Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 849 - 864
EFFECTIVE AND FAST ADSORPTIVE REMOVAL OF COOMASSIE
BRILLIANT BLUE G 250 DYE FROM WATER USING Fe3O4
MAGNETIC NANOPARTICLES
(Penjerapan
Penyingkiran Pewarna Coomassie Brilliant Biru G 250 Secara Berkesan dan Pantas
Menggunakan Fe3O4
Magnetik Nanopartikel)
Siti Khalijah Mahmad Rozi1,2*,
Nur Atikah Saufi1, and Nur Atiqah Nabilah Mohammad Rashidi1
1Faculty of Chemical
Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat
Pengajian Jejawi 3, 02600 Arau,Perlis, Malaysia
2Centre
of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau,
Perlis, Malaysia
*Correspondence: khalijahrozi@unimap.edu.my
Received: 29 March 2023; Accepted: 23
July 2023; Published: 22 August 2023
Coomassie Brilliant Blue G 250 (CBB G 250) is mainly generated from
industrial textile effluent. Due to its non-degradable nature, it is not only
environmentally hazardous, but also affect human health, causing irritations of
the eye, respiratory or gastrointestinal tract. Therefore, a strategy for
treating this colorant is necessary. This research highlights the synthesis of
Fe3O4 Magnetic nanoparticles (Fe3O4
MNPs) as a low-cost adsorbent for removal of CBB G 250 dye from aqueous
solutions. Fe3O4 MNPs were synthesized using chemical
coprecipitation method. Characterization results revealed that the peaks at
537, 3400 and 1604 cm-1 in the Fourier Transform Infrared
Spectroscopy spectrum represented the Fe-O band, O-H stretching and bending on
the Fe3O4 MNPs surface, respectively. Crystal phase analysis
indicated that Fe3O4 MNPs has a cubic spinel structure.
Morphological analysis showed Fe3O4 MNPs are in
nano-sized, spherical in shape, and have uniformly distributed particle size.
The result from magnetic and surface area analyses demonstrated that Fe3O4
MNPs have 63.30 emu g-1 saturation magnetization and 123.5 m2
g-1 surface area. Thermal stability analysis showed that adsorbed
water and hydroxyl group (6.25%) were lost at temperature below 100 ℃. At
temperature between 260 ℃ and 540 ℃, approximately 2.09% weight
loss were recorded due to change from magnetite (Fe3O4)
to maghemite (Ɣ- Fe2O3) in crystal phase. Elemental
analysis revealed that the Fe3O4 MNPs showed 24.50 % of
Fe and 75.50 % of O. Following the confirmation of Fe3O4
MNPs structure, the impact of various parameters such as adsorbent dosage
(0.02-0.14 g), contact time (5-20 minutes), initial concentration (25-100 ppm)
and pH (3-10) on the adsorption of CBB G 250 dyes were investigated. Experimental results showed that Fe3O4
MNPs achieved 95% removal of CBB G 250 at optimum conditions of 0.12 g dosage,
15 minutes contact time, 50 ppm initial dye concentration and at pH value of 8.
Adsorption isotherms and kinetics revealed that the adsorption process using Fe3O4
MNPs in this study obeys both Langmuir and Freundlich isotherm and
pseudo-second-order kinetic. The results obtained from this study confirmed
that Fe3O4 MNPs can be used as an adsorbent material for
the removal of dye from effluent.
Keywords: Fe3O4
magnetic nanoparticles, adsorbents, Coomassie
Brilliant Blue G 250, dye removal
Abstrak
Coomassie Brilliant Blue
G 250 (CBB G 250) ialah efluen tekstil perindustrian yang kebanyakannya
dihasilkan daripada efluen tekstil. Disebabkan sifatnya yang tidak
terdegradasi, ia berbahaya kepada alam sekitar dan kesihatan manusia dan
membawa kepada kerengsaan mata, saluran pernafasan atau gastrousus. Oleh itu,
strategi untuk merawat pewarna ini adalah perlu. Oleh itu, penyelidikan ini
mengetengahkan sintesis Magnetik nanopartikel Fe3O4 (Fe3O4
MNPs) sebagai penjerap kos rendah untuk penyingkiran pewarna CBB G 250
daripada larutan akueus. MNP Fe3O4 telah disintesis
dengan menggunakan kaedah kopresipitasi kimia. Keputusan pencirian mendedahkan
bahawa puncak pada 537, 3400 dan 1604 cm-1 dalam spektrum
Spektroskopi Inframerah Transformasi Fourier masing-masing mewakili jalur Fe-O,
regangan O-H dan lenturan pada permukaan Fe3O4 MNPs. Analisis fasa kristal menunjukkan
bahawa Fe3O4 MNPs mempunyai struktur spinel padu.
