Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 754 - 765
PURIFICATION OF POTENT ANGIOTENSIN CONVERTING
ENZYME (ACE)-INHIBITORY PEPTIDES DERIVED FROM RED TILAPIA (Oreochromis
Sp.) BY-PRODUCTS
(Penulenan Peptida Perencat Enzim Penukaran Angiotensin
(ACE) daripada Produk Sampingan Ikan Tilapia Merah (Oreochromis Sp.))
Nur Suraya Abdul Wahab1, Emmy Liza Anak Yaji1, Norfahana Abd-Talib1,, Mohammad Zulkeflee Sabri2,, Kelly Yong Tau Len3, Fadzlie Wong Faizal Wong4, and Khairul Faizal
Pa’ee1*
1Food Engineering Technology, Universiti
Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering
Technology, 78000 Alor Gajah, Melaka, Malaysia
2Bioengineering Technology, Universiti
Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering
Technology, 78000 Alor Gajah, Melaka, Malaysia.
3Process Engineering
Technology, Universiti Kuala Lumpur, Branch Campus
Malaysian Institute of Chemical and Engineering Technology, 78000 Alor Gajah,
Melaka, Malaysia.
4Faculty of
Biotechnology and Biomolecular Sciences, Universiti
Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
*Corresponding author: khairulfaizal@unikl.edu.my
Received:
7 October 2022; Accepted: 17 January 2023; Published: 22 August 2023
Abstract
Diet and lifestyle
changes are essential alternative treatments for hypertension. Consumers are
increasingly more interested in health-promoting ingredients. The use of red
tilapia (Oreochromis sp.) by-products (RTBP) has been established as a
precursor for protein hydrolysate with angiotensin I-converting
(ACE)-inhibitory activity. However, the complexity of the protein hydrolysate
reduces its potency. Thus, this work aimed to purify and characterise the ACE-inhibitory
hydrolysate derived from red tilapia (Oreochromis sp.). Thermoase PC10F (EC 3.4.24.27) was used in this study to
hydrolyse red tilapia by-products (Oreochromis sp.). Meanwhile,
ultrafiltration (UF), anion-exchange principle (AEX) and hydrophobic interaction
chromatogram (HIC) were applied to purify the hydrolysate. Two molecular weight
cut-offs (MWCO) were used for ultrafiltration: 3 kDa
and 1 kDa. The 1 kDa
hydrolysate showed the highest bioactivity of 85.42% (IC50=0.41 mg
mL-). Subsequently, the 1 kDa RTBP
hydrolysate was purified based on charge using AEX. Positively charged
hydrolysate demonstrated significant bioactivity of 72.32%. In the final
purification steps, the hydrophobic fractions showed the highest ACE-inhibitory
activity obtained through the hydrophobic interaction chromatogram. The chromatogram yielded two fractions
of peaks of high ACE-inhibitory activity on the hydrophobic fraction, which
were 90.44% and 95.28%, respectively. Thus, ACE-inhibitory hydrolysate of small molecular size, positive
charged and hydrophobic contributed significantly to its potency.
Keywords: ACE-inhibitory activity, hydrophobicity, red
tilapia by-product. protein hydrolysate, purification
Abstrak
Penukaran enzim yang dikenali sebagai Angiotensin-1 kepada
Angiotensin-2 bertanggungjawab ke
atas kenaikan tekanan darah yang menyebabkan hipertensi. Perubahan diet dan gaya hidup perlu diterapkan
sebagai pelan rawatan alternatif. Pasaran untuk kompoun
penggalak kesihatan didalam makanan semakin dicari-cari pengguna. Sejak sedekad lalu, pelbagai
kajian dijalankan ke atas hasil
sampingan ikan tilapia (Oreochromis
sp.) kerana sifat biologinya
terutamanya sebagai agen antihipeternsi. Kenaikkan permintaan bekalan terhadap filet ikan turut meningkatkan
kadar penangkapan ikan. Maka, terdapat
lebihan model pengeluaran
yang dapat dieksploitasi dengan cara yang menguntungkan. Di dalam kajian ini,Thermoase
PC10F menghasilkan hidrolisat penghambat ACE daripada hasil sampingan ikan tilapia merah (Oreochromis
sp.). Manakala hidrolisat
ini ditulenkan melalui ultrafiltrasi (UF), prinsip pertukaran anion (AEX)
dan kromatogram interaksi hidrofobik (HIC). Dua berat molekul 3 kDa dan 1 kDa digunakan
didalam proses ultrafiltrasi.
