Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 865 - 875

 

QUANTIFICATIONS OF LINOLEIC ACID AND β-GLUCAN IN

Lignosus rhinocerotis EXTRACT AND ITS CYTOTOXICITY

ANALYSIS IN HUMAN LUNGS EPITHELIAL BEAS-2B CELLS

 

(Kuantifikasi Asid Linoleik dan β-Glukan dalam Ekstrak Lignosus rhinocerotis dan Analisis Kesitotoksikan dalam Sel Epitelium Bronkus Manusia BEAS-2B)

 

Nurul Asma Abdullah1*, Siti Nurshazwani Muhamad Sayuti2, Bushra Solehah Mohd Rosdan 1, Siew Hua Gan3, Nurfadhlina Musa4, and Ruzilawati Abu Bakar5

 

1School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Universiti Sains Malaysia Institutional Animal Care and Use Committee (USM IACUC), Universiti Sains Malaysia,

16150 Kubang Kerian, Kelantan, Malaysia.

3School of Pharmacy, Monash Universiti Malaysia, Bandar Sunway, Selangor, Malaysia.

4Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia.

5Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia,

16150 Kubang Kerian, Kelantan Malaysia.

 

*Corresponding author: nurulasma@usm.my

 

 

Received: 26 February 2023; Accepted: 23 July 2023; Published:  22 August 2023

 

 

Abstract

Lignosus rhinocerotis, a polypore found in the tropical forests of Malaysia is traditionally used by the locals to treat various diseases. The objectives of the study were to quantify linoleic acid and β-glucan, characterize polysaccharide structure as well as to evaluate the cytotoxicity effects of L. rhinocerotis extracts. The linoleic acid and β-glucan concentrations in six different extracts of L. rhinocerotis were quantified using HPLC and β-glucan assay kit, respectively and the polysaccharide structure were analyzed using FTIR and XRD. The proliferation rate of human bronchial epithelial BEAS-2B cells treated with the L. rhinocerotis extracts were also analyzed. The highest linolic acid content and β-glucan composition were found in petroleum ether extract and hexane residue, respectively. Cold water and petroleum ether extracts showed cytotoxic effect with 30% reduction of cell viability at 72 hours at the concentration of 62.5-250 µg/mL while the other extracts are not cytotoxic. Quantification of linoleic acid and β-glucan as well as characterization of polysaccharide structure in L. rhinocerotis extracts have been successfully determined. The observed effects on BEAS-2B cells are likely attributable to the immunomodulatory properties exhibited by the active compounds of linoleic acid and β-glucan.

 

Keywords: Lignosus rhinocerotis, linoleic acid, beta-glucan, high performance liquid chromatography, cytotoxicity

 

Abstrak

Lignosus rhinocerotis merupakan polipor yang terdapat di hutan tropika Malaysia telah digunakan secara tradisi oleh penduduk tempatan untuk merawat pelbagai penyakit. Kajian ini bertujuan untuk mengukur tahap asid linoleik dan β-glukan, mencirikan struktur polisakarida serta menilai kesan sitotoksisiti ekstrak L. rhinocerotis. Tahap asid linoleik dan β-glukan di dalam enam ekstrak L. rhinocerotis yang berlainan masing-masing diukur dengan kaedah HPLC dan kit ujian mezayme yis dan cendawan β-glukan. Struktur polisakarida juga dianalisa menggunakankan kaedah FTIR dan XRD. Titisan sel epitelium bronkus manusia BEAS-2B dikultur dan dirawat dengan ekstrak L. rhinocerotis dan ujian kesitotoksikan telah dijalankan. Petroleum eter menghasilkan jumlah asid linoleik yang paling tinggi, manakala ekstrak residu heksana menghasilkan komposisi β-glukan tertinggi. Ekstrak air sejuk dan petroleum eter menunjukkan kesan sitotoksik ringan pada kepekatan 62.5-250.0 µg/mL dengan penurunan kadar kebolehhidupan sel adalah tidak melebihi 30% manakala kebanyakan ekstrak lain tidak sitotoksik. Tahap asid linoleik dan β-glukan serta pencirian struktur polisakarida di dalam ekstrak L. rhinocerotis telah berjaya ditentukan. Kesan ekstrak ini terhadap titisan sel epitelium bronkus manusia BEAS-2B juga telah berjaya dikaji dan berkemungkinan disebabkan oleh sifat imunomodulator yang ditunjukkan oleh sebatian aktif, iaitu asid linoleik dan β-glukan.

