Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 890 - 905
DEGRADATION
OF AZO DYES FROM EFFLUENTS: A MINI REVIEW FOCUSING ON COMPARISON BETWEEN
CURRENTLY EXISTING INDUSTRIAL METHODS AND GREEN OXIDATION CATALYSIS TREATMENT
INVOLVING Fe-TAML AND H2O2
(Degradasi
Pewarna Azo daripada Efluen: Sebuah Mini Ulasan yang Memfokuskan Perbandingan
Antara Teknik Industri yang Kini Wujud dan Rawatan Pemangkinan Pengoksidaan
Hijau Melibatkan Fe-TAML dan H2O2)
Wan Mohd Norsani Wan Nik1,
Nabilah Ismail2*, Saranraj Saravanan2, Nur Khairunnisa
Nazri2,
and Mohd Arzaimiruddin Ariffin3
1Faculty of Ocean Engineering Technology and
Informatics,Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
2Faculty of Science and Marine Environment,Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Faculty of Mechanical Engineering, Universiti Teknologi MARA
Cawangan Terengganu, Kampus Bukit Besi 23200, Jln Kuala Berang, Terengganu,
Malaysia.
*Corresponding author: nabilah.i@umt.edu.my
Received: 7 March 2023; Accepted: 3
June 2023; Published: 22 August 2023
Abstract
Dyes
are widely used as coloring agents globally in the industrial field, especially
in the textile industry. As proof, 10,000 types of dyes have been introduced
and are continuously used, reaching a usage viability of 700,000 tons. The
widespread use of synthetic dyes is caused by their economic factors, ready
availability, superior strength, and ability to cover a wide range of shades.
However, the discharge of commercial dyes is increasing at a swift rate as
industrialization continues to grow, leading to severe hazards to living
organisms due to their toxic and harmful impacts. The discharge of dyes into
water reservoirs is a concern because of their high toxicity and
bioaccumulation in living organisms. One of the most used commercial dyes, azo
dyes, possesses a benzidine function that needs to be treated soon due to its
side effects. Dyes contain toxicity and have a strong tendency toward
eutrophication. The major globally concerned issues are water and soil
pollution. The massive use of these dyes in industrial sectors is the main
reason behind these environmental issues. Even at concentrations lower than one
ppm, around 10% of the untreated discharged dyes impart an intense color,
making the water highly detrimental. As an unwanted consequence, this exhibits
an immense environmental hazard to the surroundings. Thorough studies on dye
metabolites and their constituents have been developed to reduce the acute
diverse effects of dyes. However, a few outdated techniques such as ozonation
and chlorination are still being utilized to break down untreated dye discharge
for various reasons, including economic factors. In this review, the ability of
the green oxidation catalysis method of degradation to degrade dye is reviewed
owing to its eco-friendliness and safety.
