Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 777 - 789

 

POTENTIALITY OF NANOSILICA-DOPED CARBON DOTS AS FLUORESCENCE DETECTOR FOR COPPER (Cu2+) IONS

IN SIMULATED WASTEWATER

 

(Potensi Nanosilica-Didop Titik Carbon Sebagai Pengesan Pendaflour untuk Ion Kuprum (Cu2+) dalam Simulasi Air Sisa)

 

Rejie C. Magnaye*, Donjun C. Aguda, Kristine Rose G. Gonzales, Kyla Marie T. Plaza,

and Jeoh Ysrael D. Silang

 

Department of Chemical Engineering,

College of Engineering,

Batangas State University – The National Engineering University,

Golden Country Homes Subdivision, Alangilan, Batangas City, Philippines

 

*Corresponding Author: rejie.magnaye@g.batstate-u.edu.ph

 

 

Received: 6 February 2023; Accepted: 30 May 2023; Published:  22 August 2023

 

 

Abstract

Industrialization has a major impact on the ecosystem and the natural water composition particularly in places close to cities and manufacturing areas. Copper (Cu2+) ion is one of the heavy metals present in the industrial effluent and is considered to be a toxic heavy-metal contaminant accounting to its extreme persistence and bioaccumulation. Current techniques for determining Cu2+ ions in water include atomic absorption spectrometry (AAS), X-ray fluorescence spectrometry (XRF) and electrochemical methods, which provide high precision but have high maintenance costs and complicated preparation. Thus, an inexpensive, nontoxic and rapid sensing system for copper detection is needed. Herein, a simple and effective route for designing a fluorescence detector for Cu2+ ions tracing was developed through a microwave-assisted rapid synthesis of carbon dots and nanosilica from Taal volcanic as its dopant. The parameters affecting the performance of the Taal Volcanic Ash Nanosilica-doped Carbon Dots (TVA/SiO2-Cdots), such as silica dosage, agitation speed and contact time were investigated and optimized. Under optimized conditions, the TVA/SiO2-Cdots showed the detection of Cu2+ ions in simulated wastewater. The optical properties of the synthesized TVA/SiO2-Cdots were determined using Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectrophotometer which explained the quenching of TVA/SiO2-Cdots photoluminescence upon addition of Cu2+ ions. It has functional groups of Amine, C=C and C-O bonds. The mathematical correlation between photoluminescence (PL) intensity ratio of SiO₂-Cdots and CuČ⁺ ion concentration in simulated wastewater was found to be a Gaussian equation. The result showed that the model has no significant difference with the detected concentrations using ultraviolet spectrophotometric screening method.    

 

Keywords: carbon dots, copper ions, mathematical modelling, nanosilica, photoluminescence intensity

 

