Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 740 - 753

 

INVESTIGATION ON CHEMICAL CONSTITUENTS IN DAMMAR RESIN EXTRACT FROM STINGLESS BEE HIVE AND ITS POTENTIAL AS CORROSION INHIBITOR

 

(Penyiasatan Konstituen Kimia dalam Extrak Resin Dammar

daripada Sarang Lebah Tanpa Sengat dan Potensinya Sebagai Perencat Kakisan)

 

Mokhtar Che Ismail1, Muhammad Hadi1 , Solhan Yahya2*, and Zuliahani Ahmad2

 

1Centre for Corrosion Research,

Department of Mechanical Engineering,

Universiti Teknologi PETRONAS,

32610 Seri Iskandar Perak, Malaysia.

2Faculty of Applied Science,

Universiti Teknologi MARA, Cawangan Perlis, Arau Campus,

02600 Arau, Perlis, Malaysia

 

*Corresponding author: solhan@uitm.edu.my

 

 

Received: 7 April 2022; Accepted: 21 June 2023; Published:  22 August 2023

 

 

Abstract

This study aimed to determine the major compounds present in local dammar resin and its potential as an anticorrosive property. Dammar resin from a stingless bee hive was subjected to solvent extraction using an aqueous system; 70:30 v/v of ethanol: water. The yield of extraction was characterized through Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS). A linear polarization resistance (LPR), potentiodynamic polarization, and weight loss test were performed to evaluate the corrosion rate of steel. The result shows that longipinane (18%) was the major compound present in the extract, followed by ursolic aldehyde (14%), 1H-cycloprop[e]azulene (6.85%), 3,4-dichlorophenyl thiocyanate (6%), azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethenyl) (4.48%), and 2,4-heptadienal (4%). The existence of aromatic structure, phenyl group, C=C, and C=O provides an active site for adsorption on the metal surface to inhibit steel corrosion. LPR and weight loss test revealed the lowest corrosion rate at the 600 ppm dammar extract and recorded about 60% and 74% inhibition efficiency respectively. Tafel analysis showed a decrease in current density from 5.8 x 10-3 to 8.0 x 10-4 after 600 ppm dammar extract was employed in the corrosive medium of 3% NaCl, eventually, giving an inhibition efficiency at 86.2%. This research signifies that the local dammar resin of stingless bee hives has great potential as a corrosion inhibitor.

 

Keywords: dammar resin, gas chromatography-mass spectroscopy, corrosion rate, corrosion inhibition, Tafel

 

Abstrak

Kajian ini bertujuan untuk menentukan sebatian utama yang terdapat dalam resin dammar tempatan dan mengenalpasti potensi sifat antikarat. Dammar daripada sarang lebah tanpa sengat telah melaui pengekstrakan pelarut menggunakan sistem akueus; 70:30 v/v etanol: air. Hasil pengekstrakan telah dicirikan melalui inframerah transfromasi Fourier (FTIR) dan kromatografi gas-spektrometri jisim (GC-MS). Rintangan polarisasi linear (LPR), pengutuban potensiodinamik dan ujian kehilangan berat telah dilakukan untuk menilai kadar kakisan keluli. Keputusan menunjukkan bahawa longipinan (18%) merupakan sebatian utama dalam ekstrak, diikuti oleh aldehid ursolik (14%), 1H-cycloprop[e]azulene (6.85%), 3,4-diklorofenil tiosianat (6%), azulena, 1,2,3,3a,4,5,6,7-oktahidro-1,4-dimetil-7-(1-metiletenal) (4.48%) dan 2,4-heptadienal (4%). Kewujudan struktur aromatik, kumpulan fenil, C=C dan C=O menyediakan tapak aktif untuk penjerapan pada permukaan logam bagi menghalang kakisan keluli. Keputusan LPR dan ujian kehilangan berat menunjukkan kadar kakisan terendah pada ekstrak dammar 600 ppm, dan masing-masing merekodkan kira-kira 60% dan 74% kecekapan perencatan. Analisis Tafel menunjukkan penurunan ketumpatan arus dari 5.8 x 10-3 kepada 8.0 x 10-4 selepas ekstrak dammar 600 ppm digunakan dalam medium 3% NaCl, akhirnya memberikan kecekapan perencatan 86.2%. Penyelidikan ini menunjukkan resin dammar sarang lebah tanpa sengat yang diperoleh dari sumber tempatan berpotensi besar sebagai perencat kakisan logam.

 

Kata kunci: dammar, kromatografi gas-spektrometri jisim, kadar kakisan, perencatan kakisan, Tafel

 


 

References

1.     Ali Asaad, M., Bothi Raja, P., Fahim Huseien, G., Fediuk, R., Ismail, M., and Alyousef, R. (2021). Self-healing epoxy coating doped with Elaesis guineensis/silver nanoparticles: A robust corrosion inhibitor. Construction and Building Materials, 312: 125396.

2.     Alrefaee, S. H., Rhee, K. Y., Verma, C., Quraishi, M. A., and Ebenso, E. E. (2021). Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. Journal of Molecular Liquids, 321: 114666.

3.     Liu, S., Wang, X., Yin, Q., Xiang, X., Fu, X. Z., Wang, X. Z., and Luo, J. L. (2022). A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor. Journal of Materials Science and Technology, 112: 263-276.

4.     Rivero-cruz, J. F., Granados-pineda, J., Pedraza-chaverri, J., and Rivero-cruz, B. E. (2020). and Antimicrobial activities of the ethanolic extract of mexican brown propolis. Antioxidants, 9(70): 1-11.

