Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 728 - 739

 

MOLYBDENUM DISULFIDE FOR PHOTOCATALYTIC

DEGRADATION OF METHYLENE BLUE

UNDER FLUORESCENT LIGHT

 

(Molybdenum Disulfida Untuk Fotokatalitik Degradasi Metilena Biru

Di Bawah Cahaya Pendarfluor

 

Siti Nor Atika Baharin1, 2, Nurul Izzah Hashim1, Izyan Najwa Mohd Norsham1,

and Kavirajaa Pandian Sambasevam1,3*

 

1Advanced Material for Environmental Remediation (AMER) Research Group,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Advanced Biomaterials & Carbon Development (ABCD),

Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

3Electrochemical Material and Sensor (EMas) Group,

Universiti Teknologi MARA,

40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: kavirajaa@live.com

 

 

Received: 25 September 2022; Accepted: 20 May 2023; Published:  22 August 2023

 

Abstract

This work underlined the fluorescent light-driven photocatalytic degradation of methylene blue by using cauliflower-like molybdenum disulfide (MoS2). In this study, molybdenum disulfide (MoS2) was synthesized by using Teflon-stainless steel autoclave via the hydrothermal method. The synthesized MoS2 were comprehensively characterized using Fourier transform infrared (FTIR), UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA). The characterization studies reveal that the composites have been successfully synthesized in which a black precipitate was obtained. Degradation of methylene blue was conducted using the synthesized MoS2 under fluorescent light using response surface methodology (RSM) of three-factor-three-level Box-Behnken design (BBD). The parameters studied were MoS2 weight loading, contact time under fluorescent light, and methylene blue pH value. The most effective parameter observed in the degradation of methylene blue were weight loading, followed by contact time and pH. The results showed that the optimum condition for the degradation were with the parameters of 15mg of MoS2 weight loading, with pH 6.5 methylene blue, has the highest degradation percentage 99.93% with 120 minutes exposed time under fluorescent light for degradation.

 

Keywords: molybdenum disulfide, photocatalytic degradation, methylene blue, response surface methodology, Box-Behnken

 

Abstrak

Penyelidikan ini menggariskan degradasi fotokatalitik dipacu cahaya pendarfluor biru metilena dengan menggunakan molibdenum disulfida (MoS2) yang berbentuk kobis bunga. Dalam kajian ini, molibdenum disulfida (MoS2) telah disintesis dengan menggunakan autoklaf keluli tahan karat Teflon melalui kaedah hidroterma. MoS2 yang disintesis telah dicirikan secara komprehensif menggunakan inframerah transformasi Fourier (FTIR), spektroskopi boleh dilihat UV, pembelauan sinar-X (XRD), mikroskop elektron pengimbasan (SEM), dan analisis gravimetri terma (TGA). Kajian pencirian mendedahkan bahawa komposit telah berjaya disintesis di mana mendakan hitam diperolehi. Degradasi metilena biru telah dijalankan menggunakan MoS2 yang disintesis di bawah cahaya pendarfluor menggunakan metodologi permukaan tindak balas (RSM) reka bentuk Box-Behnken (BBD) tiga faktor-tiga peringkat. Parameter yang dikaji ialah pemuatan berat MoS2, masa sentuhan di bawah cahaya pendarfluor, dan nilai pH biru metilena. Parameter paling berkesan yang diperhatikan dalam degradasi metilena biru ialah pemuatan berat, diikuti dengan masa sentuhan dan pH. Keputusan menunjukkan bahawa keadaan optimum untuk degradasi adalah dengan parameter 15mg beban berat MoS2, dengan pH 6.5 metilena biru, mempunyai peratusan degradasi tertinggi 99.93% dengan 120 minit masa terdedah di bawah cahaya pendarfluor untuk degradasi.

 

Kata kunci: molibdenum disulfida, degradasi fotokatalitik, biru metilena, metodologi permukaan tindak balas, Box-Behnken

 


References

1.       Selvam, R., Durai, N., Mubarakali, H., and Vasanthy, M. (2018). Treatment of fabric dyeing industry effluent employing low-cost material: an eco- friendly approach. International Journal of Basic and Applied Research, 8(9): 1298-1307.

2.       Bentahar, S., Dbik, A., El Khomri, M., El Messaoudi, N., and Lacherai, A. (2018). Removal of a cationic dye   from aqueous solution by natural clay. Groundwater for Sustainable Development, 6: 255-262.

3.       Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., and El Harfi, A. (2019). Textile finishing dyes and their impact on aquatic environments. Heliyon, 5(11): e02711.       

4.       Krishnamoorthy, R., Choudhury, A. R., Jose, P. A., Suganya, K., Senthilkumar, M., Prabhakaran, J., Gopal, N. O., Choi, J., Kim, K., Anandham, R., and Sa, T. (2021). Long-term exposure to azo dyes from textile wastewater causes the abundance of saccharibacteria population. Applied Sciences (Switzerland), 11(1):1-8.

5.       Almaamary, E. A. S., Abdullah, S. R. S., Hasan, H. A., Rahim, R. A. A., and Idris, M. (2017). Rawatan metilena biru dalam air sisa menggunakan Scirpus grossus. Malaysian Journal of Analytical Sciences, 21(1): 182-187.

