Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 890 - 905

 

DEGRADATION OF AZO DYES FROM EFFLUENTS: A MINI REVIEW FOCUSING ON COMPARISON BETWEEN CURRENTLY EXISTING INDUSTRIAL METHODS AND GREEN OXIDATION CATALYSIS TREATMENT INVOLVING Fe-TAML AND H2O2

 

(Degradasi Pewarna Azo daripada Efluen: Sebuah Mini Ulasan yang Memfokuskan Perbandingan Antara Teknik Industri yang Kini Wujud dan Rawatan Pemangkinan Pengoksidaan Hijau Melibatkan Fe-TAML dan H2O2)

 

Wan Mohd Norsani Wan Nik1, Nabilah Ismail2*, Saranraj Saravanan2, Nur Khairunnisa Nazri2,

and Mohd Arzaimiruddin Ariffin3

 

1Faculty of Ocean Engineering Technology and Informatics,Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Faculty of Science and Marine Environment,Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Faculty of Mechanical Engineering, Universiti Teknologi MARA Cawangan Terengganu, Kampus Bukit Besi 23200, Jln Kuala Berang, Terengganu, Malaysia.

 

*Corresponding author: nabilah.i@umt.edu.my

 

 

Received: 7 March 2023; Accepted: 3 June 2023; Published:  22 August 2023

 

 

Abstract

Dyes are widely used as coloring agents globally in the industrial field, especially in the textile industry. As proof, 10,000 types of dyes have been introduced and are continuously used, reaching a usage viability of 700,000 tons. The widespread use of synthetic dyes is caused by their economic factors, ready availability, superior strength, and ability to cover a wide range of shades. However, the discharge of commercial dyes is increasing at a swift rate as industrialization continues to grow, leading to severe hazards to living organisms due to their toxic and harmful impacts. The discharge of dyes into water reservoirs is a concern because of their high toxicity and bioaccumulation in living organisms. One of the most used commercial dyes, azo dyes, possesses a benzidine function that needs to be treated soon due to its side effects. Dyes contain toxicity and have a strong tendency toward eutrophication. The major globally concerned issues are water and soil pollution. The massive use of these dyes in industrial sectors is the main reason behind these environmental issues. Even at concentrations lower than one ppm, around 10% of the untreated discharged dyes impart an intense color, making the water highly detrimental. As an unwanted consequence, this exhibits an immense environmental hazard to the surroundings. Thorough studies on dye metabolites and their constituents have been developed to reduce the acute diverse effects of dyes. However, a few outdated techniques such as ozonation and chlorination are still being utilized to break down untreated dye discharge for various reasons, including economic factors. In this review, the ability of the green oxidation catalysis method of degradation to degrade dye is reviewed owing to its eco-friendliness and safety.

 

Keywords: azo dyes, green oxidation, catalysis, degradation of dyes, toxicity

 

Abstrak

Pewarna telah digunakan secara meluas sebagai agen pewarna di dalam bidang industri global, terutamanya di dalam bidang tekstil. Buktinya, terdapat 10,000 jenis pewarna telah diperkenalkan dan digunakan secara berterusan sehingga mencapai tahap penggunaan 700,000 tan. Penggunaan pewarna sintetik yang secara meluas adalah disebabkan faktor ekonominya yang sedia ada, kekuatan yang unggul, dan kebolehan untuk meliputi julat warna. Pembuangan pewarna komersil telah meningkat secara pantas selari dengan kadar pertumbuhan perindustrian, menyebabkan risiko yang serius kepada hidupan bernyawa telah dikenal pasti kerana impak pewarna yang toksik dan berbahaya. Pembuangan pewarna di dalam takungan air diberi perhatian kerana kesan toksik yang tinggi dan bioakumulasi dalam hidupan bernyawa. Pewarna komersil yang sangat biasa digunakan, pewarna azo memiliki fungsi benzidine yang perlu dirawat dengan segera kerana kesan sampingannya. Pewarna mempunyai toksik yang tinggi dan mempunyai kecenderungan yang kuat terhadap eutrofikasi. Isu utama yang menjadi perhatian secara global adalah pencemaran air dan tanah. Penggunaan perwarna secara berleluasa dalam sektor industri adalah punca utama isu pencemaran ini berlaku. Walaupun pada kepekatan bawah daripada 1 ppm, sekitar 10% pewarna yang dibuang dan tidak dirawat menghasilkan warna yang terang yang menyebabkan kandungan air menjadi sangat berbahaya. Sebagai kesan yang tidak diingini, bahan ini menunjukkan bahaya kepada alam sekitar dan sekelilingnya. Satu kajian yang mendalam mengenai metabolit pewarna dan unsur-unsur ini telah dibangunkan untuk mengurangkan pelbagai kesan pewarna yang berbahaya. Walau bagaimanapun, beberapa teknik yang lama seperti pengozonan dan pengklorinan masih digunakan untuk merawat pewarna yang dibuang dan tidak dirawat atas beberapa faktor termasuk faktor ekonomi. Dalam ulasan ini, kebolehan cara pemangkinan pengoksidaan hijau untuk degradasi pewarna diulaskan kerana ianya mesra alam dan selamat.

