Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 906 - 921

 

Clinacanthus nutans LEAVES DIFFERENT SOLVENT EXTRACTS EFFECTS ON PHYTOCHEMICAL SCREENING, ANTIOXIDANT ACTIVITY AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY STUDY

 

(Kesan Pelbagai Ekstrak Pelarut Bagi Daun Clinacanthus nutans ke atas Pemeriksaan Fitokimia, Antioksidan dan Kajian Kromatografi Gas-Spektrometri Jisim)

 

Zaleha Md Toha1, Nor Hasyimah Haron1, Nik Nur Syazni1, Melati Khairuddean2, and Hasni Arsad1,*

 

1Advanced Medical and Dental Institute,

Universiti Sains Malaysia, Bertam,

13200 Kepala Batas, Penang, Malaysia

2School of Chemistry,

Universiti Sains Malaysia,

11800 Minden, Penang, Malaysia

 

*Corresponding author: hasniarsad@usm.my

 

 

Received: 13 April 2023; Accepted: 3 July 2023; Published:  22 August 2023

 

Abstract

Clinacanthus nutans (CN) is widely grown in Southeast Asia, especially in Malaysia. People belief that consuming the leaves can treat various diseases it has many medicinal properties. The aim of this study is to investigate the potential of different solvent systems of CN leaves as a source of natural antioxidant by screening its phytochemical constituents and presence of major active compounds with potential biological activities. CN leaves were extracted using different solvent followed by its polarity (methanol, hexane, dichloromethane and aqueous residue). Phytochemical’s determination involved total flavonoid content (TFC) and phenolics (TPC) assay. Antioxidant activity was measured using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and ferric reducing antioxidant powder (FRAP). The chemical constituents of all extracts were identified using gas chromatography-mass spectrometry (GCMS). The percentage of extract yield has more on aqueous fraction (82.84%) and the lower very lower amount of methanol extracts (3.63%). The TFC and TPC were a result of higher and lower phytochemicals content, which were aqueous residue and dichloromethane fractions, respectively. The percentage of scavenging ability of DPPH was higher in aqueous residue (80.994%) and followed by crude methanol extracts (51.829%), dichloromethane fraction (32.426%) and hexane fraction (11.038%). Ferric reducing antioxidant (FRAP), to confirm the existence of antioxidant constituents was found to be higher and a lower activity is shown by aqueous residue and dichloromethane fractions. GCMS was identified as bioactive compounds in all different solvent extracts that indicated various medicinal properties.  Thus, aqueous residue and crude methanol extracts CN leaves extracts may be explored as new sources of antioxidants in medicinal plant research. However, dichloromethane indicated a variety of bioactive compounds and medicinal properties.

 

Keyword: Clinacanthus nutans, phytochemical, antioxidant, gas chromatography-mass spectrometry, solvent

 

Abstrak

Clincanthus nutans (CN) banyak ditanam di Asia Tenggara khususnya di Malaysia. Orang ramai percaya bahawa dengan memakan daunnya boleh merawat pelbagai jenis penyakit kerana mempunyai banyak khasiat perubatan. Objektif kajian ini adalah untuk mengkaji potensi pelbagai ekstrak pelarut bagi daun CN yang menjadi sumber antioksidan semulajadi dengan membuat penyaringan konstitiuen fitokimia dan mengesan kehadiran sebatian aktif utama yang berpotensi dalam aktiviti biologi. Pelbagai jenis pelarut digunakan untuk mengekstrak daun CN mengikut tahap polarity yang berbeza (metanol, heksana, diklorometana dan sisa akueus). Penentuan fitokimia melibatkan pengiraan jumlah kandungan flavonoid (TFC) dan ujian fenolik (TPC). Aktiviti antioksidan diukur menggunakan bahan ujian memerangkap 2, 2-difenil-1-pikrilhidrazil (DPPH) dan serbuk antioksidan penurun ferik (FRAP). Juzuk kimia semua ekstrak yang dikenalpasti telah menggunakan kromatografi gas-spektrometri jisim (GCMS). Keputusan menunjukkan peratusan hasil ekstrak mempunyai lebih banyak pada pecahan akueus (82.84%) dan jumlah peratusan ekstrak yang sangat rendah dalam ekstrak metanol (3.63%). Keputusan TFC dan TPC adalah hasil daripada kandungan fitokimia yang lebih tinggi dan lebih rendah, yang masing-masing merupakan sisa akueus dan pecahan diklorometana. Peratusan keupayaan penghapusan DPPH adalah lebih tinggi dalam sisa akueus (80.994%) dan diikuti oleh ekstrak metanol mentah (51.829%), pecahan diklorometana (32.426%) dan pecahan heksana (11.038%). Ujian FRAP untuk mengesahkan kewujudan juzuk antioksidan didapati lebih tinggi dan aktiviti yang lebih rendah ditunjukkan oleh sisa akueus dan pecahan diklorometana. GC-MS digunakan bagi mengenalpasti kehadiran sebatian bioaktif dalam semua ekstrak ini yang mempunyai nilai perubatan. Oleh itu, sisa akueus dan ekstrak methanol mentah daun CN boleh diterokai sebagai sumber antioksidan baru dalam penyelidikan tumbuhan ubatan. Walaubagaimanapun, diklorometana menunjukkan pelbagai sebatian bioaktif dan mempunyai nilai perubatan.