 

Kata kunci: Lignosus rhinocerotis, asid linoleic, β-glukan, kromatografi cecair berprestasi tinggi, kesitotoksikan

 


References

1.       Lau, B. F., Noorlidah A., Norhaniza A., Hong B. L., and Pei J. T. (2015). Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus Spp. (Tiger׳s milk mushrooms) in Malaysia – A review. Journal of Ethnopharmacology, 169: 441-458.

2.       Lee, S. S., Chang, Y. S. and Noraswati, M. N. R. (2009). Utilization of macrofungi by some indigenous communities for food and medicine in Peninsular Malaysia. Forest Ecology and Management, 257(10): 2062-2065.

3.       Zhu, F., Bin D., Zhaoxiang B., and Baojun Xu. (2015). Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. Journal of Food Composition and Analysis, 41:165-173.

4.       Chen, S-N., Ching-Sheng C., Ming-Hsin H., Sherwin C., William W., Cheng-Jeng T., and Chung-Lun L.    (2014). The effect of mushroom beta-glucans from solid culture of Ganoderma lucidum on inhibition of the primary tumor metastasis. Evidence-Based Complementary and Alternative Medicine, 2014: 1-7.

5.       Choque, B., Daniel C., Vincent R., and Philippe L. (2014). Linoleic acid: Between doubts and certainties. Biochimie, 96: 14-21.\

6.       Ferrucci, L., Cherubini, A., Bandinelli, S., Bartali, B., Corsi, A., Lauretani, F., ... and Guralnik, J. M. (2006). Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. The Journal of Clinical Endocrinology & Metabolism, 91(2): 439-446.

7.       Johnathan, M., Gan, S. H., Ezumi, M. F., Faezahtul, A. H., and Nurul, A. A. (2016). Phytochemical profiles and inhibitory effects of Tiger Milk mushroom (Lignosus rhinocerus) extract on ovalbumin-induced airway inflammation in a rodent model of asthma. BMC Complementary and Alternative Medicine, 16(1), 1-13.

8.       Fauzi, S. Z.C., Nor-Fadilah R., Lek, M. L., Kok, L. P., Norfazlina, M. N., Nurshahirah, N., Florinsiah, L., and Farida, Z. M. Y. (2015). Anti-proliferative effect of Lignosus rhinocerus extract on colorectal cancer cells via apoptosis and cell cycle arrest. International Journal of Pharmaceutical Sciences Review and Research, 33(1): 13-17.

9.       Lee, M. L., Tan, N. H., Fung, S. Y., Tan, C. S., and Ng. S. T. (2012). The antiproliferative activity of sclerotia of Lignosus rhinocerus (Tiger Milk Mushroom). Evidence-Based Complementary and Alternative Medicine, 2012: 1-5.

10.    Anthérieu, S., Anne, G., Nicolas, B., Mélissa, S., Delphine, A., Guillaume, G., and Jean-Marc L-G. (2017). Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells. Toxicology In Vitro, 45: 417-425.

11.    Britt, R., Michael, T., Christina, P., and Prakash, S.Y. (2017). C108 getting inflamed: Markers of lung injury and remodeling: brain-derived neurotrophic factor promotes remodeling mechanisms in human airway epithelial cells. American Journal of Respiratory and Critical Care Medicine, 195: 15.

12.    U.S. Department of Health and Human Services, Food and Drug Administration. (2018). Bioanalytical method validation guidance for industry.”U.S. Department of Health and Human Services, Food and Drug Administration, no. May: 1–41. Access from https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf.

