Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 716 - 727

 

SYNTHESIS AND CHARACTERIZATION OF PALM OIL PENTAERYTHRITOL ESTER-BASED BIOLUBRICANT FROM MALAYSIA PALM OIL

 

(Sintesis dan Pencirian Biopelincir Berasaskan Ester Pentaeritritol Minyak Sawit

daripada Minyak Sawit Malaysia)

 

Nurazira Mohd Nor1,2*, and Jumat Salimon3

 

1 School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2 Material, Inorganic and Oleochemistry (MaterOleo) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: nurazira@uitm.edu.my

 

 

Received: 24 March 2023; Accepted: 30 May 2023; Published:  22 August 2023

 

 

Abstract

Palm oil is one of the potential renewable resources in biolubricant production. However, the direct application of palm oil as biolubricant is restricted because of its low oxidative stability. It is due to the presence of oxidation active sites β- hydrogen in a glycerol backbone structure. This oxidative drawback can be overcome by molecule structural redesign through a chemical modification process such as esterification with polyhydric alcohol. The esterification of palm oil fatty acids (POFAs) with pentaerythritol (PE) was carried out in a mole ratio of 4.5:1, 1% of sulphuric acid, reaction temperature of 165 °C and reaction time of 7.2 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the percentage of ester composition in palm oil pentaerythritol (POPE) ester. The structure of the POPE ester was confirmed by Fourier Transformation Infra-Red (FTIR) and proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy. Results showed that POPE ester has been successfully synthesized with 85% of yield and 97.4% composition of tetraesters. The existence of the ester functional group is evidenced by FTIR at 1740 cm-1, the chemical shift of 1H NMR at 2.29-2.33 ppm and 13C NMR at 173.24 ppm. Physicochemical properties analysis showed that POPE ester has oxidative stability at 189 °C, pour point at 17 °C, flash point at 300 °C and 147 viscosity index which makes POPE ester suitable to be used in many industrial lubrication applications.

 

Keywords: Esterification, oxidative stability, palm oil fatty acid, pentaerythritol

 

Abstrak

Minyak sawit merupakan salah satu sumber boleh diperbaharui yang berpotensi dalam penghasilan biopelincir. Walau bagaimanapun, penggunaan minyak sawit secara terus sebagai biopelincir adalah terhad kerana kestabilan oksidatifnya yang rendah. Ini disebabkan oleh kehadiran tapak aktif pengoksidaan β- hidrogen dalam struktur tulang belakang gliserol. Kelemahan oksidatif ini boleh diatasi dengan reka bentuk semula struktur molekul melalui proses pengubahsuaian kimia seperti pengesteran dengan alkohol polihidrik. Pengesteran asid lemak minyak sawit (POFAs) dengan pentaeritritol (PE) dijalankan dalam nisbah mol 4.5:1, 1% asid sulfurik, suhu tindak balas 165 °C dan masa tindak balas 7.2 jam. Kromatografi Gas yang dilengkapi dengan Pengesan Pengionan Nyala (GC-FID) digunakan untuk menentukan peratus komposisi ester dalam ester pentaeritritol minyak sawit (POPE). Struktur ester POPE telah disahkan oleh spektroskopi transformasi Fourier infra-merah (FTIR) dan spektroskopi resonan magnetik nukleus proton dan karbon (NMR) (1H-NMR dan 13C-NMR). Keputusan menunjukkan bahawa ester POPE telah berjaya disintesis dengan 85% hasil dan 97.4% komposisi tetraester. Kewujudan kumpulan berfungsi ester dibuktikan melalui FTIR pada 1740 cm-1, anjakan kimia 1H NMR pada 2.29-2.33 ppm dan 13C NMR pada 173.24 ppm. Analisis sifat fizikokimia menunjukkan bahawa ester POPE mempunyai kestabilan oksidatif pada 189 °C, takat tuang pada 17 °C, takat kilat pada 300 °C dan indeks kelikatan 147 yang menjadikan ester POPE sesuai digunakan dalam pelbagai kegunaan pelinciran industri.

 

Kata kunci: Pengesteran, kestabilan oksidatif, asid lemak minyak sawit, pentaeritritol

 


References

 

1.     Hoang, T. T. K. and Kim, Il. (2015). Epoxidation and ring-opening of palm oil to produce high functionality polyols. Australian Journal of Basic and Applied Sciences, 9(8): 89-93.

2.     Global biolubricants markets report 2022-2026: Increasing focus on biodegradable, non-toxic, and eco-friendly products (2022). Markets Report 2022-2026. https://www.globenewswire.com/en/news-release/2022/04/06/2417401/28124/en/Global-Biolubricants-Markets-Report-2022-2026-Increasing-Focus-on-Biodegradable-Non-toxic-and-Eco-Friendly-Products.html. [Accessed online 1 June 2022].

3.     Kurre, S. K. and Yadav, J. (2023). A review on bio-based feedstock, synthesis, and chemical modification to enhance tribological properties of biolubricants. Industrial Crops and Products, 193: 116122.

4.     Nor, N. M., Salih, N. and Salimon, J. (2022). Optimization and lubrication properties of Malaysia crude palm oil fatty acids based neopentyl glycol diester green biolubricant. Renewable Energy, 200: 942-956.