 

Kata kunci: Clinacanthus nutans, fitokimia, antioksidan, kromatografi gas-spektrometri jisim, pelarut

 


References

1.       Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal Aroma Plants, 4: 196.

2.       Kamala, A., Middha, S. K., Gopinath, C., Sindhura, H. S., and Karigar, C. S. (2018). In vitro antioxidant potentials of Cyperus rotundus L. rhizome extracts and their phytochemical analysis. Pharmacognosy Magazine, 14(54): 261.

3.       Kamarudin, M. N. A., Sarker, M. M. R., Kadir, H. A., and Ming, L. C. (2017). Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. Journal of ethnopharmacology, 206: 245-266.

4.       Ghasemzadeh, A., Hawa, Z. E., Jaafar, H., Rahmat, R. and Devarajan T. (2014). Evaluation of bioactive compounds, pharmaceutical quality and anticancer activity of curry leaf (Muraya koenigii L.). Evidence Based Complementary Alternative Medicine, 2014: 873803.

5.       Phua, Q. Y., Subramaniam, S., Lim, V., and Chew, B. L. (2018). The establishment of cell suspension culture of sabah snake grass (Clinacanthus nutans (Burm. F.) Lindau). In Vitro Cellular & Developmental Biology-Plant, 54: 413-422.

6.       Alam, M. A., Zaidul, I. S. M., Ghafoor, K., Sahena, F., Hakim, M. A., Rafii, M. Y., ... and Khatib, A. (2017). In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans. BMC Complementary and Alternative Medicine, 17(1): 1-10.

7.       Wanikiat, P., Panthong, A., Sujayanon, P., Yoosook, C., Rossi, A. G., and Reutrakul, V. (2008). The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. Journal of Ethnopharmacology, 116(2): 234-244.

8.       Vachirayonstien, T., Promkhatkaew, D., Bunjob, M., Chueyprom, A., Chavalittumrong, P., and Sawanpanyalert, P. (2010). Molecular evaluation of extracellular activity of medicinal herb Clinacanthus nutans against herpes simplex virus type-2. Natural Product Research, 24(3): 236-245.

9.       Sulaiman, I. C., Basri, M., Chan, K. W., Ashari, S. E., Masoumi, H. R. F., and Ismail, M. (2015). In vitro antioxidant, cytotoxic and phytochemical studies of Clinacanthus nutans Lindau leaf extracts. African Journal of Pharmacy and Pharmacology, 9(34): 861-874.

10.    Kim, D. O., Jeong, S. W., and Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3): 321-326.

11.    Sahu, R. and Saxena, J. (2013). Screening of total phenolic and flavonoid content in conventional and non conventional species of curcumin. Journal of Pharmacognosy and Phytochemistry, 2:1.

12.    Shui, G. and Leong, L. P. (2006). Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chemistry, 97: 2.

13.    Abdul Rahim, M. H., Zakaria, Z. A., Mohd Sani, M. H., Omar, M. H., Yakob, Y., Cheema, M. S., ... and Abdul Kadir, A. (2016). Methanolic extract of Clinacanthus nutans exerts antinociceptive activity via the opioid/nitric oxide-mediated, but cGMP-independent, pathways. Evidence-Based Complementary and Alternative Medicine, 2016: 1494981.