Keywords:
azo dyes, green oxidation, catalysis, degradation of dyes, toxicity
Abstrak
Pewarna telah digunakan secara meluas sebagai agen pewarna di
dalam bidang industri global, terutamanya di dalam bidang tekstil. Buktinya,
terdapat 10,000 jenis pewarna telah diperkenalkan dan digunakan secara
berterusan sehingga mencapai tahap penggunaan 700,000 tan. Penggunaan pewarna
sintetik yang secara meluas adalah disebabkan faktor ekonominya yang sedia ada,
kekuatan yang unggul, dan kebolehan untuk meliputi julat warna. Pembuangan
pewarna komersil telah meningkat secara pantas selari dengan kadar pertumbuhan
perindustrian, menyebabkan risiko yang serius kepada hidupan bernyawa telah
dikenal pasti kerana impak pewarna yang toksik dan berbahaya. Pembuangan
pewarna di dalam takungan air diberi perhatian kerana kesan toksik yang tinggi
dan bioakumulasi dalam hidupan bernyawa. Pewarna komersil yang sangat biasa
digunakan, pewarna azo memiliki fungsi benzidine yang perlu dirawat dengan
segera kerana kesan sampingannya. Pewarna mempunyai toksik yang tinggi dan
mempunyai kecenderungan yang kuat terhadap eutrofikasi. Isu utama yang menjadi
perhatian secara global adalah pencemaran air dan tanah. Penggunaan perwarna
secara berleluasa dalam sektor industri adalah punca utama isu pencemaran ini
berlaku. Walaupun pada kepekatan bawah daripada 1 ppm, sekitar 10% pewarna yang
dibuang dan tidak dirawat menghasilkan warna yang terang yang menyebabkan
kandungan air menjadi sangat berbahaya. Sebagai kesan yang tidak diingini,
bahan ini menunjukkan bahaya kepada alam sekitar dan sekelilingnya. Satu kajian
yang mendalam mengenai metabolit pewarna dan unsur-unsur ini telah dibangunkan
untuk mengurangkan pelbagai kesan pewarna yang berbahaya. Walau bagaimanapun,
beberapa teknik yang lama seperti pengozonan dan pengklorinan masih digunakan
untuk merawat pewarna yang dibuang dan tidak dirawat atas beberapa faktor
termasuk faktor ekonomi. Dalam ulasan ini, kebolehan cara pemangkinan
pengoksidaan hijau untuk degradasi pewarna diulaskan kerana ianya mesra alam
dan selamat.
Kata
kunci: pewarna azo, pengoksidaan
hijau, pemangkinan, degradasi pewarna, ketoksikan
References
1. Chandanshive, V., Kadam, S., Rane, N., Jeon, B. H.,
Jadhav, J., and Govindwar, S. (2020). In situ,
textile wastewater treatment in high rate transpiration
system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere, 252:
126513.
2. Tkaczyk, A., Mitrowska,
K., and Posyniak, A. (2020). A review of synthetic
organic dyes as contaminants of the aquatic environment and their implications
for ecosystems. Science of the Total
Environment, 717: 137222.
3. Haque, M. M., Haque, M. A., Mosharaf,
M. K., and Marcus, P. K. (2021). Decolorization, degradation, and
detoxification of carcinogenic sulfonated azo dye methyl orange by newly
developed biofilm consortia. Saudi
Journal of Biological Sciences, 28(1): 793-804.
4.
Pinheiro, L. R. S., Gradíssimo, D. G., Xavier, L. P., and Santos, A. V. (2022).
Degradation of azo dyes: bacterial potential for bioremediation. Sustainability, 14(3): 1510.
5.
Mittal, J. (2020).
Permissible synthetic food dyes in India. Resonance, 25(4): 567-577.
6.
Jiang, N., Shang, R.,
Heijman, S. G., and Rietveld, L. C. (2018). High-silica zeolites for adsorption
of organic micro-pollutants in water treatment: A review. Water Research, 144: 145-161.
7.
Stackelberg, P. E.,
Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., and Reissman, D.
B. (2004). Pharmaceutical compounds and other organic wastewater contaminants
exist in a conventional drinking-water-treatment plant. Science of the Total Environment, 329(1-3):
99-113.
8.
Pan, Z., Stemmler, E. A.,
Cho, H. J., Fan, W., LeBlanc, L. A., Patterson, H. H., and Amirbahman,
A. (2014). Photocatalytic degradation of 17α-ethinylestradiol
(EE2) in the presence of TiO2-doped zeolite. Journal of Hazardous Materials, 279: 17-25.
9.
Gupta, V. K., Mittal, A., Gajbe, V., and Mittal, J. (2006). Removal and recovery of
the hazardous azo dye acid orange 7 through adsorption over bottom ash and
de-oiled soya waste materials. Industrial
& Engineering Chemistry Research, 45(4): 1446-1453.
10.
Smaranda, C., Comanita, E. D., Apostol, L. C., and Gavrilescu, M. (2016).
Kinetic studies on the biosorption of Acid orange 7 onto Phaseolus vulgaris
L. Series of Physics and Chemistry
Science, 1(1): 68-97.