Analisis morfologi menunjukkan Fe3O4 MNPs dalam saiz
nano, dalam bentuk sfera, dan mempunyai saiz zarah teragih seragam. Hasil
daripada analisis magnet dan kawasan permukaan menunjukkan bahawa Fe3O4
MNPs mempunyai 63.30 emu g-1 kemagnetan tepu dan 123.5 m2
g-1, masing-masing. Analisis kestabilan terma menunjukkan bahawa air
terjerap dan kumpulan hidroksil (6.25 %) hilang pada suhu di bawah 100 ℃.
Pada suhu 260 hingga 540 ℃, penurunan berat lebih kurang 2.09 %
direkodkan hasil daripada perubahan daripada magnetit (Fe3O4)
kepada maghemit (Ɣ- Fe2O3) seperti dalam fasa
kristal. Analisis unsur mendedahkan bahawa Fe3O4 MNPs
masing-masing menunjukkan 24.50% dan 75.50% Fe dan O. Selepas struktur Fe3O4
MNPs disahkan, pelbagai parameter seperti
kesan dos penjerap (0.02-0.14 g), masa sentuhan (5-20 minit), awal kepekatan
(25-100 ppm) dan pH (3-10) pada penjerapan pewarna CBB G 250 telah disiasat.
Keputusan eksperimen menunjukkan bahawa Fe3O4 MNPs mencapai 95% pada keadaan optimum
pada 0.12 g dos, 15 minit masa sentuhan, 50 ppm kepekatan awal dan nilai pH 8.
Isoterma dan kinetik penjerapan mendedahkan bahawa proses penjerapan
menggunakan Fe3O4 MNPs pada kajian ini mematuhi kedua-dua
Langmuir dan Freundlich isoterm dan kinetik pseudo-second order, masing-masing.
Keputusan yang diperolehi daripada kajian ini mengesahkan bahawa Fe3O4
MNPs boleh digunakan sebagai bahan penjerap untuk penyingkiran bahan
pewarna daripada efluen.
Kata kunci: magnetik nanopartikel Fe3O4, penjerap, Coomassie Brilliant Blue G 250, penyingkiran
pewarna
References
1. Verma,
R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar,
K., and Singh, G. K. (2021). Eradication of fatal textile industrial dyes by
wastewater treatment. Biointerface Research
Applied Chemistry, 12: 567-587.
2. Ibrahim,
Hanadi K., Muneer A. Amy, and Eman T. K. (2019). Decolorization of Coomassie
brilliant blue G-250 dye using snail shell powder by action of adsorption
processes. Research Journal of Pharmacy and Technology, 12: 4921-4925.
3. Ezzat,
A. O., Tawfeek, A. M., Rajabathar, J. R., and Al-Lohedan, H. A. (2022). Synthesis of new hybrid structured
magnetite crosslinked poly ionic liquid for efficient removal of Coomassie
brilliant blue R-250 dye in aqueous medium. Molecules, 27(2): 441.
4. Nahiun, K. M., Sarker, B., Keya, K. N., Mahir, F. I., Shahida, S., and Khan, R. A.
(2021). A review on the methods of industrial wastewater treatment. Scientific
Review, 7(3): 20-31.
5. Saya,
L., Malik, V., Gautam, D., Gambhir, G., Singh, W. R., and Hooda, S. (2022). A
comprehensive review on recent advances toward sequestration of levofloxacin
antibiotic from wastewater. Science of The Total Environment, 813:
152529.
6. Kumar,
M., Sridharan, S., Sawarkar, A. D., Shakeel, A., Anerao,
P., Mannina, G., ... and Pandey, A. (2022). Current research trends on emerging
contaminants pharmaceutical and personal care products (PPCPs): A comprehensive
review. Science of The Total Environment, 2022: 160031.
7. Jing,
G., Meng, X., Sun, W., Kowalczuk, P., and Gao, Z. (2023). Recent advances in
treatment and recycling of mineral processing wastewater. Environmental
Science: Water Research & Technology, 9: 1290-1304.
8. Chai,
W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., ... and
Show, P. L. (2021). A review on conventional and novel materials towards heavy
metal adsorption in wastewater treatment application. Journal of Cleaner
Production, 296: 126589.
9. Ariffin,
M. M., Azmi, A. H. M., Saleh, N. M., Mohamad, S., and Rozi, S. K. M. (2019).
Surfactant functionalisation of magnetic nanoparticles: A greener method for
parabens determination in water samples by using magnetic solid phase
extraction. Microchemical Journal, 147(1): 930-940.
