Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 766 - 776
STABILITY OF GREEN SYNTHESIS OF SILVER NANOPARTICLES BY USING Euphorbia milii (EUPHORBIACEAE) LEAVES EXTRACT WITH DIFFERENT SOLVENTS AND
POLARITIES
(Kestabilan Sintesis Hijau Nanopartikel Perak dari
Ekstrak Daun Euphorbia milii
(Euphorbiaceae) menggunakan Pelarut dan Kekutuban yang
Berbeza)
Nur Rasyidah
Ramli1, Hanis Mohd Yusoff1,2, Maulidiani Maulidiani1,
Asnuzilawati
Asari1,2, and Nurul Huda Abdul Wahab1,2*
1Faculty of
Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Advanced Nano Materials (ANoMa)
Research Group,Faculty of Science and Marine Environment, Universiti Malaysia
Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
*Corresponding author:
nhuda@umt.edu.my
Received: 15 January 2023; Accepted: 2
July 2023; Published: 22 August 2023
Abstract
Silver
nanoparticle (AgNP) synthesis can be produced by
chemical, physical, and green synthesis methods. In this study, green synthesis
of AgNPs was conducted by using Euphorbia milii
(E. milii) leaf
extract as the reducing agent. E. milii,
also called crown-of-thorn or in Malay ‘Mahkota duri’ was used as the
targeted plant in this study due to its rich phytochemical contents. The leaves
were extracted into six different solvents (hexane, chloroform, ethyl acetate,
acetone, methanol and distilled water) by increasing polarities to extract
different varieties of compounds that were applied as reducing agents in the
synthesis of AgNPs. The crude extract was added to
Keywords: green synthesis, reducing agent, green
AgNPs, euphorbiaceae, Euphorbia
milii
Abstrak
Sintesis
nanopartikel perak (AgNPs) boleh dihasilkan melalui kaedah sintesis kimia,
fizikal dan hijau. Dalam kajian ini, sintesis hijau AgNPs telah dijalankan
menggunakan ekstrak daun Euphorbia milii (E. milii) yang
bertindak sebagai agen penurunan. E. milii atau juga dipanggil mahkota
duri atau dalam bahasa Melayunya ‘Mahkota duri’ telah digunakan sebagai
tumbuhan sasaran dalam kajian ini kerana kandungan fitokimia yang kaya. Daun
diekstrak ke dalam enam pelarut berbeza (heksana, kloroform, etil asetat, aseton,
metanol, dan air suling) dengan meningkatkan kekutuban untuk mengekstrak
pelbagai sebatian yang berbeza yang digunakan sebagai agen pengurangan dalam
sintesis AgNPs. Ekstrak mentah telah ditambah ke dalam larutan 1 mM AgNO3
dan disimpan dalam gelap pada suhu bilik selama 24 jam. Proses ini diulang
untuk semua ekstrak mentah dengan kekutuban pelarut yang berbeza. Penyelesaian
AgNP yang diperolehi dianalisis dengan menggunakan spektrofotometer UV-Vis,
spektroskopi inframerah transformasi Fourier (FTIR), dan mikroskop elektron
pengimbasan (SEM). Kestabilan AgNP diperhatikan dan dibandingkan dari ekstrak
yang berbeza kekutubannya. Panjang gelombang UV-Vis yang diperoleh untuk 6 set
adalah antara julat 415-485.5 nm. Pembentukan AgNP berdasarkan jalur resonans
plasmon permukaan dibuktikan oleh puncak yang muncul sekitar λ = ~450 nm.
Spektroskopi FTIR bagi pelbagai ekstrak menunjukkan kehadiran OH, regangan CH,
regangan C=O, regangan C=C dan regangan CO, masing-masing berbanding dengan
spektrum FTIR untuk AgNP untuk sintesis dan penstabilan AgNPs. Imej SEM
menunjukkan saiz AgNP yang berbeza untuk ekstrak berbeza dengan julat kira-kira
67 hingga 843 nm.
Kata kunci: sintesis hijau,
agen penurun, AgNPs
hijau, euphorbiaceae, Euphorbia milii
References
1. Xu, L., Wang, Y. Y., Huang,
J., Chen, C. Y., Wang, Z. X., and Xie, H. (2020). Silver nanoparticles:
Synthesis, medical applications and biosafety. Theranostics, 10(20): 8996-9031.
2. Saidi, M. N. S., Yusoff, H. M., Irsyad,
U. H. B., Apaalasamy, S., Hassim, A. D. M., Yusoff,
F., Asari, A., and Wahab, N. H. A. (2020). Stability and antibacterial
properties of green synthesis silver nanoparticles using Nephelium lappaceum peel extract. Malaysian Journal of
Analytical Sciences, 24(6): 940-953.
3. Lekha, N. K., Khaga, R. S.,
Hari, P., Kshama, P., Bipeen, D., Ganga, D. C., Yuba,
R. P., & Surya, K. K. (2022). Green synthesis of silver nanoparticles from
root extracts of rubus ellipticus
sm. And comparison of antioxidant and antibacterial activity. Journal of Nanomaterials, 11: 1832587.