13.    Dore, C., Monique, A., Maria, S., Leonardo de S., Iuri, B., and Edda L. (2014). Antioxidant and anti-inflammatory properties of an extract rich in polysaccharides of the mushroom Polyporus dermoporus. Antioxidants, 3(4): 730-744.

14.    Riaz, T., Rabia, Z., Faiza, Z., Kanwal, I., Nawshad, M., Sher, Z. S., Abdur, R., Syed A. A. R., and Ihtesham, U. R. (2018). FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews, 53(9): 703-746.

15.    Gutte, K. B., Akshaya, K. S., and Rahul, C. R. (2015). Effect of ultrasonic treatment on extraction and fatty acid profile of flaxseed oil. Oilseeds and Fats, Crops and Lipids, 22(6): D606.

16.    Toledo, C., Carolina, B., Ângela, F., Lillian, B., and Isabel, F. (2016). Chemical and antioxidant properties of wild edible mushrooms from native Nothofagus Spp. forest, Argentina. Molecules, 21(9): 1201.

17.    Tel-Çayan, G., Akhtar, M., Mehmet, E. D., Mehmet, Ö., Achyut, A., and Aziz, T. (2016). A new fatty acid ester from an edible mushroom Rhizopogon luteolus. Natural Product Research, 30(20): 2258-2264.

18.    Koutrotsios, G., Nick, K., Pantelis, S., Andriana, C. K., and Georgios, I. Z. (2017). Bioactive compounds and antioxidant activity exhibit high intraspecific variability in Pleurotus ostreatus mushrooms and correlate well with cultivation performance parameters. World Journal of Microbiology and Biotechnology, 33(5): 98.

19.    Jamil M., Nor-Azreen, Norasfaliza R., Noraswati M. N. R., Mohd-Hafis-Yuswan, M. Y., Nur Syahidah S., and Norihan M. S. (2013). LCMS-QTOF determination of lentinan-like β-D-glucan content isolated by hot water and alkaline solution from Tiger’s milk mushroom, termite mushroom, and selected local market mushrooms. Journal of Mycology, 2013: 1-8.

20.    Kong, B-H., Nget-Hong T., Shin-Yee F., Jayalakshmi, P., Chon-Seng T., and Szu-Ting, N. (2016). Nutritional composition, antioxidant properties, and toxicology evaluation of the sclerotium of Tiger milk mushroom Lignosus Tigris cultivar E. Nutrition Research, 36(2): 174-183.

21.    Chen, Y, Hui, Z., Yuanxing, W., Shaoping, N, Chang, L., and Mingyong, X. (2015). Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chemistry, 186: 231-238.

22.    Zheng, H-G., Chen, J-C., Weng M-J, Ahmad I., and Zhou, C-Q. (2020). Structural characterization and bioactivities of a polysaccharide from the stalk residue of Pleurotus Eryngii. Food Science and Technology, 40: 235-241.

23.    Choong, Y-K, Kavithambigai, E., Xiang-Dong, C., and Shaiful Azuar, M. (2019). Extraction and fractionation of polysaccharides from a selected mushroom species, Ganoderma lucidum: A critical review. In Fractionation. IntechOpen: pp. 78047.

24.    Barbosa, J. R., Maurício, M. S. F., Luã, C. O., Luiza, H. S. M., Andryo, O. A-V., Rafael, M O, Julio, C. P., Davi do Socorro B. B., and Raul, N. C. J. (2020). Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom


pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chemistry, 330: 127173.

25.    Savi, A., Gabrielle, C. C., Vidiany, A. Q. S., Edimir, A. P., and Sirlei, D. T. (2020). Chemical characterization and antioxidant of polysaccharide extracted from Dioscorea bulbifera. Journal of King Saud University – Science, 32(1): 636-642.

26.    Prashant, T., Kumar, B., Kaur, M., Kaur, G., and Kaur, H. (2011). Phytochemical screening and extraction: A review. Internationale Pharmaceutica Sciencia, 1(1): 98-106.

27.     Wink, M. (2015). Modes of action of herbal medicines and plant secondary metabolites. Medicines, 2(3): 251-286.