Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 728 - 739
MOLYBDENUM
DISULFIDE FOR PHOTOCATALYTIC
DEGRADATION OF
METHYLENE BLUE
UNDER
FLUORESCENT LIGHT
(Molybdenum Disulfida Untuk
Fotokatalitik Degradasi Metilena Biru
Di Bawah Cahaya Pendarfluor
Siti Nor
Atika Baharin1, 2, Nurul Izzah Hashim1, Izyan Najwa Mohd
Norsham1,
and
Kavirajaa Pandian Sambasevam1,3*
1Advanced Material for Environmental Remediation (AMER)
Research Group,
Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
2Advanced Biomaterials & Carbon Development (ABCD),
Universiti Teknologi MARA, 40450, Shah Alam, Selangor,
Malaysia
3Electrochemical Material and Sensor (EMas) Group,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
*Corresponding author: kavirajaa@live.com
Received:
25 September 2022; Accepted: 20 May 2023; Published: 22 August 2023
Abstract
This work underlined the fluorescent
light-driven photocatalytic degradation of methylene blue by using
cauliflower-like molybdenum disulfide (MoS2). In this study,
molybdenum disulfide (MoS2) was synthesized by using
Teflon-stainless steel autoclave via the hydrothermal method. The synthesized
MoS2 were comprehensively characterized using Fourier transform
infrared (FTIR), UV-visible spectroscopy, X-ray diffraction (XRD), scanning
electron microscopy (SEM), and thermal gravimetry analysis (TGA). The
characterization studies reveal that the composites have been successfully
synthesized in which a black precipitate was obtained. Degradation of methylene
blue was conducted using the synthesized MoS2 under fluorescent
light using response surface methodology (RSM) of three-factor-three-level
Box-Behnken design (BBD). The parameters studied were MoS2 weight
loading, contact time under fluorescent light, and methylene blue pH value. The
most effective parameter observed in the degradation of methylene blue were
weight loading, followed by contact time and pH. The
results showed that the optimum condition for the degradation were with the
parameters of 15mg of MoS2 weight loading, with pH 6.5 methylene
blue, has the highest degradation percentage 99.93% with 120 minutes exposed
time under fluorescent light for degradation.
Keywords: molybdenum disulfide, photocatalytic degradation,
methylene blue, response surface methodology, Box-Behnken
Abstrak
Penyelidikan
ini menggariskan degradasi fotokatalitik dipacu cahaya pendarfluor biru
metilena dengan menggunakan molibdenum disulfida (MoS2) yang
berbentuk kobis bunga. Dalam kajian ini, molibdenum disulfida (MoS2)
telah disintesis dengan menggunakan autoklaf keluli tahan karat Teflon melalui
kaedah hidroterma. MoS2 yang disintesis telah dicirikan secara
komprehensif menggunakan inframerah transformasi Fourier (FTIR), spektroskopi
boleh dilihat UV, pembelauan sinar-X (XRD), mikroskop elektron pengimbasan
(SEM), dan analisis gravimetri terma (TGA). Kajian pencirian mendedahkan bahawa
komposit telah berjaya disintesis di mana mendakan hitam diperolehi. Degradasi
metilena biru telah dijalankan menggunakan MoS2 yang disintesis di
bawah cahaya pendarfluor menggunakan metodologi permukaan tindak balas (RSM)
reka bentuk Box-Behnken (BBD) tiga faktor-tiga peringkat. Parameter yang dikaji
ialah pemuatan berat MoS2, masa sentuhan di bawah cahaya
pendarfluor, dan nilai pH biru metilena. Parameter paling berkesan yang
diperhatikan dalam degradasi metilena biru ialah pemuatan berat, diikuti dengan
masa sentuhan dan pH. Keputusan menunjukkan bahawa keadaan optimum untuk
degradasi adalah dengan parameter 15mg beban berat MoS2, dengan pH 6.5 metilena
biru, mempunyai peratusan degradasi tertinggi 99.93% dengan 120 minit masa
terdedah di bawah cahaya pendarfluor untuk degradasi.