Abstrak

Pembangunan industri memberi impak besar terhadap ekosistem dan komposisi air semulajadi terutamanya di kawasan-kawasan berdekatan dengan bandar dan kawasan pembuatan. Ion kuprum (Cu2+) adalah salah satu daripada logam berat yang terdapat dalam air sisa industri dan dianggap sebagai pencemar logam berat toksik kerana ketekalan dan bioakumulasi yang tinggi. Teknik semasa untuk menentukan ion Cu2+ dalam air termasuk spektrometri serapan atom (AAS), spektrometri sinar-X pendaflour (XRF) dan kaedah elektrokimia, yang memberikan ketepatan yang tinggi tetapi memerlukan kos penyelenggaraan yang tinggi dan persediaan yang rumit. Oleh itu, sistem pengesanan untuk penentuan kuprum yang murah, tidak toksik dan cepat diperlukan. Di sini, satu laluan yang mudah dan berkesan untuk reka bentuk pengesan pendaflour untuk pengesan ion Cu2+ telah dibangunkan melalui sintesis cepat bantuan gelombang mikro titik karbon dan nanosilika dari abu gunung berapi Taal sebagai bahan tambahannya. Parameter-parameter yang mempengaruhi prestasi abu gunung berapi Taal nanosilika-didop titik karbon (TVA/SiO2-Cdots), seperti dos silika, kelajuan pengadunan, dan masa sentuhan telah dikaji dan dioptimumkan. Di bawah keadaan yang dioptimumkan, TVA/SiO2-Cdots menunjukkan pengesanan ion Cu2+ dalam simulasi air sisa. Sifat optik TVA/SiO2-Cdots yang disintesis ditentukan menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan spektrofotometer UV-Cahaya Nampak yang menjelaskan pemelindapan fotoluminesens TVA/SiO2-Cdots dengan penambahan ion Cu2+. Ia mempunyai kumpulan berfungsi amina, C=C, dan C-O. Korelasi matematik antara nisbah intensiti fotoluminesen (PL) SiO₂-Cdots dan kepekatan ion CuČ⁺ dalam simulasi air sisa didapati sebagai persamaan Gauss. Keputusan menunjukkan bahawa model ini tidak mempunyai perbezaan yang signifikan dengan kepekatan yang dikesan menggunakan kaedah saringan spektrofotometri ultraungu.

 

Kata kunci: titik karbon, ion kuprum, pemodelan matematik, nanosilika, intensiti fotoluminesens

 


References

1.       Min, K. J. (2018). Synthesis and characterization of dried leaves derived carbon quantum dots for metal ions sensing and photocatalytic application. Doctoral dissertation, UTAR, Malaysia: pp. 1-74.

2.       Nandiyanto, A. B. D., Oktiani, R. and Ragadhita R. (2019). How to read and interpret FTIR spectroscope of organic material. Journal of Science & Technology, 4(1): 97.

3.       Nanowerk (2017). What are quantum dots? Access from https://www.nanowerk.com/what _are_quantum_dots.php

4.       Langmann, B. (2013). Volcanic ash versus mineral dust: Atmospheric processing and environmental and climate impacts. ISRN Atmospheric Sciences, 2013: 1-17.

5.       Lin, H., Huang, J. and Ding, L. (2019). Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. Journal of Nanomaterials, 2019: 1-9.

6.       Canson, M., Cantos, J. and de Guzman, M. (2016). Modelling the effect of varying Cr+6 and Cu+2 concentration on the luminous intensity of Photobacterium phosphoreum in simulated seawater. Dissertation Batangas State University, Philippine.

7.       Bagheri, Z., Ehtesabi, H., Rahmandoust, M., Ahadian, M. M., Hallaji, Z., Eskandari, F. and Jokar, E. (2017). New insight into the concept of carbonization degree in synthesis of carbon dots to achieve facile smartphone based sensing platform. Scientific Reports, 7(1): 11013.

8.       American Public Health Association (2002). Standard methods for the examination of water and wastewater.

9.       Wang, R., Lu, K. Q., Tang, Z. R., and Xu, Y. J. (2017). Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 5(8): 3717-3734.

10.    Stepanidenko, E. A, Skurlov, I. D., Khavlyuk, P. D., Onishchuk, D. A., Koroleva, A.V., Zhizhin, E.V., Arefina, I. A., Kurdyukov, D. A., Eurov, D. A. and Golubev, V. G. (2022). Carbon dots with an emission in the near infrared produced from organic dyes in porous silica microsphere templates. Nanomaterials, 12: 543.

11.    Ding, Z-Z., Zheng, G-S., Lou, Q., Han, J-F., Wu, M-Y., Shen, C-L., Zang, J-H, Liu, K-K., Dong, L. and Shan, C-X. (2021). A confined carbon dot-based self-calibrated fluorescence probe for visible and highly sensitive moisture readouts. Journal Physics D: Applied Physics, 55: 154001.  

12.    Liu, J., Li, R., and Yang, B. (2020). Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Central Science, 6(12): 2179-2195.