Penghambatan aktiviti ACE untuk berat molekul
1 kDa lebih tinggi berbanding 3 kDa dengan jumlah
85.42%. Seterusnya, hidrolisat
1 kDa ditulenkan melalui prinsip pertukaran ion dan hidrolisat bercas positif mempunyai penghambatan aktiviti ACE yang tertinggi
(72.32%) berbandingkan dengan
hidrolisat bercas negatif. Akhir sekali, proses penulenan dilakukan melalui kromatogram interaksi hidrofobik dan pecahan hidrofobik mempunyai penghambatan aktiviti ACE yang tertinggi. Kromatogram menghasilkan dua bagian puncak hidrofobik
yang mempunya peringkat aktiviti penghambatan ACE tertinggi sebanyak 90.44% dan
95.28%. Maka, sifat molekul yang kecil, bercas positif dan hidrofobik merupakan ciri-ciri hidrolisat penghambatan aktiviti ACE yang manjur.
Kata kunci: penghambatan aktiviti ACE, kehidrofobikan, produk
sampingan ikan tilapia merah, protein hidrosilat, penulenan
References
1. Gao, R., Yu, Q., Shen, Y., Chu, Q., Chen, G., Fen, S.,
Yang, M., Yuan, L., McClements, D. J. and Sun, Q. (2021). Production, bioactive
properties, and potential applications of fish protein hydrolysates:
Developments and challenges. Trends in Food Science & Technology, 110:
687-699.
2. Memarpoor-Yazdi, M., Zare-Zardini, H., Mogharrab, N. and Navapour, L.
(2020). Purification, characterization and mechanistic evaluation of
angiotensin converting enzyme inhibitory peptides derived from Zizyphus jujuba fruit. Scientific
Reports, 10(1): 1-10.
3. Caballero, J. (2020). Considerations for docking of
selective angiotensin-converting enzyme inhibitors. Molecules, 25(2):
295.
4. Hua, X., Sun, L., Zhong, C., Wu, Q., Xiao, P.,
Yoshida, A., Liu, G. and Cao, M. (2020). Successive digestion of tilapia
collagen by serine proteinase and proline specific endopeptidase to produce
novel angiotensin I-converting enzyme inhibitory peptides. Marine Life
Science & Technology, 2: 268-278.
5. Ling, Y., Liping, S. and Yongliang, Z. (2018). Preparation and identification of
novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular
docking. Food & Function, 9(10): 5251-5259.
6. Ghassem, M., Arihara, K., Babji, A. S., Said, M. and Ibrahim, S. (2011). Purification
and identification of ACE inhibitory peptides from Haruan
(Channa striatus)
myofibrillar protein hydrolysate using HPLC–ESI-TOF MS/MS. Food
chemistry, 129(4): 1770-1777.
7. Ghassem, M., Babji, A. S., Said,
M., Mahmoodani, F. and Arihara,
K. (2014). Angiotensin I–converting enzyme inhibitory peptides from snakehead
fish sarcoplasmic protein hydrolysate. Journal of Food Biochemistry, 38(2):
140-149.
8. Ishak, N. H. and Sarbon, N.
M. (2018). A review of protein hydrolysates and bioactive peptides deriving
from wastes generated by fish processing. Food and Bioprocess
Technology, 11: 2-16.
9. Hoa, H. Q. and Duy, N. X. (2016). Ace-Inhibitory Activity
Of Protein Hydrolysate From The Skin Of Striped
Catfish (Pangasius hypophthalmus). Journal Fish. Science Technology, 3: 1-10.
10. Rincón, C. T. S. and Montoya, J. E. Z. Effects of enzymatic
hydrolysis conditions on the antioxidant activity of red tilapia (Oreochromis
spp.) viscera hydrolysates. Current
Pharmaceutical Biotechnology,
21:1-13.
11. Pędziwiatr, P., Zawadzki, D. and Michalska, K. (2017).
Aquaculture waste management. Acta Innovation, 22(22): 20-29.
12.
Chen,
J., Wang, Y., Zhong, Q., Wu, Y. and Xia, W. (2012). Purification and
characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory
peptide derived from enzymatic hydrolysate of grass carp protein. Peptides,
33(1): 52-58.
13. Chen, J., Chen, Y., Xia, W., Xiong, Y. L., Ye, R. and
Wang, H. (2016). Grass carp peptides hydrolysed by the combination of Alcalase and Neutrase:
Angiotensin‐I converting enzyme (ACE) inhibitory activity, antioxidant
activities and physicochemical profiles. International Journal of Food
Science & Technology, 51(2): 499-508.
