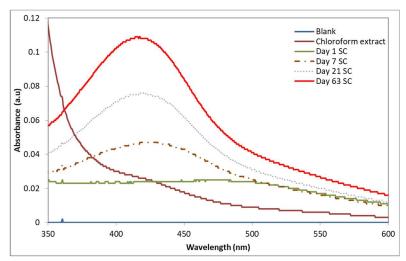


Figure 4. UV-Visible of SC

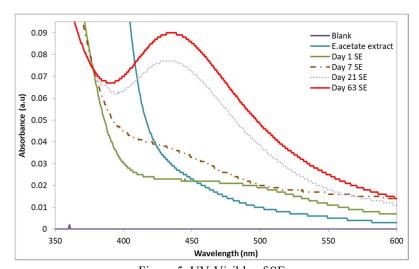


Figure 5. UV-Visible of SE

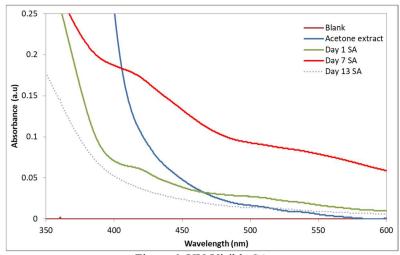


Figure 6. UV-Visible SA

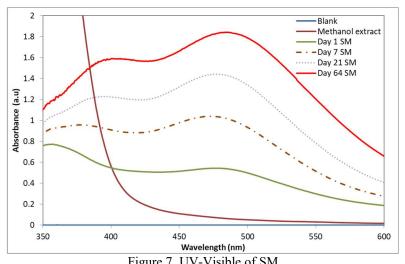


Figure 7. UV-Visible of SM

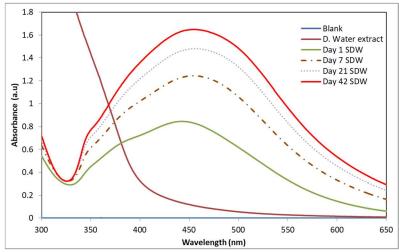


Figure 8. UV-Visible of SDW

Scanning electron microscope (SEM)

SEM technique was employed to visualise the size and shape of AgNPs. The SEM images of the AgNPs for each crude are shown in Figure 9. The smallest was from SE, which is 67-441 nm and the largest was from SH which is 771-843 nm (Table 4). The shape of all crude was mostly spherical. Compared to other studies using aqueous extract, *Euphorbia serpens* leaf had a spherical

shape with particle sizes from 30 to80 nm [16], the spherical shape of *Euphorbia hirta* had a range of sizes between 50 and 80 nm [17], range sizes of *Boerhavia procumbens* was 20-80 nm with spherical shape [18], and Shireen, et al. stated that *A. americana*, *M. spicata*, and *M. indica* had mostly spherical and few triangular, rods and cubic shape [19].

Table 4. Range of size for AgNPs from various crude extract

AgNPs from Various Crude Extract	Size Range	Shape	References
	(nm)		
(a) AgNps-hexane extract (SH)	771-843	Spherical	-
(b) AgNPs-chloroform extract (SC)	100-186	Spherical	-
(c) AgNPs-ethyl acetate extract (SE)	67-441	Spherical	-
(d) AgNPs-acetone extract (SA)	86-174	Spherical	-
(e) AgNPs-methanol extract (SM)	92-107	Spherical	-
(f) AgNPs-distilled water extract (SDW	356	Spherical	-
)			
Aqueous extract of Euphorbia serpens leaf	30-80	Spherical	[16]
Aqueous extract of Euphorbia hirta leaf	50-80	Spherical	[17]
Aqueous extract of Boerhavia procumbens	20-80	Spherical	[18]
Aqueous extract of A. americana, M.	30-100	Mostly spherical	[19]
spicata, and M. indica		Few triangular,	
		rods and cubic	

