Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 693 - 701

 

THE EFFECTS OF pH ON MICROPLASTICS REMOVAL BY ELECTROCOAGULATION PROCESS USING NICKEL ELECTRODE

 

(Kesan pH Terhadap Penyingkiran Mikroplastik Melalui Kaedah Elektrokoagulasi Menggunakan Elektrod Nikel)

 

Nor Aimi Abdul Wahab1,3, Nor Ku Nazatul Husna Mohd Jackariya1, Norain Isa1,2*, Norfaezatul Alysa Othman1, Vicinisvarri Inderan1 , Nur Fadzeelah Abu Kassim1

 

1Chemical Engineering Studies, College of Engineering,

Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus,

13500 Pulau Pinang, Malaysia

2Waste Management and Resource Recovery (WeResCue) Group,

Chemical Engineering Studies, College of Engineering,

Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus,

13500 Pulau Pinang, Malaysia

3Department of Applied Sciences,

Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus,

13500 Pulau Pinang, Malaysia

 

*Corresponding author: norain012@uitm.edu.my

 

 

Received: 25 September 2022; Accepted: 25 February 2023; Published:  22 August 2023

 

 

Abstract

pH plays an important role in microplastics (MPs) removal during the electrocoagulation (EC) process. This study investigates the influence of the initial pH on the removal of polypropylene microplastics (PPMPs) from artificial wastewater using an EC process utilizing nickel electrodes. The effect of the initial pH has been investigated by commencing several sets of continuous flow experiments at five different initial pH values (2, 4, 6, 8, and 10), keeping the concentration of PPMPs, size of PPMPs, and electrode distance constant at 250 ppm, 250 µm, and 2 cm, respectively. The results showed that the removal efficiency increased gradually from 25% at initial pH 2 and reached its maximum level at initial pH 8 with 67% removal. Then it slightly decreased as the initial pH increased to 10. The kinetic studies showed that the EC process followed a first-order kinetic model. It can be said that the most favorable supporting pH for PPMPs removal utilizing nickel electrodes in this EC treatment technique is pH 8 due to the predominant species having a high adsorption capacity for PPMPs as a pollutant. The result showed that pH plays an important role in PPMPs removal from wastewater via the EC process utilizing nickel electrodes.

 

Keywords: Electrocoagulation, polypropylene, microplastics, nickel electrode, pH

 

Abstrak

pH memainkan peranan penting dalam penyingkiran mikroplastik melalui kaedah elektrokoagulasi. Kajian ini dilaksanakan bagi melihat pengaruh pH terhadap penyingkiran mikroplastik polipropelena (PPMPs) daripada air buangan melalui kaedah elektrokoagulasi (EC) menggunakan elektrod nikel. Pengaruh pH telah disiasat melalui beberapa set eksperimen menggunakan lima pH awal yang berbeza (2, 4, 6, 8 dan 10) dengan mengekalkan masing-masing kepekatan PPMPs, saiz PPMPs,  dan jarak elektrod pada 250 ppm, 250 µm, dan 2 cm. Keputusan yang diperolehi menunjukkan bahawa kecekapan penyingkiran meningkat secara beransur-ansur daripada 25% pada  pH awal  2 dan mencapai tahap maksimum pada pH awal 8 dengan penyingkiran 67%, kemudian ia sedikit menurun apabila pH awal meningkat kepada 10. Kajian kinetik menunjukkan bahawa proses EC adalah mengikut model kinetik tertib pertama. Boleh dikatakan bahawa pH sokongan yang paling sesuai untuk penyingkiran PPMPs menggunakan nikel sebagai elektrod dalam teknik rawatan EC ini ialah pH 8 disebabkan oleh, spesis utama mempunyai kapasiti penjerapan yang tinggi untuk PPMPs sebagai bahan pencemar. Keputusan menunjukkan bahawa pH memainkan peranan penting dalam penyingkiran PPMPs daripada air sisa melalui proses EC menggunakan elektrod nikel.

 

Kata kunci: Elektrokoagulasi, polipropelena, mikroplastik, elektrod nikel, pH


References

1.       Lebreton, L. C. M., Van Der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., and Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8: 1-10.

2.       Zhang, S., Shi, C., Nie, Y., Xing, B., Wen, X., and Cheng, S. (2023). Separation experiment and mechanism study on PVC microplastics removal from aqueous solutions using high-gradient magnetic filter. Journal of Water Process Engineering, 51: 103495.

3.       Elkhatib, D., Oyanedel-Craver, V., and Carissimi, E. (2021). Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Separation and Purification Technology, 276: 118877.

4.       Conilie, M., Farihah, U., and Nasution, N. E. A. (2021). Utilization of plastic and fabric waste into economic valued products to minimize household waste. IOP Conference Series: Earth and Environmental Science, 747(1): 12107.

5.       Prata, J. C., da Costa, J. P., Lopes, I., Andrady, A. L., Duarte, A. C., and Rocha-Santos, T. (2021). A one health perspective of the impacts of microplastics on animal, human and environmental health. Science of the Total Environment, 777: 146094.

6.       Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z. and Zeng, G. (2022). Efficient removal of microplastics from wastewater by an electrocoagulation process. Chemical Engineering Journal, 428: 131161.

7.       Zhang, Y., Zhao, J., Liu, Z., Tian, S., Lu, J., Mu, R., and Yuan, H. (2021). Coagulation removal of microplastics from wastewater by magnetic magnesium hydroxide and PAM. Journal of Water Process Engineering, 43: 102250.

8.       Rahman, A., Sarkar, A., Yadav, O. P., Achari, G., and Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Science of the Total Environment, 757: 143872.

9.       Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., and Ni, B.-J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152: 21-37.

10.    Sol, D., Laca, A., Laca, A., and Díaz, M. (2020). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science of the Total Environment, 740: 140016.

11.    Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., and Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133: 553-561.

12.    Perren, W., Wojtasik, A., and Cai, Q. (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3): 3357-3364.

13.    Akarsu, C., and Deniz, F. (2021). Electrocoagulation/electroflotation process for removal of organics and microplastics in laundry wastewater. CLEAN–Soil, Air, Water, 49(1): 2000146.

14.    Liu, Y., Zhang, X., Jiang, W. M., Wu, M. R., and Li, Z. H. (2021). Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors. Chemical Engineering Journal, 417(2): 129310.

15.    Kiliç, M. G., Hoşten, Ç., and Demirci, Ş. (2009). A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions. Journal of Hazardous Materials, 171(1–3): 247-252.

16.    Kartikaningsih, D., Huang, Y. H., and Shih, Y. J. (2017). Electro-oxidation and characterization of nickel foam electrode for removing boron. Chemosphere, 166: 184-191.

17.    Kartikaningsih, D., Shih, Y.-J., and Huang, Y.-H. (2016). Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode. Sustainable Environment Research, 26(4): 150-155.

18.    Govindan, K., Oren, Y., and Noel, M. (2014). Effect of dye molecules and electrode material on the settling behavior of flocs in an electrocoagulation induced settling tank reactor (EISTR). Separation and Purification Technology, 133: 396-406.

19.    Widhiastuti, F., Lin, J. Y., Shih, Y. J., and Huang, Y. H. (2018). Electrocoagulation of boron by electrochemically co-precipitated spinel ferrites. Chemical Engineering Journal, 350(2): 893-901.

20.    Akarsu, C., Kumbur, H., and Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology, 84(7): 1648-1662.