 

Kata kunci: pewarna azo, pengoksidaan hijau, pemangkinan, degradasi pewarna, ketoksikan

 


 

References

1.       Chandanshive, V., Kadam, S., Rane, N., Jeon, B. H., Jadhav, J., and Govindwar, S. (2020). In situ, textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobedsChemosphere, 252: 126513.

2.       Tkaczyk, A., Mitrowska, K., and Posyniak, A. (2020). A review of synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems. Science of the Total Environment, 717: 137222.

3.       Haque, M. M., Haque, M. A., Mosharaf, M. K., and Marcus, P. K. (2021). Decolorization, degradation, and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi Journal of Biological Sciences, 28(1): 793-804.

4.       Pinheiro, L. R. S., Gradíssimo, D. G., Xavier, L. P., and Santos, A. V. (2022). Degradation of azo dyes: bacterial potential for bioremediation. Sustainability, 14(3): 1510.

5.       Mittal, J. (2020). Permissible synthetic food dyes in India. Resonance, 25(4): 567-577.

6.       Jiang, N., Shang, R., Heijman, S. G., and Rietveld, L. C. (2018). High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Research, 144: 145-161.

7.       Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., and Reissman, D. B. (2004). Pharmaceutical compounds and other organic wastewater contaminants exist in a conventional drinking-water-treatment plant. Science of the Total Environment, 329(1-3): 99-113.

8.       Pan, Z., Stemmler, E. A., Cho, H. J., Fan, W., LeBlanc, L. A., Patterson, H. H., and Amirbahman, A. (2014). Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite. Journal of Hazardous Materials, 279: 17-25.

9.       Gupta, V. K., Mittal, A., Gajbe, V., and Mittal, J. (2006). Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over bottom ash and de-oiled soya waste materials. Industrial & Engineering Chemistry Research, 45(4): 1446-1453.

10.    Smaranda, C., Comanita, E. D., Apostol, L. C., and Gavrilescu, M. (2016). Kinetic studies on the biosorption of Acid orange 7 onto Phaseolus vulgaris L.  Series of Physics and Chemistry Science, 1(1): 68-97.

11.    Greluk, M., and Hubicki, Z. (2011). Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination, 278(1-3): 219-226.

12.    Abbott, L. C., Batchelor, S. N., Smith, J. R. L., and Moore, J. N. (2009). Reductive reaction mechanisms of the azo dye orange II in aqueous solution and in cellulose: from radical intermediates to products. The Journal of Physical Chemistry A, 113(21): 6091-6103.

13.    Wei, J., Zheng, Z., Huang, L., Qiu, Z., Xia, Q., Zhou, S., ... and Zeng, D. (2023). Effective removal of Orange II dye by porous Fe-base amorphous/Cu bimetallic composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656: 130388.

14.    Iervolino, G., Vaiano, V., Sannino, D., Rizzo, L., Sarno, G., Ciambelli, P., and Isupova, L. A. (2015). Influence of operating conditions in the photo-Fenton removal of tartrazine on structured catalysts. Chemical Engineering Transactions, 43: 979-984.