Conclusion

Six crude extracts of *E. milii* leaves were successfully utilized as capping and reducing agents for AgNP synthesis. The reaction conditions were optimized for approximate uniform dispersion of green synthesized AgNPs. The FTIR analysis suggested the presence of carboxylic acid, polyphenols, flavonoids, alkyl halides, aliphatic amines, alcohol, esters and ethers, responsible for the capping and stabilizing of AgNPs. UV-Vis spectroscopy confirmed the formation of AgNPs in all crude extracts by exhibiting the SPR band between 401 and 456 nm. SH was the most unstable AgNPs compared to other conjugated AgNPs. The shape for all

conjugated AgNPs was spherical, with the sizes SH >SDW >SC >SM >SA >SE. Therefore, these studies concluded that six leaf extracts could be utilised for the green synthesis of AgNPs.

Acknowledgements

The authors would like to express appreciation to the Faculty of Science and Marine Environment, Universiti Malaysia Terengganu for providing laboratory facilities and Ministry of Higher Education (MOHE) for research grant Fundamental Research Grant Scheme FRGS/1/2020/STG04/UMT/03/1 for financial support.

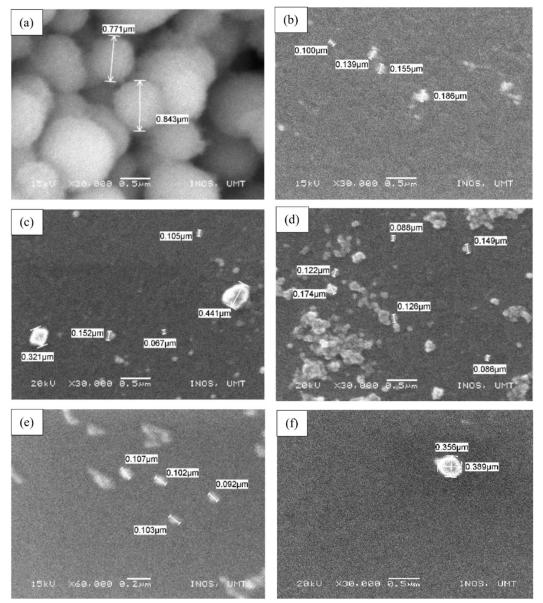


Figure 9. SEM result for AgNPs mediated with a) SH b) SC c) SE d) SA e) SM and f) SDW

References

- Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., and Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. *Theranostics*, 10(20): 8996-9031.
- Saidi, M. N. S., Yusoff, H. M., Irsyad, U. H. B., Apaalasamy, S., Hassim, A. D. M., Yusoff, F., Asari, A., and Wahab, N. H. A. (2020). Stability and antibacterial properties of green synthesis silver nanoparticles using *Nephelium lappaceum* peel extract. *Malaysian Journal of Analytical Sciences*,
- 24(6): 940-953.
- Lekha, N. K., Khaga, R. S., Hari, P., Kshama, P., Bipeen, D., Ganga, D. C., Yuba, R. P., & Surya, K. K. (2022). Green synthesis of silver nanoparticles from root extracts of *rubus ellipticus* sm. And comparison of antioxidant and antibacterial activity. *Journal of Nanomaterials*, 11: 1832587.
- Borase, H. P., Patil, C. D., Salunkhe, R. B., Narkhede, C. P., Salunke, B. K., and Patil, S. V. (2013). Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal agent. *Journal of*