14.    Yong, Y. K., Tan, J. J., Teh, S. S., Mah, S. H., Ee, G. C. L., Chiong, H. S., and Ahmad, Z. (2013). Clinacanthus nutans extracts are antioxidant with antiproliferative effect on cultured human cancer cell lines. Evidence-Based Complementary and Alternative Medicine, 2013: 462751.

15.    Tanih, N. F., and Roland, N. N. (2013). The acetone extract of Sclerocarya birrea (Anarcardiaceae) posses antiproliferative and apoptotic potential against human breast cancer cell lines (MCF-7). Scientific World Journal, 2013: 956206.

16.    Majeed, M., Hussain, A. I., Chatha, S. A., Khosa, M. K., Kamal, G. M., Kamal, M. A., ... and Liu, M. (2016). Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi Journal of Biological Sciences, 23(3): 389-396.

17.    Haron N. H, Abas R., Md Toha Z., Hamdam M. R., Azman N., Samian M. R., and Arsad H. (2016). Effect of different solvent extracts on phenolic, flavonoid and antioxidant content and antiproliferative activity of Clinacanthus nutans leaves extract. In proceedings of the 41th Annual Conference of the Malaysian Society for Biochemistry and Molecular Biology, Pullman Kuala Lumpur, Malaysia, 18 August 2016.

18.    Dai, J., and Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15: 7313-7352.

19.    Swamy, M. K., Arumugam, G., Kaur, R., Ghasemzadeh, A., Yusoff, M. M., and Sinniah, U. R. (2017). GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Complementary and Alternative Medicine, 2017: 1517683.

20.    Bonoli, M., Marconi, E., and Caboni, M. F. (2004). Free and bound phenolic compounds in barley (Hordeum vulgare L.) flours: Evaluation of the extraction capability of different solvent mixtures and pressurized liquid methods by micellar electrokinetic chromatography and spectrophotometry. Journal of Chromatography A, 1057(1-2): 1-12.

21.    Kaisoon, O., Siriamornpun, S., Weerapreeyakul, N., and Meeso, N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of Functional Foods, 3(2): 88-99.

22.    Tungmunnithum, D., Thongboonyou, A., Pholboon, A., and Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3): 93.

23.    Kamala, A., Middha, S. K., Gopinath, C., Sindhura, H. S., and Karigar, C. S. (2018). In vitro antioxidant potentials of Cyperus rotundus L. rhizome extracts and their phytochemical analysis. Pharmacognosy Magazine, 14(54): 261.

24.    Anju, T. and Sarita, S. (2010). Suitability of Foxtail millet (Setaria italica) and Barnyard millet (Echinocloa frumentoceae) for development of low glycemic index biscuits. Malaysian Journal Nutrition, 16: 361-368.

25.    Shah, M. D., Seelan, J. S. S., and Iqbal, M. (2020). Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa levels. Arabian Journal of Chemistry, 13: 7170-7182.

26.    Kamarudin, M. N. A., Sarker, M. M. R., Kadir, H. A., and Ming, L. C. (2017). Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. Journal of Ethnopharmacology, 206: 245-266.

27.    Shah, P., and Modi, H. A. (2015). Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science and Engineering Technology, 3(6): 636-641.

28.    Ismail, N. Z., Md Toha, Z., Muhamad, M., Nik Mohamed Kamal, N. N. S., Mohamad Zain, N. N., and Arsad, H. (2020). Antioxidant effects, antiproliferative effects, and molecular docking of Clinacanthus nutans leaf extracts. Molecules, 25(9): 2067.

29.    Ismail, N. Z., Arsad, H., Samian, M. R., and Hamdan, M. R. (2017). Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. AGRIVITA, Journal of Agricultural Science, 39(3): 335-344.

30.    Arulkumar, A., Rosemary, T., Paramasivam, S., and Rajendran, R. B. (2018). Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatalysis and Agricultural Biotechnology, 15: 63-71.

31.    Hamid, H. A, and Yahaya, I. H. (2016). Cytotoxicity of Clinacanthus nutans extracts on human hepatoma (HepG2) cell line. International Journal of Pharmacy and Pharmaceutical Sciences, 8(10): 8-10.

32.    Pannangpetch, P., Laupattarakasem, P., Kukongviriyapan, V., Kukongviriyapan, U., Kongyingyoes, B., and Aromdee, C. (2007). Antioxidant activity and protective effect against oxidative hemolysis of Clinacanthus nutans (Burm. f) Lindau. Songklanakarin Journal Science Technology, 29: 1-9.