11.
Greluk,
M., and Hubicki, Z. (2011). Efficient removal of Acid
Orange 7 dye from water using the strongly basic anion exchange resin Amberlite
IRA-958. Desalination, 278(1-3):
219-226.
12.
Abbott, L. C., Batchelor,
S. N., Smith, J. R. L., and Moore, J. N. (2009). Reductive reaction mechanisms
of the azo dye orange II in aqueous solution and in cellulose: from radical
intermediates to products. The
Journal of Physical Chemistry A, 113(21): 6091-6103.
13.
Wei, J., Zheng, Z., Huang,
L., Qiu, Z., Xia, Q., Zhou, S., ... and Zeng, D. (2023). Effective removal of
Orange II dye by porous Fe-base amorphous/Cu bimetallic composite. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 656: 130388.
14.
Iervolino, G., Vaiano, V.,
Sannino, D., Rizzo, L., Sarno, G., Ciambelli, P., and
Isupova, L. A. (2015). Influence of operating
conditions in the photo-Fenton removal of tartrazine on structured
catalysts. Chemical Engineering
Transactions, 43: 979-984.
15.
Modirshahla,
N., Behnajady, M. A., and Kooshaiian,
S. (2007). Investigation of the effect of different electrode connections on
the removal efficiency of Tartrazine from aqueous solutions by
electrocoagulation. Dyes and
Pigments, 74(2): 249-257.
16.
Mafra, M. R.,
Igarashi-Mafra, L., Zuim, D. R., Vasques, E. C., and
Ferreira, M. A. (2013). Adsorption of remazol
brilliant blue on an orange peel adsorbent. Brazilian Journal of Chemical Engineering, 30: 657-665.
17.
Zhou, Y., Qin, Y., Dai, W.,
and Luo, X. (2019). Highly efficient degradation of tartrazine with a benzoic
acid/TiO2 system. ACS omega, 4(1):
546-554
18.
Russo, A. V., Merlo, B. G.,
and Jacobo, S. E. (2021). Adsorption and catalytic degradation of tartrazine in
aqueous medium by a Fe-modified zeolite. Cleaner Engineering and Technology, 4:100211.
19.
Shu, J., Wang, Z., Huang,
Y., Huang, N., Ren, C., and Zhang, W. (2015). Adsorption removal of Congo red
from aqueous solution by polyhedral Cu2O nanoparticles: kinetics,
isotherms, thermodynamics, and mechanism analysis. Journal of Alloys and Compounds, 633: 338-346.
20.
D’Souza, E., Fulke, A. B.,
Mulani, N., Ram, A., Asodekar, M., Narkhede, N., and Gajbhiye, S. N. (2017). Decolorization of Congo red
mediated by marine Alcaligenes species isolated from Indian West coast
sediments. Environmental Earth
Sciences, 76(20): 721.
21.
Guo, H. X., Lin, K. L.,
Zheng, Z. S., Xiao, F. B., and Li, S. X. (2012). Sulfanilic
acid-modified P25 TiO2 nanoparticles with improved photocatalytic
degradation on Congo red under visible light. Dyes and Pigments, 92(3): 1278-1284.
22.
Gautam, R. K., Rawat, V.,
Banerjee, S., Sanroman, M. A., Soni, S., Singh, S. K., and Chattopadhyaya, M.
C. (2015). Synthesis of bimetallic Fe–Zn nanoparticles and its application
towards adsorptive removal of carcinogenic dye malachite green and Congo red in
water. Journal of Molecular Liquids, 212:
227-236.
23.
Gupta, S., Giordano, C., Gradzielski, M., and Mehta, S. K. (2013).
Microwave-assisted synthesis of small Ru nanoparticles and their role in
degradation of Congo red. Journal of
Colloid and Interface Science, 411: 173-181.
24.