14. Roslan, J., Yunos, K. F. M.,
Abdullah, N. and Kamal, S. M. M. (2014). Characterization of fish protein
hydrolysate from tilapia (Oreochromis niloticus)
by-product. Agriculture and Agricultural Science Procedia, 2:
312-319.
15.
Sierra-Lopera,
L. M. and Zapata-Montoya, J. E. (2021). Optimization of enzymatic hydrolysis of
red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnology
Reports 30:1-10.
16. Zahiri, J., Emamjomeh, A.,
Bagheri, S., Ivazeh, A., Mahdevar,
G., Tehrani, H. S., Mirzaie, M., Fakgheri,
B. A. and Mohammad-Noori, M. (2020). Protein complex prediction: a
survey. Genomics, 112(1): 174-183.
17. Dycka, F., Bobal, P., Mazanec, K. and Bobalova, J.
(2012). Rapid and efficient protein enzymatic digestion: an experimental
comparison. Electrophoresis, 33(2): 288-295.
18. Adekoya, O. A. and Sylte, I.
(2009). The thermolysin family (M4) of enzymes:
therapeutic and biotechnological potential. Chemical Biology & Drug
Design, 73(1): 7-16.
19. MacLeod-Carey, D., Solis-Céspedes, E., Lamazares, E. and Mena-Ulecia, K.
(2020). Evaluation of new antihypertensive drugs designed in silico using Thermolysin as a target. Saudi Pharmaceutical
Journal, 28(5): 582-592.
20. Mahmoodani, F., Ghassem, M., Babji, A. S., Yusop, S. M. and Khosrokhavar, R. (2014). ACE inhibitory activity of
pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. Journal of Food Science and
Technology, 51(9): 1847-1856.
21. Ke, M., Shen, H., Wang, L., Luo, S., Lin, L. and Yang, J.
(2016). Modern proteomics-sample preparation, analysis and practical
applications. Springer International. Switzerland: pp. 345-382.
22.
Baynes,
J. W. and Dominiczak, M. H. (2019). Medical Biochemistry. Elsevier. China.
23.
Acquah,
C., Wei, Y. Sharadwata, C. and Dominic P. (2018). Structure ‐ informed
separation of bioactive peptides. Journal Food Biochemistry, 43(1):
1-10.
24. Nielsen, P. M., Petersen, D. and Dambmann,
C. J. (2001). Improved method for determining food protein degree of
hydrolysis. Journal of Food Science, 66(5): 642-646.
25. Pa’ee, K. F., Razali, N., Sarbini,
S. R., Ramonaran Nair, S. N., Yong Tau Len, K. and
Abd-Talib, N. (2021). The production of collagen type I hydrolyzate
derived from tilapia (Oreochromis sp.) skin using thermoase
PC10F and its in silico analysis. Food Biotechnology, 35(1):
1-21.
26. Roslan, J., Kamal, S. M. M., Yunos,
K. F. M. and Abdullah, N. (2017). Assessment on multilayer ultrafiltration
membrane for fractionation of tilapia by-product protein hydrolysate with
angiotensin I-converting enzyme (ACE) inhibitory activity. Separation
and Purification Technology, 173: 250-257.
27.
Ghassem,
M., Arihara, K. and Babji, A.S. (2012). Isolation, purification and
characterisation of angiotensin I-converting enzyme-inhibitory peptides derived
from catfish (Clarias batrachus) muscle protein thermolysin hydrolysates. International Journal of Food Science
Technology, 47(11): 2444–2451.
28. Pa’ee, K. F., Gibson, T., Marakilova,
B. and Jauregi, P. (2015). Production of acid whey
hydrolysates applying an integrative process: Effect of calcium on process
performance. Process Biochemistry, 50(2): 302-310.
29.
Alonso,
G., del Valle, E. and Ramirez, J. R. (2020). Desalination in nuclear power
plants. Woodhead Publishing, Elsevier, pp: 31–42.
30. Roslan, J., Kamal, S. M. M., Yunos,
K. F. M. and Abdullah, N. (2019). Assessment on flux reduction and protein
rejection behavior in fractionating tilapia
by-product protein hydrolysate by ultrafiltration membrane. Pertanika Journal of Science and Technology,
27(S1): 67-80.