5.     Cerretani, L., Bendini, A., Estrada, M. T. R., Vittadini, E. and Chiavaro, E. (2009). Microwave heating of different commercial categories of olive oil: Part I. Effect on chemical oxidative stability indices and phenolic compounds. Food Chemistry, 115:1381-1388.

6.     Salimon, J. and Salih, N. (2009). Oleic acid diesters: Synthesis, characterization and low temperature properties. European Journal of Scientific Research, 32(2): 216-222.

7.     Nirmal, V. P. and Dineshbabu, D. (2015). Performance and emission of Pongamia pinnata oil as a lubricant in diesel engine. International Journal of Innovative Research in Science, Engineering and Technology, 4(2): 435-441.

8.     Masood, H., Yunus, R., Choong, T. S. Y., Rashid, U. and Yap, Y. H. T. (2012). Synthesis and characterization of calcium methoxide as heterogeneous catalyst for trimethylolpropane esters conversion reaction. Applied Catalyst A: General, 425-426:184-290.

9.     Salimon, J., Salih, N. and Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society, 15:195-201.

10.  Resul, M. F. M. G., Ghazi, T. I. M. and Idris, A. (2012). Kinetic study of Jatropha biolubricant from transesterification of Jatropha curcas oil with trimethylolpropone: Effect of temperature. Industrial Crops and Products, 38: 87-92.

11.  Fox, N. J. and Stachowiak, G. W. (2007). Vegetable oil-based lubricants-a review of oxidation. Journal of Tribology International, 40:1035-1046.

12.  Arbain, N. H., Salimon, J., Salih, N. and Ahmed, W. A. (2022). Optimization of epoxidation of Malaysian Jatropha curcas oil-based trimethylolpropane ester biolubricant. Applied Science and  Engineering Progress, 15 (3): 5552.

13.  Salih, N. and Salimon, J. (2021). A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Research in Applied Chemistry, 11(5): 13303-13327.

14.  Salih, N. and Salimon, J. (2022). A review on new trends, challenges and prospects of ecofriendly friendly green food-grade biolubricants. Biointerface Research in Applied Chemistry, 12(1):1185-1207.

15.  Leung, D. Y. C, Wu, X. and Leung, M. K. M. (2010). A review of biodiesel production using catalyzed transesterification. Applied Energy, 87: 1083-1095.

16.  Sripada, P. K., Sharma, R. V. and Dalai, A. K. (2013). Comparative study of tribological properties of trimethylolpropane-based biolubricant derived from methyl oleate and canola biodiesel. Industrial Crops and Products, 50: 95-103.

17.  Nor,  N. M., Derawi, D., and Salimon, J. (2017). Chemical modification of epoxidized palm oil for biolubricant application. Malaysian Journal of Analytical Sciences, 21(6): 1423-1431.

18.  Nor,  N. M., Derawi, D., and Salimon, J. (2018). The optimization of RBD palm oil epoxidation process using D-optimal design. Sains Malaysiana, 47(7):1359-1367.

19.  Yunus, R., FakhrulRazi, T. L., OoiI, S. E., Iyuke, and Idris. A. (2003). Development of optimum synthesis method for transesterification of palm oil methyl esters and trimethylolpropane to environmentally acceptable palm oil-based lubricants. Journal of Oil Palm Research, 15: 35-41.

20.  Sulaiman, S. Z., Chuah, A. L. and  Fakhru`I-Razi, A. (2007). Batch production of trimetylolpropane ester from palm oil as lubricant base stock. Journal of Applied Sciences, 7: 2002-2005.

21.  Salih, N., Salimon, J. and Jantan, F. N. (2013). Synthesis and characterization of palm kernel oil based trimethylolpropane ester. Asian Journal of Chemistry, 25(17): 9751-9754.

22.  Aziz, N. A. M., Yunus, R., Rashid, U. and Syam, A. M. (2014). Application of response surface methodology (RSM) for optimizing the palm-based pentaerythritol ester synthesis. Industrial Crops and Products, 62: 305-312.

23.  Nor,  N. M., Derawi, D., and Salimon, J.  (2019). Esterification and evaluation of palm oil as biolubricant base stock. Malaysian Journal of Chemistry, 21(2): 28-35.

24.  Nadkarni, R.A. (2007). Guide to ASTM test methods for the analysis of petroleum products and lubricants. ASTM International, West Conshohocken.

25.  Chowdhury, K., Banu, L. A., Khan, S. and Latif, A. (2007). Studies on the fatty acid composition of edible oil. Bangladesh Journal of Scientific and Industrial Research, 42(3): 311-316.

26.  Pavia, D. L., Lampman, G. M. and Kriz, G. S. (2010). Introduction to spectroscopy. 4th edition. United States: Thomson Learcning, Inc.

27.  Salimon, J. and Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian Journal of Chemistry, 22(7): 5468-5476.

28.  Denicol Motor Oils (2020). Denicol compressor oil. https://pdf4pro.com/view/compressor-oil-iso-vg-32-46-68-100-150-denicol-5786bc.html. [Accessed online 25 December 2020].

29.  SubsTech: Substances and Technologies (2012). SubsTech hydraulic oil.    http://www.substech.com/dokuwiki/doku.php?id=hydraulic_oil_iso_100. [Accessed online 25 December 2020].