Kolya, H., Maiti, P.,
Pandey, A., and Tripathy, T. (2015). Green synthesis of silver nanoparticles
with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf
extract. Journal of Analytical
Science and Technology, 6: 1-7.
25.
Althaaly,
A. F. M., Al-Thabaiti, S. A., and Khan, Z. (2022).
Biogenic silver nanoparticles: synthesis, characterization, and degradation of
Congo red. Journal of Materials
Science: Materials in Electronics, 33(7):
4450-4466.
26.
Jo, K. D., and Dasgupta, P.
K. (2003). Continuous on-line feedback-based flow titrations. Complexometric
titrations of calcium and magnesium. Talanta, 60(1): 131-137.
27.
San, N. O., Celebioglu, A., Tümtaş, Y.,
Uyar, T., and Tekinay, T. (2014). Reusable bacteria
immobilized electrospun nanofibrous webs for
decolorization of methylene blue dye in wastewater treatment. RSC Advances, 4(61): 32249-32255.
28.
Ejhieh,
A. N., and Khorsandi, M. (2010). Photodecolorization
of Eriochrome Black T using NiS–P zeolite as a
heterogeneous catalyst. Journal of
Hazardous Materials, 176(1-3), 629-637.
29.
Kazeminezhad,
I., and Sadollahkhani, A. (2014). Photocatalytic
degradation of Eriochrome black-T dye using ZnO
nanoparticles. Materials Letters, 120:
267-270.
30.
Kansal, S. K., Sood, S.,
Umar, A., and Mehta, S. K. (2013). Photocatalytic degradation of Eriochrome
Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 581:
392-397.
31.
Burhenne, J., Riedel, K.
D., Rengelshausen, J., Meissner, P., Müller, O.,
Mikus, G., ... and Walter-Sack, I. (2008). Quantification of cationic
anti-malaria agent methylene blue in different human biological matrices using
cation exchange chromatography coupled to tandem mass spectrometry. Journal of Chromatography B, 863(2):
273-282.
32.
Methylene Blue (2017). The
American Society of Health-System Pharmacists. Access from https://www.ashp.org/drug-shortages/current-shortages/drug-shortage-detail.aspx?id=47&loginreturnUrl=
SSOCheckOnly
33.
Mekewi,
M. A., Darwish, A. S., Amin, M. S., Eshaq, G., and Bourazan,
H. A. (2016). Copper nanoparticles supported onto montmorillonite clays as
efficient catalyst for methylene blue dye degradation. Egyptian Journal of Petroleum, 25(2):
269-279.
34.
Pandey, A., Kalal, S.,
Ameta, C., Ameta, R., Kumar, S., and Punjabi, P. B. (2015). Synthesis,
characterization and application of naďve and nano-sized titanium dioxide as a
photocatalyst for degradation of methylene blue. Journal of Saudi Chemical Society, 19(5): 528-536.
35.
Hsieh, S. H., Chen, W. J.,
and Yeh, T. H. (2015). Degradation of methylene blue using ZnSe–graphene
nanocomposites under visible-light irradiation. Ceramics International, 41(10): 13759-13766.
36.
Garg, A., and Kumar, N.
(2011). Formulation, characterization and application on nanoparticle: a
review. Der Pharmacia Sinica, 2(2): 17-26.
37.
Sathasivam, M., Aparna, R.
S. L., Prasad, R. G. S. V., and Cheok, K. Y. (2013). Photocatalytic effect of
titanium dioxide nanoparticles and effect of copper as a dopant in degradation
of dibutyl pthalate and butylhydroxyanisole. Journal of Bionanoscience, 7(5): 568-574.
38.
Hashemian, S., Dehghanpor, A., and Moghahed, M.
(2015). Cu0.5Mn0.5Fe2O4 nano spinels
as potential sorbent for adsorption of brilliant green. Journal of Industrial and Engineering
Chemistry, 24: 308-314.
39.