33.    Haida, Z., and Hakiman, M. (2019). A review of therapeutic potentials of Clinacanthus nutans as source for alternative medicine. Sains Malaysiana, 48: 12.

34.    Ghosh, G., Panda, P., Rath, M., Pal, A., Sharma, T., and Das, D. (2015). GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves. Pharmacognosy Research, 7(1): 110.

35.    Nogueira, A. O., Oliveira, Y. I. S., Adjafre, B. L., de Moraes, M. E. A., and Aragao, G. F. (2019). Pharmacological effects of the isomeric mixture of alpha and beta amyrin from Protium heptaphyllum: a literature review. Fundamental & Clinical Pharmacology, 33(1): 4-12.

36.    Aslam, M. S., Ahmad, M. S., and Mamat, A. S. (2015). A review on phytochemical constituents and pharmacological activities of Clinacanthus nutans. World, 2: 4.

37.    Swamy, M. K., and Sinniah, U. R. (2015). A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules, 20(5), 8521-8547.

38.    Wei, L. S., Wee, W., Siong, J. Y. F., and Syamsumir, D. F. (2011). Characterization of anticancer, antimicrobial, antioxidant properties and chemical composition of Peperomia pellucida leaf extract. Acta Medica Iranica, 49(10): 670-674.

39.    Song, Y., and Cho, S. K. (2015). Phytol induces apoptosis and ROS mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochemistry and analytical Biochemistry, 4: 211.

40.    Olivia, N. U., Goodness, U. C., and Obinna, O. M. (2021). Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future Journal of Pharmaceutical Sciences, 7: 1-5.

41.    Newman, D. J., Cragg, G. M, and Snader K.M. (2000). The influence of natural products upon drug discovery. Natural Products Reports, 17: 215-234.

42.    Sulaiman, I. C., Basri, M., Chan, K. W., Ashari, S. E., Masoumi, H. R. F., and Ismail, M. (2015). In vitro antioxidant, cytotoxic and phytochemical studies of Clinacanthus nutans Lindau leaf extracts. African Journal of Pharmacy and Pharmacology, 9(34): 861-874.

43.    Kumar, P. P., Kumaravel, S., and Lalitha, C. (2010). Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal of Biochemistry Research, 4(7): 191-195.

44.    Ragupathi, V., Stephen, A., and Kumaresan S. (2018). Pass-assisted prediction of biological activity spectra of methanolic extract of Gymnopilus junonius, a wild mushroom from southern western Ghats, India. European Journal of Pharmaceutical and Medical Research, 5(4): 340-437.

45.    Chandrasekaran, M., Senthilkumar, A., and Venkatesalu, V. (2011). Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesivium portulacastrum L. European Review Medicine Pharmacology Sciences, 15(7):775-780.

46.    Yu, F. R., Lian, X. Z., Guo, H. Y., McGuire, P. M., Li, R. D., Wang, R., and Yu, F. H. (2005). Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. Journal Pharmacy and Pharmaceutical Sciences, 8(3): 528-35.

47.    Khoo, L.W., Mediani, A., Zolkeflee, N. K. Z., Leong, S. W., Ismail, I. S., Khatib, A., Shaari K., and Abas F. (2015). Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabololomics. Phytochemicals Letter, 14:123-133.

48.    Sharma, A. and Rai, P. K. (2018). Assessment of bioactive compounds in Brassica juncea using chromatographic techniques. Journal of Pharmacognosy and Phytochemistry, 7(3):1274-1277.

49.    Swargiary, A. and Daimari, M. (2021). GC-MS analysis of phytocompounds and antihyperglycemic property of Hydrocotyle sibthorpioides Lam. SN Applied Sciences, 3: 36.

50.    Shaheed, K. A., Alsirraj, M. A., Allaith, S. A., Noori, N. A., Obaid, M. H., and Mouhsan, Z. M. (2018). The biological activities of seeds extracts for fenugreek and black cumin and its inhibitory influences towards some pathogens. Iraq Medical Journal, 2(2): 46-50.

51.    Gobis, K., Foks, H., Bojanowski, K., Augustynowicz-Kopeć, E., and Napiórkowska, A. (2012). Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity.


Bioorganic & Medicinal Chemistry, 20(1): 137-144.

52.    Blicharski, T., and Oniszczuk, A. (2017). Extraction methods for the isolation of isoflavonoids from plant material. Open Chemistry, 15(1): 34-45