- Nanomedicine and Biotherapeutic Discovery, 3(1): 1-7.
- Gaurav, P., Priya, R., and Anjana, P. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. *Micro and Nano Technologies*, 1-26.
- Krithiga, N., Rajalakshmi, A., and Jayachitra, A. (2015). Green synthesis of silver nanoparticles using leaf extracts of *Clitoria ternatea* and *Solanum nigrum* and study of its antibacterial effect against common nosocomial pathogens. *Journal of Nanoscience*, 2015: 1-8.
- Abd Mutalib, N. S. A., Yusuf, N., Asari, A., Aziz, A. N., and Wahab, N. H. A. (2020). Qualitative and quantitative of phytochemical analysis of Malaysian *Euphorbia milii* (Euphorbiaceae) and its antioxidant activities. *Malaysian Applied Biology*, 46(4): 233-239.
- 8. Kamurthy, H., Dontha, S., and Rajani, K. (2015). Phytochemical screening on *euphorbia milii* red flowers- isolation of terpenoids, flavone and phenol. *American Journal of Ethnomedicine*, 2(6): 322-332.
- AlSalhi, M. S., Elangovan, K., Ranjitsigh, A. J. A., Murali, P., and Devanesan, S. (2019). Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi Journal of Biological Sciences, 26: 970-978.
- Lubis, F. A., Malek, N. A. N. N., Sani, N. S., and Jemon, K. (2022). Biogenic synthesis of silver nanoparticles using *Persicaria odorata* leaf extract: Antibacterial, cytocompatibility, and in vitro wound healing evaluation. *Particuology*, 70: 10-19.
- 11. Wiley, B. J., Sang, H. I., Zhi-Yuan, L., McLellan, J., Siekkinen, A., and Xia, Y. (2006). Manuevering the surface plasmon resonance of silver nanostructures through shape-conrolled synthesis. *Journal of Physical Chemistry B*, 110: 15666-15675.
- 12. Isa, N., Osman, M. S., Abdul Hamid, H., Inderan, V., and Lockman, Z. (2023). Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikes edge and their catalytic activity. *International Journal of Phytoremediation*, 25(5): 658-669.

- 13. Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J., and Fernig, D. G. (2014). A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. *Analyst*, 139(19): 4855-4861.
- 14. Singh, R., and Navneet. (2021). Green synthesis of silver nanoparticles using methanol extract of ipomoea carnea Jacq. To combat multidrug resistance bacterial pathogens. *Current Research in Green and Sustainable Chemistry*, 4: 100152.
- 15. Payapo, I. A., Zakir, M., and Soekamto, N. H. (2017). Synthesis of silver nanoparticles using bioreductor of ketapang leaf extract (*Terminalia catappa*) and its potential as sunscreen. *Indonesia Chimica Acta*, 10(1): 1-19.
- 16. Ahmad, N., Fozia, Jabeen, M., Haq, Z. U., Ahmad, I., Wahab, A., Islam, Z. U., Ullah, R., Bari, A., Abdel-Daim, M. M., El-Demerdash, F. M., and Khan, M. Y. (2022). Green fabrication of silver nanoparticles using euphorbia serpens kunth aqueous extract, their characterization, and investigation of its in vitro antioxidative, antimicrobial, insecticidal, and cytotoxic activities. *BioMed Research International*, 2022: 5562849.
- 17. Bennet Rohan, D., Raji, P., Divya Kumar, M., Gandham, R. G., Kripu Sharma, V., Keerthana, D., Karishma, S., Antony, V. S., Iyappan, P., Thirumurugan, R., Sajna, K. P., Paulraj, P., Jenifer Selvarani, A., and Prakash, P. (2020). Green synthesis and antibacterial activity studies of silver nanoparticles from the aqueous extracts of euphorbia hirta. *Journal of Pure and Applied Microbiology*, 14(1): 301-306.
- Rizwan, M., Amin, S., Malikovna, B. K., Rauf, A., Siddique, M., Ullah, K., Bawazeer, S., Farooq, U., Mabkhot, Y. N., and Ramadan, M. F. (2020). Green synthesis and antimicrobial potential of silver nanoparticles with *boerhavia procumbens* extracts. *Journal of Pure an Applied Microbiology*, 14(2): 1437-1451
- Shireen, F., Bashir, A., Ahmad, L., Khan, S., Rauf, A., Khalil, A. A., Zia, A., Mabkhot, Y., Almarhoon, Z., Hassanien, M., and Sharifi-Rad, J. (2022). Antineoplastic and cytotoxic evaluation of green AgNPs and crude extracts from *Agave americana*, *Mentha*

spicata, and Mangifera indica leaves. Journal of Nanomaterials, 2022: 9723074.