15.    Modirshahla, N., Behnajady, M. A., and Kooshaiian, S. (2007). Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation. Dyes and Pigments, 74(2): 249-257.

16.    Mafra, M. R., Igarashi-Mafra, L., Zuim, D. R., Vasques, E. C., and Ferreira, M. A. (2013). Adsorption of remazol brilliant blue on an orange peel adsorbent. Brazilian Journal of Chemical Engineering, 30: 657-665.

17.    Zhou, Y., Qin, Y., Dai, W., and Luo, X. (2019). Highly efficient degradation of tartrazine with a benzoic acid/TiO2 system. ACS omega, 4(1): 546-554

18.    Russo, A. V., Merlo, B. G., and Jacobo, S. E. (2021). Adsorption and catalytic degradation of tartrazine in aqueous medium by a Fe-modified zeolite. Cleaner Engineering and Technology, 4:100211.

19.    Shu, J., Wang, Z., Huang, Y., Huang, N., Ren, C., and Zhang, W. (2015). Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: kinetics, isotherms, thermodynamics, and mechanism analysis. Journal of Alloys and Compounds, 633: 338-346.

20.    D’Souza, E., Fulke, A. B., Mulani, N., Ram, A., Asodekar, M., Narkhede, N., and Gajbhiye, S. N. (2017). Decolorization of Congo red mediated by marine Alcaligenes species isolated from Indian West coast sediments. Environmental Earth Sciences, 76(20): 721.

21.    Guo, H. X., Lin, K. L., Zheng, Z. S., Xiao, F. B., and Li, S. X. (2012). Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light. Dyes and Pigments, 92(3): 1278-1284.

22.    Gautam, R. K., Rawat, V., Banerjee, S., Sanroman, M. A., Soni, S., Singh, S. K., and Chattopadhyaya, M. C. (2015). Synthesis of bimetallic Fe–Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water. Journal of Molecular Liquids, 212: 227-236.

23.    Gupta, S., Giordano, C., Gradzielski, M., and Mehta, S. K. (2013). Microwave-assisted synthesis of small Ru nanoparticles and their role in degradation of Congo red. Journal of Colloid and Interface Science, 411: 173-181.

24.    Kolya, H., Maiti, P., Pandey, A., and Tripathy, T. (2015). Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. Journal of Analytical Science and Technology, 6: 1-7.

25.    Althaaly, A. F. M., Al-Thabaiti, S. A., and Khan, Z. (2022). Biogenic silver nanoparticles: synthesis, characterization, and degradation of Congo red. Journal of Materials Science: Materials in Electronics33(7): 4450-4466.

26.    Jo, K. D., and Dasgupta, P. K. (2003). Continuous on-line feedback-based flow titrations. Complexometric titrations of calcium and magnesium. Talanta, 60(1): 131-137.

27.    San, N. O., Celebioglu, A., Tümtaş, Y., Uyar, T., and Tekinay, T. (2014). Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Advances4(61): 32249-32255.

28.    Ejhieh, A. N., and Khorsandi, M. (2010). Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. Journal of Hazardous Materials, 176(1-3), 629-637.

29.    Kazeminezhad, I., and Sadollahkhani, A. (2014). Photocatalytic degradation of Eriochrome black-T dye using ZnO nanoparticles. Materials Letters, 120: 267-270.

30.    Kansal, S. K., Sood, S., Umar, A., and Mehta, S. K. (2013). Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 581: 392-397.

31.    Burhenne, J., Riedel, K. D., Rengelshausen, J., Meissner, P., Müller, O., Mikus, G., ... and Walter-Sack, I. (2008). Quantification of cationic anti-malaria agent methylene blue in different human biological matrices using cation exchange chromatography coupled to tandem mass spectrometry. Journal of Chromatography B, 863(2): 273-282.

