Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 693 - 701
THE EFFECTS OF pH ON
MICROPLASTICS REMOVAL BY ELECTROCOAGULATION PROCESS USING NICKEL ELECTRODE
(Kesan pH Terhadap Penyingkiran
Mikroplastik Melalui Kaedah Elektrokoagulasi Menggunakan Elektrod Nikel)
Nor Aimi
Abdul Wahab1,3, Nor Ku Nazatul Husna Mohd Jackariya1,
Norain Isa1,2*, Norfaezatul Alysa Othman1, Vicinisvarri
Inderan1 , Nur Fadzeelah Abu Kassim1
1Chemical
Engineering Studies, College of Engineering,
Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus,
13500 Pulau Pinang, Malaysia
2Waste
Management and Resource Recovery (WeResCue) Group,
Chemical Engineering Studies, College of Engineering,
Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus,
13500 Pulau Pinang, Malaysia
3Department
of Applied Sciences,
Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus,
13500 Pulau Pinang, Malaysia
*Corresponding author: norain012@uitm.edu.my
Received:
25 September 2022; Accepted: 25 February 2023; Published: 22 August 2023
Abstract
pH plays an important role in microplastics
(MPs) removal during the electrocoagulation (EC) process. This study
investigates the influence of the initial pH on the removal of polypropylene
microplastics (PPMPs) from artificial wastewater using an EC process utilizing
nickel electrodes. The effect of the initial pH has been investigated by commencing
several sets of continuous flow experiments at five different initial pH values
(2, 4, 6, 8, and 10), keeping the concentration of PPMPs, size of PPMPs, and
electrode distance constant at 250 ppm, 250 µm, and 2 cm, respectively. The
results showed that the removal efficiency increased gradually from 25% at
initial pH 2 and reached its maximum level at initial pH 8 with 67% removal.
Then it slightly decreased as the initial pH increased to 10. The kinetic
studies showed that the EC process followed a first-order kinetic model. It can
be said that the most favorable supporting pH for PPMPs removal utilizing
nickel electrodes in this EC treatment technique is pH 8 due to the predominant
species having a high adsorption capacity for PPMPs as a pollutant. The result
showed that pH plays an important role in PPMPs removal from wastewater via the
EC process utilizing nickel electrodes.
Keywords: Electrocoagulation,
polypropylene, microplastics, nickel electrode, pH
Abstrak
pH memainkan peranan penting dalam penyingkiran
mikroplastik melalui kaedah elektrokoagulasi. Kajian ini dilaksanakan bagi
melihat pengaruh pH terhadap penyingkiran mikroplastik polipropelena (PPMPs)
daripada air buangan melalui kaedah elektrokoagulasi (EC) menggunakan elektrod
nikel. Pengaruh pH telah disiasat melalui beberapa set eksperimen menggunakan
lima pH awal yang berbeza (2, 4, 6, 8 dan 10) dengan mengekalkan masing-masing
kepekatan PPMPs, saiz PPMPs, dan jarak
elektrod pada 250 ppm, 250 µm, dan 2 cm. Keputusan yang diperolehi menunjukkan
bahawa kecekapan penyingkiran meningkat secara beransur-ansur daripada 25%
pada pH awal 2 dan mencapai tahap maksimum pada pH awal 8
dengan penyingkiran 67%, kemudian ia sedikit menurun apabila pH awal meningkat
kepada 10. Kajian kinetik menunjukkan bahawa
proses EC adalah mengikut model kinetik tertib pertama. Boleh dikatakan bahawa
pH sokongan yang paling sesuai untuk penyingkiran PPMPs menggunakan nikel
sebagai elektrod dalam teknik rawatan EC ini ialah pH 8 disebabkan oleh, spesis
utama mempunyai kapasiti penjerapan yang tinggi untuk PPMPs sebagai bahan
pencemar. Keputusan menunjukkan bahawa pH memainkan peranan penting dalam
penyingkiran PPMPs daripada air sisa melalui proses EC menggunakan elektrod
nikel.
Kata
kunci: Elektrokoagulasi,
polipropelena, mikroplastik, elektrod nikel, pH
References
1.
Lebreton, L. C. M., Van Der Zwet, J., Damsteeg, J.
W., Slat, B., Andrady, A., and Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature
Communications, 8: 1-10.