Kata kunci: molibdenum disulfida, degradasi
fotokatalitik, biru metilena, metodologi permukaan tindak balas, Box-Behnken
References
1.
Selvam,
R., Durai, N., Mubarakali,
H., and Vasanthy, M. (2018). Treatment of fabric
dyeing industry effluent employing low-cost material: an eco- friendly
approach. International Journal of Basic
and Applied Research, 8(9): 1298-1307.
2.
Bentahar, S., Dbik, A., El Khomri, M., El Messaoudi, N., and
Lacherai, A. (2018). Removal of a cationic dye from aqueous solution by natural clay. Groundwater for Sustainable Development, 6:
255-262.
3.
Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A.,
and El Harfi, A. (2019). Textile finishing dyes and
their impact on aquatic environments. Heliyon, 5(11):
e02711.
4.
Krishnamoorthy,
R., Choudhury, A. R., Jose, P. A., Suganya, K., Senthilkumar, M., Prabhakaran, J., Gopal, N. O., Choi, J.,
Kim, K., Anandham, R., and Sa, T. (2021). Long-term
exposure to azo dyes from textile wastewater causes the abundance of saccharibacteria population. Applied Sciences (Switzerland), 11(1):1-8.
5.
Almaamary, E. A. S., Abdullah, S. R. S., Hasan, H. A.,
Rahim, R. A. A., and Idris, M. (2017). Rawatan metilena biru dalam
air sisa menggunakan Scirpus grossus. Malaysian Journal of Analytical Sciences,
21(1): 182-187.
6.
Bodzek, M., and Rajca, M.
(2012). Photocatalysis in the treatment and disinfection of water. Part I.
Theoretical backgrounds. Ecology Chemical
Engineering Sciences, 19(4): 489-512.
7.
Baharin, S. N. A., Rusmin, R.,
and Sambasevam, K. P. (2022). Basic concept and
application of conducting polymers for environmental protection. Chemistry Teacher International, 4(2):
173-183.
8.
Singh,
P., Shandilya, P., Raizada, P., Sudhaik,
A., Rahmani-sani, A., & Hosseini-bandegharaei, A. (2018). Review on
various strategies for enhancing photocatalytic activity of graphene-based
nanocomposites for water purification. Arabian
Journal of Chemistry, 3: 1-23.
9.
Zhang,
L., and Jaroniec, M. (2018). Toward designing
semiconductor-semiconductor heterojunctions for photocatalytic applications. Applied Surface Science, 430: 2-17.
10.
Poorsajadi, F., Sayadi, M. H., Hajiani, M., and Rezaei, M. R. (2022). Synthesis of CuO/Bi2O3 nanocomposite for efficient
and recycling photodegradation of methylene blue dye. International Journal of Environmental Analytical Chemistry,
102(18): 7165-7178.
11.
Sanad,
M. M., Farahat, M. M., El-Hout, S. I., and El-Sheikh, S. M. (2021). Preparation
and characterization of magnetic photocatalyst from the banded iron formation
for effective photodegradation of methylene blue under UV and visible
illumination. Journal of Environmental
Chemical Engineering, 9(2): 105127.
12.
Drmosh, Q. A., Hezam, A., Hendi, A. H. Y., Qamar, M., Yamani, Z. H., and Byrappa, K. (2020). Ternary Bi2S3/MoS2/TiO2
with double Z-scheme configuration as high performance photocatalyst. Applied Surface Science, 499:
143938.
13.
He,
Z., & Que, W. (2016). Molybdenum disulfide nanomaterials: Structures,
properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 3: 23-56.
14.
Kumar,
R., Ansari, S. A., Barakat, M. A., Aljaafari, A., and
Cho, M. H. (2018). A polyaniline@MoS2-based organic–inorganic
nanohybrid for the removal of Congo red: adsorption kinetic, thermodynamic and
isotherm studies. New Journal Chemistry,
42:18802-18809.