32.    Methylene Blue (2017). The American Society of Health-System Pharmacists. Access from https://www.ashp.org/drug-shortages/current-shortages/drug-shortage-detail.aspx?id=47&loginreturnUrl= SSOCheckOnly

33.    Mekewi, M. A., Darwish, A. S., Amin, M. S., Eshaq, G., and Bourazan, H. A. (2016). Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egyptian Journal of Petroleum, 25(2): 269-279.

34.    Pandey, A., Kalal, S., Ameta, C., Ameta, R., Kumar, S., and Punjabi, P. B. (2015). Synthesis, characterization and application of naďve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue. Journal of Saudi Chemical Society, 19(5): 528-536.

35.    Hsieh, S. H., Chen, W. J., and Yeh, T. H. (2015). Degradation of methylene blue using ZnSe–graphene nanocomposites under visible-light irradiation. Ceramics International, 41(10): 13759-13766.

36.    Garg, A., and Kumar, N. (2011). Formulation, characterization and application on nanoparticle: a review. Der Pharmacia Sinica, 2(2): 17-26.

37.    Sathasivam, M., Aparna, R. S. L., Prasad, R. G. S. V., and Cheok, K. Y. (2013). Photocatalytic effect of titanium dioxide nanoparticles and effect of copper as a dopant in degradation of dibutyl pthalate and butylhydroxyanisoleJournal of Bionanoscience7(5): 568-574.

38.    Hashemian, S., Dehghanpor, A., and Moghahed, M. (2015). Cu0.5Mn0.5Fe2O4 nano spinels as potential sorbent for adsorption of brilliant green. Journal of Industrial and Engineering Chemistry, 24: 308-314.

39.    Ghaedi, M., Zeinali, N., Ghaedi, A. M., Teimuori, M., and Tashkhourian, J. (2014). Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125: 264-277.

40.    Sood, S., Umar, A., Mehta, S. K., Sinha, A. S. K. and Kansal, S. K. (2015). Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles. Ceramics International, 41(3): 3533-3540.

41.    Xu, H., Chen, R., Liang, S., Lei, Z., Zheng, W., Yan, Z., ... and Feng, C. (2022). Minimizing toxic chlorinated byproducts during electrochemical oxidation of Ni-EDTA: Importance of active chlorine-triggered Fe(II) transition to Fe (IV). Water Research, 219: 118548.

42.    Li, C., He, L., Yao, X., and Yao, Z. (2022). Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase. Chemosphere, 2022: 133868.

43.    Pan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., and Jiang, J. (2021). Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: 127332.

44.    Zaharia, C., Suteu, D., Muresan, A., Muresan, R., and Popescu, A. (2009). Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8(6): 1359-1369.

45.    Neamţu, M., Zaharia, C., Catrinescu, C., Yediler, A., Macoveanu, M., and Kettrup, A. (2004). Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL. Applied Catalysis B: Environmental, 48(4): 287-294.

46.    Zaharia, C., Diaconescu, R., and Surpăţeanu, M. (2007). Study of flocculation with Ponilit GT-2 anionic polyelectrolyte applied into a chemical wastewater treatment. Open Chemistry, 5(1): 239-256.

47.    Adams, C. D. and Gorg, S. (2002). Effect of pH and gas-phase ozone concentration on the decolorization of common textile dyes. Journal of Environmental Engineering, 128(3): 293-298.

48.    Zaharia, C., Suteu, D., Muresan, A., Muresan, R., and Popescu, A. (2009). Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environmental Engineering and Management Journal, 8(6): 1359-1369.

49.    Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A., and Ovelleiro, J. L. (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Research, 32(9): 2721-2727.

50.    Omura, T. (1994). Design of chlorine-fast reactive dyes: Part 4: degradation of amino-containing azo dyes by sodium hypochlorite. Dyes and pigments, 26(1): 33-50.

51.    Slokar, Y. M., and Le Marechal, A. M. (1998). Methods of decoloration of textile wastewaters. Dyes and pigments, 37(4): 335-356.

52.    Surpăţeanu, M., and Zaharia, C. (2004). Advanced oxidation processes for decolorization of aqueous solution containing Acid Red G azo dye. Central European Journal of Chemistry, 2: 573-588.

