Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 740 - 753
INVESTIGATION
ON CHEMICAL CONSTITUENTS IN DAMMAR RESIN EXTRACT FROM STINGLESS BEE HIVE AND
ITS POTENTIAL AS CORROSION INHIBITOR
(Penyiasatan Konstituen Kimia dalam Extrak Resin
Dammar
daripada Sarang Lebah
Tanpa Sengat dan Potensinya Sebagai Perencat Kakisan)
Mokhtar Che Ismail1, Muhammad Hadi1 ,
Solhan Yahya2*, and Zuliahani
Ahmad2
1Centre for
Corrosion Research,
Department of Mechanical
Engineering,
Universiti Teknologi PETRONAS,
32610 Seri Iskandar Perak,
Malaysia.
2Faculty of
Applied Science,
Universiti Teknologi
MARA, Cawangan Perlis, Arau
Campus,
02600 Arau, Perlis,
Malaysia
*Corresponding author: solhan@uitm.edu.my
Received:
7 April 2022; Accepted: 21 June 2023; Published: 22 August 2023
Abstract
This
study aimed to determine the major compounds present in local dammar resin and
its potential as an anticorrosive property. Dammar resin from a stingless bee
hive was subjected to solvent extraction using an aqueous system; 70:30 v/v of
ethanol: water. The yield of extraction was characterized through Fourier
transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS). A
linear polarization resistance (LPR), potentiodynamic
polarization, and weight loss test were performed to evaluate the corrosion
rate of steel. The result shows that longipinane
(18%) was the major compound present in the extract, followed by ursolic aldehyde (14%), 1H-cycloprop[e]azulene (6.85%),
3,4-dichlorophenyl thiocyanate (6%), azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethenyl)
(4.48%), and 2,4-heptadienal (4%). The existence of aromatic structure, phenyl
group, C=C, and C=O provides an active site for adsorption on the metal surface
to inhibit steel corrosion. LPR and weight loss test revealed the lowest
corrosion rate at the 600 ppm dammar extract and
recorded about 60% and 74% inhibition efficiency respectively. Tafel analysis
showed a decrease in current density from 5.8 x 10-3
to 8.0 x 10-4 after 600 ppm dammar extract was employed in the
corrosive medium of 3% NaCl, eventually, giving an inhibition efficiency at
86.2%. This research signifies that the local dammar resin of stingless bee
hives has great potential as a corrosion inhibitor.
Keywords: dammar resin, gas chromatography-mass
spectroscopy, corrosion rate, corrosion inhibition,
Tafel
Abstrak
Kajian
ini bertujuan untuk menentukan sebatian utama yang terdapat dalam resin dammar tempatan dan mengenalpasti potensi sifat antikarat.
Dammar daripada sarang lebah tanpa sengat
telah melaui pengekstrakan pelarut menggunakan sistem akueus; 70:30 v/v etanol: air.
Hasil pengekstrakan telah dicirikan melalui inframerah transfromasi Fourier
(FTIR) dan kromatografi gas-spektrometri
jisim (GC-MS). Rintangan polarisasi linear (LPR), pengutuban
potensiodinamik dan ujian kehilangan berat telah dilakukan untuk menilai kadar
kakisan keluli. Keputusan menunjukkan bahawa longipinan (18%) merupakan sebatian utama dalam ekstrak, diikuti oleh aldehid ursolik (14%), 1H-cycloprop[e]azulene (6.85%),
3,4-diklorofenil tiosianat (6%), azulena,
1,2,3,3a,4,5,6,7-oktahidro-1,4-dimetil-7-(1-metiletenal) (4.48%) dan
2,4-heptadienal (4%). Kewujudan struktur
aromatik, kumpulan fenil, C=C dan C=O menyediakan tapak aktif untuk
penjerapan pada permukaan logam bagi menghalang
kakisan keluli. Keputusan
LPR dan ujian kehilangan berat menunjukkan kadar kakisan terendah
pada ekstrak dammar 600 ppm, dan masing-masing
merekodkan kira-kira 60%
dan 74% kecekapan perencatan.