31. Ali, N. A., Hassan, F. and Hamzah, S. (2012).
Preparation and characterization of asymmetric ultrafiltration membrane for
effective recovery of proteases from surimi wash water. Frontiers of
Chemical Science and Engineering, 6(2): 184-191.
32.
Singh,
R. (2005). Introduction to membrane technology. Hybrid Membrane System
of Water Purification: pp. 1-56.
33.
Sofiah,
H., Nora’aini, A., Asmadi, A. and Abdul Wahab, M. (2014). Preparation and
characterization of asymmetric ultrafiltration membrane for lysozyme
separation: Effect of polymer concentration. ARPN Journal of Engineering and
Applied Science, 9(12): 2543-2550.
34. Zain, M. M., Mohammad, A. W. and Hairom,
N. H. H. (2017). Flux and permeation behaviour of ultrafiltration in sugaring
out cellulose hydrolysate solution: A membrane screening. Journal of
Physical Science, 28(1): 25-38.
35.
Ishak,
N. H., Shaik, M. I., Yellapu, N. K., Howell, N. K. and Sarbon, N. M. (2021).
Purification, characterization and molecular docking study of angiotensin-I
converting enzyme (ACE) inhibitory peptide from shortfin scad (Decapterus
macrosoma) protein hydrolysate. Journal of Food Science Technology,
58(12): 4567-4577.
36. Lin, H. C., Alashi, A. M.,
Aluko, R. E., Sun Pan, B. and Chang, Y. W. (2017). Antihypertensive properties
of tilapia (Oreochromis spp.) frame and skin enzymatic protein
hydrolysates. Food & Nutrition Research, 61(1): 1-12.
37. Aykul, S. and Martinez-Hackert,
E. (2016). Determination of half-maximal inhibitory concentration using biosensor-based
protein interaction analysis. Analytical biochemistry, 508:
97-103.
38. Liu, C., Fang, L., Min, W., Liu, J. and Li, H. (2018).
Exploration of the molecular interactions between angiotensin-I-converting
enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus
heterophylla Fisch.). Food Chemistry, 245(2888): 471-480.
39.
de Vos,
W. M. and Lindhoud, S. (2019). Overcharging
and charge inversion: Finding the correct explanation(s). Advance Colloid
Interface Science, 274(3): 1-8.
40.
Fekete,
S., Beck, A., Veuthey, J. L. and Guillarme,
D. (2015). Ion-exchange chromatography for the characterization of
biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 113:
43-55.
41. Je, J. Y., Park, P. J., Kwon, J. Y. and Kim, S. K.
(2004). A novel angiotensin I converting enzyme inhibitory peptide from Alaska
pollack (Theragra chalcogramma)
frame protein hydrolysate. Journal of Agricultural and Food Chemistry, 52(26):
7842-7845.
42. Sungperm, P., Khongla, C. and Yongsawatdigul, J. (2020). Physicochemical properties and
angiotensin I converting enzyme inhibitory peptides of freshwater fish skin
collagens. Journal of Aquatic Food Product Technology, 29(7):
650-660.
43. Manoharan,
S., Shuib, A. S. and Abdullah, N. (2020). Structural
characteristics and antihypertensive effects of angiotensin-I-converting enzyme
inhibitory peptides in the renin-angiotensin and kallikrein kinin systems. African
Journal of Traditional Complement Alternative Medicines, 14(2): 383-406.
44. Daskaya-Dikmen, C., Yucetepe, A., Karbancioglu-Guler, F., Daskaya,
H. and Ozcelik, B. (2017). Angiotensin-I-converting
enzyme (ACE)-inhibitory peptides from plants. Nutrients, 9(4):
1-19.
45. De Leo, F., Panarese, S., Gallerani, R. and Ceci, L. R. (2009). Angiotensin
converting enzyme (ACE) inhibitory peptides: Production and implementation of
functional food. Current Pharmaceutical Design, 15(31):
3622-3643.
46. Ko,
A. J., Kang, N., Kim, J. L. J., Park, W. K. S. and Jeona,
Y. K. Y. (2016). Angiotensin I-converting enzyme inhibitory peptides from an
enzymatic hydrolysate of flounder fish (Paralichthys
olivaceus ) muscle as a potent anti-hypertensive agent. Process Biochemistry, 51(4): 535-541.
47. Acquah, C., Di Stefano, E. and Udenigwe, C. C. (2018). Role of hydrophobicity in food peptide
functionality and bioactivity. Journal of Food Bioactives, 4:
88-98.