5.     Vrsalović, L., Gudić, S., Gracić, D., Smoljko, I., Ivanić, I., Kliškić, M., and Oguzie, E. E. (2018). Corrosion protection of copper in sodium chloride solution using propolis. International Journal of Electrochemical Science, 13(2), 2102-2117.

6.     Rizvi, M., Gerengi, H., Yildiz, M., Kekecoglu, M., & Pehlivan, M. M. (2020). Investigation of “propolis” as a green inhibitor of SAE 1010 carbon steel corrosion in 3.5% NaCl environment. Industrial and Engineering Chemistry Research, 59(19): 9328-9339.

7.     Gapsari, F., Soenoko, R., Suprapto, A., and Suprapto, W. (2015). Bee wax propolis extract as eco-friendly corrosion inhibitors for 304SS in sulfuric acid. International Journal of Corrosion, 2015: 1-10.

8.     Hachelef, H., Khelifa, A., and Benmoussat, A. (2021). Propolis extract as corrosion inhibitor of iron alloy immersed in an ethylene glycol/water, 0.1 m NaCl solution. Defect and Diffusion Forum, 406: 265-273.

9.     Varvara, S., Bostan, R., Bobis, O., Găină, L., Popa, F., Mena, V., and Souto, R. M. (2017). Propolis as a green corrosion inhibitor for bronze in weakly acidic solution. Applied Surface Science, 426: 1100-1112.

10.  Islami, L. A., Sembodo, S., and Anawati, A. (2020). Anticorrosive behavior of propolis as a green corrosion inhibitor for aluminum. Proceedings of the 3rd International Seminar on Metallurgy and Materials (ISMM2019): Exploring New Innovation in Metallurgy and Materials, 2232: 020002.

11. Huang, S., Zhang, C. P., Wang, K., Li, G. Q., and Hu, F. L. (2014). Recent advances in the chemical composition of propolis. Molecules, 19(12): 19610-19632.

12. Ismail, T. N. N. T., Sulaiman, S. A., Ponnuraj, K. T., Man, C. N., and Hassan, N. B. (2018). Chemical constituents of Malaysian apis mellifera propolis. Sains Malaysiana, 47(1): 117-122.

13.  Leonhardt, S. D., Blüthgen, N., and Schmitt, T. (2011). Chemical profiles of body surfaces and nests from six Bornean stingless bee species. Journal of Chemical Ecology, 37(1): 98-104.

14. Freitas, M. O., Ponte, F. A. F., Lima, M. A. S., and Silveira, E. R. (2008). Flavonoids and triterpenes from the nest of the stingless bee Trigona spinipes. Journal of the Brazilian Chemical Society, 19(3): 532-535.

15. Kartal, M., Kaya, S., and Kurucu, S. (2002). GC-MS analysis of propolis samples from two different regions of Turkey. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 57(9-10): 905-909.

16.  Shang, Z., and Zhu, J. (2021). Overview on plant extracts as green corrosion inhibitors in the oil and gas fields. Journal of Materials Research and Technology, 15: 5078-5094.

17. Popov, S. A., Sheremet, O. P., Kornaukhova, L. M., Grazhdannikov, A. E., and Shults, E. E. (2017). An approach to effective green extraction of triterpenoids from outer birch bark using ethyl acetate with extractant recycle. Industrial Crops and Products, 102: 122-132.

18. ASTM G 31-72. (1985). Standard practice for laboratory immersion corrosion testing of metals. ASTM International, Reapproved 2004: pp.1-8.

19. ASTM G1-90. (1999). Standard practice for preparing, cleaning, and evaluation corrosion test specimens. ASTM International, Reapproved 1999: pp.15–21.

20. Goyal, M., Kumar, S., Bahadur, I., Verma, C., and Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256: 565-573.

21. Popoola, L. T. (2019). Organic green corrosion inhibitors (OGCIs): A critical review. Corrosion Reviews, 37(2): 71-102.

22.  Sayed Fouda, A. E. A. El, and Badr, A. H. (2013). Aqueous extract of propolis as corrosion inhibitor for carbon steel in aqueous solutions. African Journal of Pure and Applied Chemistry, 7(10): 350-359.

23. Palaniappan, N., Cole, I., Caballero-Briones, F., Manickam, S., Justin Thomas, K. R., and Santos, D. (2020). Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of: Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium. RSC Advances, 10(9): 5399–5411.

24. Varvara, S., Bostan, R., Bobis, O., Găină, L., Popa, F., Mena, V., and Souto, R. M. (2017). Propolis as a green corrosion inhibitor for bronze in weakly acidic solution. Applied Surface Science, 426:1100-1112.

25. Bard, and Stratmann (2003). Encyclopedia of Electrochemistry, Corrosion and Oxide Films. Wiley-VCH Verlag, Weinhem.

26. Adejo, S. O., Ekwenchi, M. M., Olatunde, P. O., and Agbajeola, E. F. (2014). Adsorption characteristics of ethanol root extract of Portulaca oleracea as eco-friendly inhibitor of corrosion of mild steel in H2SO4 medium. IOSR Journal of Applied Chemistry, 7(4): 55-60.

27. McCafferty, E. (2009). Introduction to Corrosion Science. Washington, DC: Springer New York Dordrecht Heidelberg London: pp.1-575.

28. Rani, B. E. A., and Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: An overview. International Journal of Corrosion, 1-15.

29. Sharma, S. K. (2012). Green Corrosion Chemistry and Engineering: Oppurtunities and Challenges. Wiley-VCH Verlag & Co. KGaA,Weinheim Germany: pp.1-419

30. Chauhan, D. S., Ansari, K. R., Sorour, A. A., Quraishi, M. A., Lgaz, H., and Salghi, R. (2018). Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. International Journal of Biological Macromolecules, 107: 1747-1757.