Analisis Tafel menunjukkan penurunan ketumpatan arus dari 5.8 x 10-3 kepada 8.0 x 10-4 selepas
ekstrak dammar 600 ppm digunakan
dalam medium 3% NaCl, akhirnya
memberikan kecekapan perencatan 86.2%. Penyelidikan ini menunjukkan resin dammar sarang lebah tanpa
sengat yang diperoleh dari sumber tempatan
berpotensi besar sebagai perencat kakisan logam.
Kata kunci: dammar, kromatografi gas-spektrometri jisim, kadar kakisan,
perencatan kakisan, Tafel
References
1. Ali Asaad,
M., Bothi Raja, P., Fahim Huseien, G., Fediuk, R., Ismail, M., and Alyousef, R.
(2021). Self-healing epoxy coating doped with Elaesis guineensis/silver
nanoparticles: A robust corrosion inhibitor. Construction and Building
Materials, 312: 125396.
2. Alrefaee,
S. H., Rhee, K. Y., Verma, C., Quraishi, M. A., and Ebenso, E. E. (2021).
Challenges and advantages of using plant extract as inhibitors in modern
corrosion inhibition systems: Recent advancements. Journal of Molecular
Liquids, 321: 114666.
3. Liu, S.,
Wang, X., Yin, Q., Xiang, X., Fu, X. Z., Wang, X. Z., and Luo, J. L. (2022). A
facile approach to fabricating graphene/waterborne epoxy coatings with dual
functionalities of barrier and corrosion inhibitor. Journal of Materials
Science and Technology, 112: 263-276.
4. Rivero-cruz,
J. F., Granados-pineda, J., Pedraza-chaverri, J., and Rivero-cruz, B. E.
(2020). and Antimicrobial activities of the ethanolic extract of mexican brown
propolis. Antioxidants, 9(70): 1-11.
5. Vrsalović,
L., Gudić, S., Gracić, D., Smoljko, I., Ivanić, I.,
Kliškić, M., and Oguzie, E. E. (2018). Corrosion protection of copper in
sodium chloride solution using propolis. International Journal of
Electrochemical Science, 13(2), 2102-2117.
6. Rizvi, M.,
Gerengi, H., Yildiz, M., Kekecoglu, M., & Pehlivan, M. M. (2020).
Investigation of “propolis” as a green inhibitor of SAE 1010 carbon steel
corrosion in 3.5% NaCl environment. Industrial and Engineering Chemistry
Research, 59(19): 9328-9339.
7. Gapsari,
F., Soenoko, R., Suprapto, A., and Suprapto, W. (2015). Bee wax propolis
extract as eco-friendly corrosion inhibitors for 304SS in sulfuric acid. International
Journal of Corrosion, 2015: 1-10.
8. Hachelef,
H., Khelifa, A., and Benmoussat, A. (2021). Propolis extract as corrosion
inhibitor of iron alloy immersed in an ethylene glycol/water, 0.1 m NaCl
solution. Defect and Diffusion Forum, 406: 265-273.
9. Varvara, S.,
Bostan, R., Bobis, O., Găină, L., Popa, F., Mena, V., and Souto, R.
M. (2017). Propolis as a green corrosion inhibitor for bronze in weakly acidic
solution. Applied Surface Science, 426: 1100-1112.
10. Islami, L. A., Sembodo, S., and
Anawati, A. (2020). Anticorrosive behavior of propolis as a green corrosion
inhibitor for aluminum. Proceedings of the 3rd International
Seminar on Metallurgy and Materials (ISMM2019): Exploring New Innovation in
Metallurgy and Materials, 2232: 020002.
11. Huang, S., Zhang, C.
P., Wang, K., Li, G. Q., and Hu, F. L. (2014). Recent advances in the chemical
composition of propolis. Molecules, 19(12): 19610-19632.
12. Ismail, T. N. N. T., Sulaiman,
S. A., Ponnuraj, K. T., Man, C. N., and Hassan, N. B. (2018). Chemical
constituents of Malaysian apis mellifera propolis. Sains Malaysiana,
47(1): 117-122.
13. Leonhardt, S. D., Blüthgen, N.,
and Schmitt, T. (2011). Chemical profiles of body surfaces and nests from six
Bornean stingless bee species. Journal of Chemical Ecology, 37(1):
98-104.