6.       Bodzek, M., and Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecology Chemical Engineering Sciences, 19(4): 489-512.

7.       Baharin, S. N. A., Rusmin, R., and Sambasevam, K. P. (2022). Basic concept and application of conducting polymers for environmental protection. Chemistry Teacher International, 4(2): 173-183.

8.       Singh, P., Shandilya, P., Raizada, P., Sudhaik, A., Rahmani-sani, A., & Hosseini-bandegharaei, A. (2018). Review on various strategies for enhancing photocatalytic activity of graphene-based nanocomposites for water purification. Arabian Journal of Chemistry, 3: 1-23.

9.       Zhang, L., and Jaroniec, M. (2018). Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Applied Surface Science, 430: 2-17.

10.    Poorsajadi, F., Sayadi, M. H., Hajiani, M., and Rezaei, M. R. (2022). Synthesis of CuO/Bi2O3 nanocomposite for efficient and recycling photodegradation of methylene blue dye. International Journal of Environmental Analytical Chemistry, 102(18): 7165-7178.

11.    Sanad, M. M., Farahat, M. M., El-Hout, S. I., and El-Sheikh, S. M. (2021). Preparation and characterization of magnetic photocatalyst from the banded iron formation for effective photodegradation of methylene blue under UV and visible illumination. Journal of Environmental Chemical Engineering, 9(2): 105127.

12.      Drmosh, Q. A., Hezam, A., Hendi, A. H. Y., Qamar, M., Yamani, Z. H., and Byrappa, K. (2020). Ternary Bi2S3/MoS2/TiO2 with double Z-scheme configuration as high performance photocatalyst. Applied Surface Science, 499: 143938.

13.      He, Z., & Que, W. (2016). Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 3: 23-56.

14.      Kumar, R., Ansari, S. A., Barakat, M. A., Aljaafari, A., and Cho, M. H. (2018). A polyaniline@MoS2-based organic–inorganic nanohybrid for the removal of Congo red: adsorption kinetic, thermodynamic and isotherm studies. New Journal Chemistry, 42:18802-18809.

15.      Chaudhary, N., Raj, K., Harikumar, A., Mittal, H., and Khanuja, M. (2020). Comparative study of photocatalytic activity of hydrothermally synthesized ultra-thin MoS2 nanosheets with bulk MoS2. AIP Conference Proceedings, 2276: 20030.

16.      Vattikuti, S. V. P., and Shim, J. (2018). Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2. IOP Conference Series: Materials Science and Engineering, 317(1): 1-5.

17.      Abdulhameed, A. S., Mohammad, A. K. T., and Jawad, A. H. (2019). Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. Journal of Cleaner Production, 232: 43-56.

18.      Chen, J., and Zhang, P. (2006). Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science and Technology, 54(11-12): 317-325.

19.      Ibukun, O., Evans, P. E., Dowben, P. A., and Jeong, H. K. (2019). Titanium dioxide-molybdenum disulfide for photocatalytic degradation of methylene blue. Chemical Physics, 525:110419.

20.      Chaudhary, N., Khanuja, M., Abid, and Islam, S. S. (2018). Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sensors and Actuators, A: Physical, 277(2010): 190-198.

21.      Chen, Y., Tan, L., Sun, M., Lu, C., Kou, J., and Xu, Z. (2019). Enhancement of photocatalytic performance  of TaON by combining it with noble-metal-free MoS2 cocatalysts. Journal of Materials Science, 54(7): 5321-5330.

22.      Yang, J., Ye, M., Han, A., Zhang, Y., and Zhang, K. (2019). Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material. Journal of Materials Science: Materials in Electronics, 30(1): 292-301.

23.      Peng, W., Wang, W., Han, G., Huang, Y., and Zhang, Y. (2020). Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization. Desalination, 473(August 2019), 11: 4191.

24.      Ariyanta, H. A., Ivandini, T. A., and Yulizar, Y. (2021). A novel way of the synthesis of three-dimensional (3D) MoS2 cauliflowers using allicin. Chemical Physics Letters, 767: 138345.

25.      Koh, P. W., Yuliati, L., and Lee, S. L. (2017). Kinetics and optimization studies of photocatalytic degradation of methylene blue over Cr-doped TiO2 using response surface methodology. Iranian Journal of Science and Technology, Transaction A: Science, 43(1): 95-103.

26.      Bahuguna, A., Kumar, S., Sharma, V., Reddy, K. L., Bhattacharyya, K., Ravikumar, P. C., and Krishnan, V. (2017). Nanocomposite of MoS2-RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustainable Chemistry & Engineering, 5(10): 8551-8567.

27.      Norsham, I. N. M., Sambasevam, K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S. N. A. (2022). Photocatalytic degradation of perfluorooctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent irradiation. Journal of Environmental Chemical Engineering, 10(5): 108466.

28.      Taghvaei, H., Farhadian, M., Davari, N., and Maazi, S. (2017). Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite usingresponse surface methodology. Advances in Environmental Technology, 3(4): 205-216.