15.
Chaudhary,
N., Raj, K., Harikumar, A., Mittal, H., and Khanuja, M. (2020). Comparative study of photocatalytic
activity of hydrothermally synthesized ultra-thin MoS2 nanosheets
with bulk MoS2. AIP Conference
Proceedings, 2276: 20030.
16.
Vattikuti,
S. V. P., and Shim, J. (2018). Synthesis, characterization and photocatalytic
performance of chemically exfoliated MoS2. IOP Conference Series: Materials Science and Engineering, 317(1):
1-5.
17.
Abdulhameed, A. S., Mohammad, A. K. T., and Jawad, A. H.
(2019). Application of response surface methodology for enhanced synthesis of
chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of
reactive orange 16 dye. Journal of
Cleaner Production, 232: 43-56.
18.
Chen,
J., and Zhang, P. (2006). Photodegradation of perfluorooctanoic acid in water
under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science and Technology, 54(11-12):
317-325.
19.
Ibukun,
O., Evans, P. E., Dowben, P. A., and Jeong, H. K. (2019).
Titanium dioxide-molybdenum disulfide for photocatalytic degradation of
methylene blue. Chemical Physics,
525:110419.
20.
Chaudhary,
N., Khanuja, M., Abid, and Islam, S. S. (2018).
Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength
optical sensing applications. Sensors and
Actuators, A: Physical, 277(2010): 190-198.
21.
Chen,
Y., Tan, L., Sun, M., Lu, C., Kou, J., and Xu, Z. (2019). Enhancement of
photocatalytic performance
of TaON by combining it with
noble-metal-free MoS2 cocatalysts. Journal of Materials Science, 54(7): 5321-5330.
22.
Yang,
J., Ye, M., Han, A., Zhang, Y., and Zhang, K. (2019). Preparation and
electromagnetic attenuation properties of MoS2–PANI composites: a
promising broadband absorbing material. Journal
of Materials Science: Materials in Electronics, 30(1): 292-301.
23.
Peng,
W., Wang, W., Han, G., Huang, Y., and Zhang, Y. (2020). Fabrication of 3D
flower-like MoS2/graphene composite as high-performance electrode for
capacitive deionization. Desalination, 473(August 2019), 11: 4191.
24.
Ariyanta, H. A., Ivandini, T. A.,
and Yulizar, Y. (2021). A novel way of the synthesis
of three-dimensional (3D) MoS2 cauliflowers using allicin. Chemical Physics Letters, 767: 138345.
25.
Koh,
P. W., Yuliati, L., and Lee, S. L. (2017). Kinetics
and optimization studies of photocatalytic degradation of methylene blue over
Cr-doped TiO2 using response surface methodology. Iranian Journal of Science and Technology,
Transaction A: Science, 43(1): 95-103.
26.
Bahuguna,
A., Kumar, S., Sharma, V., Reddy, K. L., Bhattacharyya, K., Ravikumar, P. C.,
and Krishnan, V. (2017). Nanocomposite of MoS2-RGO as facile,
heterogeneous, recyclable, and highly efficient green catalyst for one-pot
synthesis of indole alkaloids. ACS
Sustainable Chemistry & Engineering, 5(10): 8551-8567.
27.
Norsham, I. N. M., Sambasevam,
K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S.
N. A. (2022). Photocatalytic degradation of perfluorooctanoic acid (PFOA) via
MoS2/rGO for water purification using
indoor fluorescent irradiation. Journal
of Environmental Chemical Engineering, 10(5): 108466.
28.
Taghvaei, H., Farhadian, M., Davari, N., and Maazi, S. (2017).
Preparation, characterization and photocatalytic degradation of methylene blue
by Fe3+ doped TiO2 supported on natural zeolite usingresponse
surface methodology. Advances in
Environmental Technology, 3(4): 205-216.