Ghaedi,
M., Zeinali, N., Ghaedi, A. M., Teimuori,
M., and Tashkhourian, J. (2014). Artificial neural
network-genetic algorithm based optimization for the
adsorption of methylene blue and brilliant green from aqueous solution by
graphite oxide nanoparticle. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, 125: 264-277.
40.
Sood, S., Umar, A., Mehta,
S. K., Sinha, A. S. K. and Kansal, S. K. (2015). Efficient photocatalytic
degradation of brilliant green using Sr-doped TiO2
nanoparticles. Ceramics
International, 41(3): 3533-3540.
41.
Xu, H., Chen, R., Liang,
S., Lei, Z., Zheng, W., Yan, Z., ... and Feng, C. (2022). Minimizing toxic
chlorinated byproducts during electrochemical oxidation of Ni-EDTA: Importance
of active chlorine-triggered Fe(II) transition to Fe (IV). Water Research, 219: 118548.
42.
Li, C., He, L., Yao, X.,
and Yao, Z. (2022). Recent advances in the chemical oxidation of gaseous
volatile organic compounds (VOCs) in liquid phase. Chemosphere, 2022: 133868.
43.
Pan, H., Gao, Y., Li, N.,
Zhou, Y., Lin, Q., and Jiang, J. (2021). Recent advances in
bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408:
127332.
44.
Zaharia, C., Suteu, D.,
Muresan, A., Muresan, R., and Popescu, A. (2009). Textile wastewater treatment
by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8(6):
1359-1369.
45.
Neamţu,
M., Zaharia, C., Catrinescu, C., Yediler,
A., Macoveanu, M., and Kettrup,
A. (2004). Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of
reactive azo dye Procion Marine H-EXL. Applied Catalysis B: Environmental, 48(4):
287-294.
46.
Zaharia, C., Diaconescu,
R., and Surpăţeanu, M. (2007). Study of
flocculation with Ponilit GT-2 anionic
polyelectrolyte applied into a chemical wastewater treatment. Open Chemistry, 5(1): 239-256.
47.
Adams, C. D. and Gorg, S.
(2002). Effect of pH and gas-phase ozone concentration on the decolorization of
common textile dyes. Journal of
Environmental Engineering, 128(3): 293-298.
48.
Zaharia, C., Suteu, D.,
Muresan, A., Muresan, R., and Popescu, A. (2009). Textile wastewater treatment
by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8(6):
1359-1369.
49.
Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A., and Ovelleiro,
J. L. (1998). Treatment of a wastewater resulting from dyes manufacturing with
ozone and chemical coagulation. Water
Research, 32(9): 2721-2727.
50.
Omura, T. (1994). Design of
chlorine-fast reactive dyes: Part 4: degradation of amino-containing azo dyes
by sodium hypochlorite. Dyes and
pigments, 26(1): 33-50.
51.
Slokar, Y. M., and Le
Marechal, A. M. (1998). Methods of decoloration of
textile wastewaters. Dyes and
pigments, 37(4): 335-356.
52.
Surpăţeanu,
M., and Zaharia, C. (2004). Advanced oxidation processes for decolorization of
aqueous solution containing Acid Red G azo dye. Central European Journal of Chemistry, 2: 573-588.
53.
Anjaneyulu, Y., Sreedhara
Chary, N., and Samuel Suman Raj, D. (2005). Decolourization of industrial
effluents–available methods and emerging technologies–a review. Reviews in Environmental Science and
Bio/Technology, 4: 245-273.
54.
Babu, B. R., Parande, A. K., Raghu, S., and Kumar, T. P. (2007). Cotton
textile processing: waste generation and effluent treatment. Journal of Cotton Science, 11(3):
142-153.
55.
Vlyssides,
A. G., Papaioannou, D., Loizidoy, M., Karlis, P. K.,
and Zorpas, A. A. (2000). Testing an electrochemical
method for treatment of textile dye wastewater. Waste Management, 20(7): 569-574.
56.
Oller, I., Malato, S., and Sánchez-Pérez, J. (2011). Combination of
advanced oxidation processes and biological treatments for wastewater
decontamination—a review. Science of
the Total Environment, 409(20): 4141-4166.