2.
Zhang, S., Shi, C., Nie, Y., Xing, B., Wen, X., and Cheng, S. (2023). Separation
experiment and mechanism study on PVC microplastics removal from aqueous
solutions using high-gradient magnetic filter. Journal of Water Process
Engineering, 51: 103495.
3.
Elkhatib,
D., Oyanedel-Craver, V., and Carissimi, E. (2021). Electrocoagulation applied
for the removal of microplastics from wastewater treatment facilities. Separation
and Purification Technology, 276:
118877.
4.
Conilie,
M., Farihah, U., and Nasution, N. E. A. (2021). Utilization of plastic and
fabric waste into economic valued products to minimize household waste. IOP
Conference Series: Earth and Environmental Science, 747(1): 12107.
5.
Prata,
J. C., da Costa, J. P., Lopes, I., Andrady, A. L., Duarte, A. C., and
Rocha-Santos, T. (2021). A one health perspective of the impacts of
microplastics on animal, human and environmental health. Science of the
Total Environment, 777:
146094.
6.
Shen,
M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z. and Zeng, G.
(2022). Efficient removal of microplastics from wastewater by an
electrocoagulation process. Chemical Engineering Journal, 428: 131161.
7. Zhang, Y., Zhao, J., Liu, Z., Tian, S., Lu, J., Mu, R.,
and Yuan, H. (2021). Coagulation removal of microplastics from wastewater by
magnetic magnesium hydroxide and PAM. Journal of Water Process Engineering,
43: 102250.
8.
Rahman,
A., Sarkar, A., Yadav, O. P., Achari, G., and Slobodnik, J. (2021). Potential
human health risks due to environmental exposure to nano- and microplastics and
knowledge gaps: A scoping review. Science of the Total Environment, 757: 143872.
9.
Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., and Ni, B.-J.
(2019). Microplastics in wastewater
treatment plants: Detection, occurrence and removal. Water Research, 152: 21-37.
10.
Sol,
D., Laca, A., Laca, A., and Díaz, M. (2020). Approaching the environmental
problem of microplastics: Importance of WWTP treatments. Science of the Total
Environment, 740: 140016.
11.
Gies,
E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., and
Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater
treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133: 553-561.
12. Perren, W., Wojtasik, A., and Cai, Q. (2018). Removal
of microbeads from wastewater using electrocoagulation. ACS Omega,
3(3): 3357-3364.
13.
Akarsu, C., and Deniz, F. (2021). Electrocoagulation/electroflotation
process for removal of organics and microplastics in laundry wastewater. CLEAN–Soil,
Air, Water, 49(1): 2000146.
14.
Liu,
Y., Zhang, X., Jiang, W. M., Wu, M. R., and Li, Z. H. (2021). Comprehensive
review of floc growth and structure using electrocoagulation: Characterization,
measurement, and influencing factors. Chemical Engineering Journal, 417(2): 129310.
15.
Kiliç,
M. G., Hoşten, Ç., and Demirci, Ş. (2009). A parametric comparative
study of electrocoagulation and coagulation using ultrafine quartz suspensions.
Journal of Hazardous Materials, 171(1–3):
247-252.
16.
Kartikaningsih, D.,
Huang, Y. H., and Shih, Y. J. (2017). Electro-oxidation and characterization of
nickel foam electrode for removing boron. Chemosphere, 166: 184-191.
17.
Kartikaningsih,
D., Shih, Y.-J., and Huang, Y.-H. (2016). Boron removal from boric acid
wastewater by electrocoagulation using aluminum as sacrificial anode. Sustainable
Environment Research, 26(4):
150-155.
18.
Govindan, K., Oren, Y., and Noel, M. (2014). Effect of dye molecules and electrode material on the
settling behavior of flocs in an electrocoagulation induced settling tank
reactor (EISTR). Separation and Purification Technology, 133: 396-406.
19.
Widhiastuti,
F., Lin, J. Y., Shih, Y. J., and Huang, Y. H. (2018). Electrocoagulation of
boron by electrochemically co-precipitated spinel ferrites. Chemical
Engineering Journal, 350(2):
893-901.
20.
Akarsu, C., Kumbur, H., and Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation
and membrane filtration processes. Water Science and Technology, 84(7): 1648-1662.