14. Freitas, M. O., Ponte, F. A.
F., Lima, M. A. S., and Silveira, E. R. (2008). Flavonoids and triterpenes from
the nest of the stingless bee Trigona spinipes. Journal of the Brazilian
Chemical Society, 19(3): 532-535.
15. Kartal, M., Kaya, S., and
Kurucu, S. (2002). GC-MS analysis of propolis samples from two different
regions of Turkey. Zeitschrift Fur Naturforschung - Section C Journal of
Biosciences, 57(9-10): 905-909.
16. Shang, Z., and Zhu, J. (2021).
Overview on plant extracts as green corrosion inhibitors in the oil and gas
fields. Journal of Materials Research and Technology, 15: 5078-5094.
17. Popov, S. A., Sheremet, O. P.,
Kornaukhova, L. M., Grazhdannikov, A. E., and Shults, E. E. (2017). An approach
to effective green extraction of triterpenoids from outer birch bark using
ethyl acetate with extractant recycle. Industrial Crops and Products,
102: 122-132.
18. ASTM G 31-72. (1985). Standard
practice for laboratory immersion corrosion testing of metals. ASTM International,
Reapproved 2004: pp.1-8.
19. ASTM G1-90. (1999). Standard
practice for preparing, cleaning, and evaluation corrosion test specimens. ASTM
International, Reapproved 1999: pp.15–21.
20. Goyal, M., Kumar, S., Bahadur,
I., Verma, C., and Ebenso, E. E. (2018). Organic corrosion inhibitors for
industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A
review. Journal of Molecular Liquids, 256: 565-573.
21. Popoola, L. T. (2019).
Organic green corrosion inhibitors (OGCIs): A critical review. Corrosion
Reviews, 37(2): 71-102.
22. Sayed Fouda, A. E. A. El, and
Badr, A. H. (2013). Aqueous extract of propolis as corrosion inhibitor for
carbon steel in aqueous solutions. African Journal of Pure and Applied
Chemistry, 7(10): 350-359.
23. Palaniappan, N., Cole, I.,
Caballero-Briones, F., Manickam, S., Justin Thomas, K. R., and Santos, D.
(2020). Experimental and DFT studies on the ultrasonic energy-assisted extraction
of the phytochemicals of: Catharanthus roseus as green corrosion inhibitors for
mild steel in NaCl medium. RSC Advances, 10(9): 5399–5411.
24. Varvara, S., Bostan, R., Bobis,
O., Găină, L., Popa, F., Mena, V., and Souto, R. M. (2017). Propolis
as a green corrosion inhibitor for bronze in weakly acidic solution. Applied
Surface Science, 426:1100-1112.
25. Bard, and Stratmann (2003). Encyclopedia
of Electrochemistry, Corrosion and Oxide Films. Wiley-VCH Verlag, Weinhem.
26. Adejo, S. O., Ekwenchi, M. M.,
Olatunde, P. O., and Agbajeola, E. F. (2014). Adsorption characteristics of
ethanol root extract of Portulaca oleracea as eco-friendly inhibitor of
corrosion of mild steel in H2SO4 medium. IOSR Journal
of Applied Chemistry, 7(4): 55-60.
27. McCafferty, E. (2009). Introduction
to Corrosion Science. Washington, DC: Springer New York Dordrecht
Heidelberg London: pp.1-575.
28. Rani, B.
E. A., and Basu, B. B. J. (2012). Green
inhibitors for corrosion protection of metals and alloys: An overview. International
Journal of Corrosion, 1-15.
29. Sharma, S. K. (2012). Green
Corrosion Chemistry and Engineering: Oppurtunities and Challenges.
Wiley-VCH Verlag & Co. KGaA,Weinheim Germany: pp.1-419
30. Chauhan, D. S., Ansari, K. R.,
Sorour, A. A., Quraishi, M. A., Lgaz, H., and Salghi, R. (2018).
Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly
corrosion inhibitors for carbon steel in hydrochloric acid solution. International
Journal of Biological Macromolecules, 107: 1747-1757.