57.
Donkadokula,
N. Y., Kola, A. K., Naz, I., and Saroj, D. (2020). A review on advanced physico-chemical and biological textile dye wastewater
treatment techniques. Reviews in
Environmental Science and Biotechnology, 19: 543-560.
58.
Chahbane,
N., Popescu, D. L., Mitchell, D. A., Chanda, A., Lenoir, D., Ryabov, A. D.,
Schramm, K.W. and Collins, T. J. (2007). Fe–TAML-catalyzed
green oxidative degradation of the azo dye Orange II by H2O2
and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chemistry, 9(1): 49-57.
59.
Chanda, A., Khetan, S. K.,
Banerjee, D., Ghosh, A., and Collins, T. J. (2006). Total degradation of
fenitrothion and other organophosphorus pesticides by catalytic oxidation
employing Fe-TAML peroxide activators. Journal
of the American Chemical Society, 128(37): 12058-12059.
60.
Collins, T. J., Khetan, S.
K., and Ryabov, A. D. (2010). Chemistry and applications of iron–TAML catalysts
in green oxidation processes based on hydrogen peroxide. Handbook of Green Chemistry: Online: pp.
39-77.
61.
Anastas, P. T. (Ed.).
(2013). Handbook of green chemistry.
Wiley-VCH: pp. 1-59.
62.
Strukul,
G., and Scarso, A. (2013). Environmentally benign
oxidants. Liquid Phase Oxidation via
Heterogeneous Catalysis: Organic Synthesis and Industrial Applications: pp.
1-20.
63.
Kuo, W. G. (1992)
Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26: 881-886.
64.
Collins, T. J., Khetan, S.
K., and Ryabov, A. D. (2009). Chemistry and applications of iron-TAML catalyst in
green oxidation processes based on hydrogen peroxide. Handbook of Green Chemistry, 1: 39-77.
65.
ISO 6341 (1982). Water
quality-determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Technical Committee:
ISO/TC 147/SC 5 Biological methods.
66.
Horwitz, C. P., Collins, T.
J., Spatz, J., Smith, H. J., Wright, L. J., Stuthridge,
T. R., Wingate, K.G and McGrouther, K. (2006).
Iron-TAML® catalysts in the pulp and paper industry. ACS Symposium Series, 921:156-169.
67.
Pinzón-Espinosa, A.,
Collins, T. J., and Kanda, R. (2021). Detoxification of oil refining effluents
by oxidation of naphthenic acids using TAML catalysts. Science of the Total Environment, 784:
147148.
68.
Beach, E. S., Malecky, R. T., Gil, R. R., Horwitz, C. P., and Collins, T.
J. (2011). Fe-TAML/hydrogen peroxide degradation of concentrated solutions of
the commercial azo dye tartrazine. Catalysis
Science & Technology, 1(3): 437-443.
69.
Spannring,
P., Yazerski, V., Bruijnincx,
P. C., Weckhuysen, B. M., and Klein Gebbink, R. J. (2013). Fe‐catalyzed
one‐pot oxidative cleavage of unsaturated fatty acids into aldehydes with
hydrogen peroxide and sodium periodate. Chemistry–a European Journal, 19(44): 15012-15018.
70.
Xie, J., Xie, J., Miller,
C. J., and Waite, T. D. (2023). Enhanced direct electron transfer mediated
contaminant degradation by Fe(IV) using a carbon black-supported Fe(III)-TAML
suspension electrode system. Environmental
Science & Technology, 57(6): 2557-2565.
71.
Bae, J. S., and Freeman, H.
S. (2007). Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dyes and Pigments, 73(1): 81-85.
72. Batra,
V., Kaur, I., Pathania, D., and Chaudhary, V. (2022). Efficient dye degradation
strategies using green synthesized ZnO-based
nanoplatforms: A review. Applied
Surface Science Advances, 11: 100314.