4. Borase, H. P., Patil, C. D.,
Salunkhe, R. B., Narkhede, C. P., Salunke, B. K., and Patil, S. V. (2013).
Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal
agent. Journal of Nanomedicine and Biotherapeutic Discovery, 3(1): 1-7.
5. Gaurav, P., Priya, R., and Anjana, P. (2019). Green
synthesis of nanoparticles: A greener approach for a cleaner future. Micro and Nano Technologies, 1-26.
6. Krithiga, N., Rajalakshmi, A., and Jayachitra, A.
(2015). Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea
and Solanum nigrum and study of its antibacterial effect against common
nosocomial pathogens. Journal of Nanoscience, 2015: 1-8.
7. Abd Mutalib, N. S. A., Yusuf, N., Asari, A., Aziz, A.
N., and Wahab, N. H. A. (2020). Qualitative and quantitative of phytochemical
analysis of Malaysian Euphorbia milii (Euphorbiaceae) and its
antioxidant activities. Malaysian Applied
Biology, 46(4): 233-239.
8. Kamurthy, H., Dontha, S., and
Rajani, K. (2015). Phytochemical screening on euphorbia milii red flowers- isolation of
terpenoids, flavone and phenol. American
Journal of Ethnomedicine, 2(6): 322-332.
9. AlSalhi, M. S., Elangovan, K., Ranjitsigh,
A. J. A., Murali, P., and Devanesan, S. (2019). Synthesis of silver
nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of
antimicrobial, antioxidant and antitumor activity. Saudi Journal of Biological Sciences, 26: 970-978.
10. Lubis, F. A., Malek, N. A. N. N.,
Sani, N. S., and Jemon, K. (2022). Biogenic synthesis of silver nanoparticles
using Persicaria odorata leaf extract:
Antibacterial, cytocompatibility, and in vitro wound healing evaluation. Particuology, 70: 10-19.
11. Wiley, B. J., Sang, H. I.,
Zhi-Yuan, L., McLellan, J., Siekkinen, A., and Xia, Y. (2006). Manuevering the surface plasmon resonance of silver
nanostructures through shape-conrolled synthesis. Journal of Physical Chemistry B, 110: 15666-15675.
12. Isa, N., Osman, M. S., Abdul
Hamid, H., Inderan, V., and Lockman, Z. (2023).
Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous
extract of shortleaf spikes edge and their catalytic activity. International
Journal of Phytoremediation, 25(5): 658-669.
13. Paramelle, D., Sadovoy, A., Gorelik,
S., Free, P., Hobley, J., and Fernig, D. G. (2014). A
rapid method to estimate the concentration of citrate capped silver
nanoparticles from UV-visible light spectra. Analyst, 139(19):
4855-4861.
14. Singh, R., and Navneet.
(2021). Green synthesis of silver nanoparticles using methanol extract of
ipomoea carnea Jacq. To combat multidrug resistance
bacterial pathogens. Current Research in
Green and Sustainable Chemistry, 4: 100152.
15. Payapo, I. A., Zakir, M., and Soekamto, N. H. (2017). Synthesis of silver nanoparticles
using bioreductor of ketapang
leaf extract (Terminalia catappa) and its potential as sunscreen. Indonesia Chimica
Acta, 10(1): 1-19.
16. Ahmad, N., Fozia, Jabeen, M.,
Haq, Z. U., Ahmad, I., Wahab, A., Islam, Z. U., Ullah, R., Bari, A.,
Abdel-Daim, M. M., El-Demerdash, F. M., and Khan, M.
Y. (2022). Green fabrication of silver nanoparticles
using euphorbia serpens kunth
aqueous extract, their characterization, and investigation of its in vitro antioxidative,
antimicrobial, insecticidal, and cytotoxic activities. BioMed Research
International, 2022: 5562849.
17. Bennet Rohan, D., Raji, P., Divya Kumar, M., Gandham,
R. G., Kripu Sharma, V., Keerthana, D., Karishma, S.,
Antony, V. S., Iyappan, P., Thirumurugan, R., Sajna, K. P., Paulraj, P.,
Jenifer Selvarani, A., and Prakash, P. (2020). Green synthesis and
antibacterial activity studies of silver nanoparticles from the aqueous
extracts of euphorbia hirta. Journal of Pure
and Applied Microbiology, 14(1):
301-306.
18. Rizwan, M., Amin, S., Malikovna,
B. K., Rauf, A., Siddique, M., Ullah, K., Bawazeer, S., Farooq, U., Mabkhot, Y. N., and Ramadan, M. F. (2020). Green synthesis
and antimicrobial potential of silver nanoparticles with boerhavia procumbens extracts. Journal
of Pure an Applied Microbiology, 14(2): 1437-1451
19. Shireen, F., Bashir, A.,
Ahmad, L., Khan, S., Rauf, A., Khalil, A. A., Zia, A., Mabkhot,
Y., Almarhoon, Z., Hassanien,
M., and Sharifi-Rad, J. (2022). Anti-neoplastic and cytotoxic evaluation of
green AgNPs and crude extracts from Agave
americana, Mentha spicata, and Mangifera indica leaves. Journal of Nanomaterials, 2022: 9723074.