53.    Anjaneyulu, Y., Sreedhara Chary, N., and Samuel Suman Raj, D. (2005). Decolourization of industrial effluents–available methods and emerging technologies–a review. Reviews in Environmental Science and Bio/Technology, 4: 245-273.

54.    Babu, B. R., Parande, A. K., Raghu, S., and Kumar, T. P. (2007). Cotton textile processing: waste generation and effluent treatment. Journal of Cotton Science, 11(3): 142-153.

55.    Vlyssides, A. G., Papaioannou, D., Loizidoy, M., Karlis, P. K., and Zorpas, A. A. (2000). Testing an electrochemical method for treatment of textile dye wastewater. Waste Management, 20(7): 569-574.

56.    Oller, I., Malato, S., and Sánchez-Pérez, J. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20): 4141-4166.

57.    Donkadokula, N. Y., Kola, A. K., Naz, I., and Saroj, D. (2020). A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Reviews in Environmental Science and Biotechnology, 19: 543-560.

58.    Chahbane, N., Popescu, D. L., Mitchell, D. A., Chanda, A., Lenoir, D., Ryabov, A. D., Schramm, K.W. and Collins, T. J. (2007). Fe–TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chemistry, 9(1): 49-57.

59.    Chanda, A., Khetan, S. K., Banerjee, D., Ghosh, A., and Collins, T. J. (2006). Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators. Journal of the American Chemical Society, 128(37): 12058-12059.

60.    Collins, T. J., Khetan, S. K., and Ryabov, A. D. (2010). Chemistry and applications of iron–TAML catalysts in green oxidation processes based on hydrogen peroxide. Handbook of Green Chemistry: Online: pp. 39-77.

61.    Anastas, P. T. (Ed.). (2013). Handbook of green chemistry. Wiley-VCH: pp. 1-59.

62.    Strukul, G., and Scarso, A. (2013). Environmentally benign oxidants. Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications: pp. 1-20.

63.    Kuo, W. G. (1992) Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26: 881-886.

64.    Collins, T. J., Khetan, S. K., and Ryabov, A. D. (2009). Chemistry and applications of iron-TAML catalyst in green oxidation processes based on hydrogen peroxide. Handbook of Green Chemistry, 1: 39-77.

65.    ISO 6341 (1982). Water quality-determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Technical Committee: ISO/TC 147/SC 5 Biological methods.

66.    Horwitz, C. P., Collins, T. J., Spatz, J., Smith, H. J., Wright, L. J., Stuthridge, T. R., Wingate, K.G and McGrouther, K. (2006). Iron-TAML® catalysts in the pulp and paper industry. ACS Symposium Series, 921:156-169.

67.    Pinzón-Espinosa, A., Collins, T. J., and Kanda, R. (2021). Detoxification of oil refining effluents by oxidation of naphthenic acids using TAML catalysts. Science of the Total Environment, 784: 147148.

68.    Beach, E. S., Malecky, R. T., Gil, R. R., Horwitz, C. P., and Collins, T. J. (2011). Fe-TAML/hydrogen peroxide degradation of concentrated solutions of the commercial azo dye tartrazine. Catalysis Science & Technology, 1(3): 437-443.

69.    Spannring, P., Yazerski, V., Bruijnincx, P. C., Weckhuysen, B. M., and Klein Gebbink, R. J. (2013). Fe‐catalyzed one‐pot oxidative cleavage of unsaturated fatty acids into aldehydes with hydrogen peroxide and sodium periodate. Chemistry–a European Journal, 19(44): 15012-15018.

70.    Xie, J., Xie, J., Miller, C. J., and Waite, T. D. (2023). Enhanced direct electron transfer mediated contaminant degradation by Fe(IV) using a carbon black-supported Fe(III)-TAML suspension electrode system. Environmental Science & Technology, 57(6): 2557-2565.

71.    Bae, J. S., and Freeman, H. S. (2007). Aquatic toxicity evaluation of new direct dyes to the Daphnia magnaDyes and Pigments, 73(1): 81-85.

72.     Batra, V., Kaur, I., Pathania, D., and Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11: 100314.