10. Ajinkya,
N., Yu, X., Kaithal, P., Luo, H., Somani, P., and Ramakrishna, S. (2020).
Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and
future. Materials, 13(20): 4644.
11. Zarei,
A. R., Nedaei, M., and Ghorbanian, S. A. (2018).
Ferrofluid of magnetic clay and menthol based deep eutectic solvent:
Application in directly suspended droplet microextraction for enrichment of
some emerging contaminant explosives in water and soil samples. Journal of
Chromatography A, 1553: 32-42.
12. Shokry,
H., Elkady, M., and Hamad, H. (2019). Nano activated carbon from industrial
mine coal as adsorbents for removal of dye from simulated textile wastewater:
Operational parameters and mechanism study. Journal of Materials Research
and Technology, 8(5): 4477-4488.
13. Rozi,
S. K. M., Berhanundin, K. M., Ishak, A. R., Mohd, F.
L., Rasdi, N. C. D., Rahim, N. Y., ... and Abdullah, A. M. (2023). Novel
magnetic eggshell membrane functionalized with waste palm fatty acid for
selective adsorption of oil from aqueous solution. Malaysian Journal of
Analytical Sciences, 27(1): 74-86.
14. Shahriman, M. S., Zain, N. N.
M., Mohamad, S., Manan, N. S. A., Yaman, S. M., Asman, S., and Raoov, M. (2018). Polyaniline modified magnetic
nanoparticles coated with dicationic ionic liquid for
effective removal of rhodamine B (RB) from aqueous solution. RSC Advances,
8(58): 33180-33192.
15. Shahriman, M. S., Ramachandran,
M. R., Zain, N. N. M., Mohamad, S., Manan, N. S. A., and Yaman, S. M. (2018).
Polyaniline-dicationic ionic liquid coated with
magnetic nanoparticles composite for magnetic solid phase extraction of
polycyclic aromatic hydrocarbons in environmental samples. Talanta,
178: 211-221.
16. Bakhshaei, S., Kamboh, M. A.,
Nodeh, H. R., Zain, S. M., Rozi, S. K. M., Mohamad, S., and Mohialdeen,
I. A. M. (2016). Magnetic solid phase extraction of polycyclic aromatic
hydrocarbons and chlorophenols based on cyano-ionic liquid functionalized
magnetic nanoparticles and their determination by HPLC-DAD. RSC Advances,
6(80): 77047-77058.
17. Ahmad,
N., Sereshti, H., Mousazadeh, M., Nodeh, H. R.,
Kamboh, M. A., and Mohamad, S. (2019). New magnetic silica-based hybrid
organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions
from aqueous solutions. Materials Chemistry and Physics, 226: 73-81.
18. Yaacob,
S. F. F. S., Abd Razak, N. S., Aun, T. T., Rozi, S. K. M., Jamil, A. K. M., and
Mohamad, S. (2018). Synthesis and characterizations of magnetic bio-material
sporopollenin for the removal of oil from aqueous environment. Industrial
Crops and Products, 124: 442-448.
19. Yusoff,
M. M., Raoov, M., Yahaya, N., and Salleh, N. M.
(2017). An ionic liquid loaded magnetically confined polymeric mesoporous
adsorbent for extraction of parabens from environmental and cosmetic samples. RSC
Advances, 7(57): 35832-35844.
20. Yusoff,
M. M., Yahaya, N., Saleh, N. M., and Raoov, M.
(2018). A study on the removal of propyl, butyl, and benzyl parabens via newly
synthesised ionic liquid loaded magnetically confined polymeric mesoporous
adsorbent. RSC Advances, 8(45): 25617-25635.
21. Pandey,
S., Do, J. Y., Kim, J., and Kang, M. (2020). Fast and highly efficient removal
of dye from aqueous solution using natural locust bean gum-based hydrogels as
adsorbent. International Journal of Biological Macromolecules, 143:
60-75.
22. Betancur, J. C., Montoya, P.
M., and Calderón, J. A. (2019). Gold recovery from ammonia-thiosulfate leaching
solution assisted by PEI-functionalized magnetite nanoparticles. Hydrometallurgy,
189: 105128.
23. Dhananasekaran, S., and Palanivel,
R. (2015). Adsorption of methylene blue, bromophenol blue and coomassie brilliant adsorption of methylene blue,
bromophenol blue and Coomassie brilliant blue by a -chitin nanoparticles. Journal
of Advanced Research, 7: 113-124.
24. Kadeche, A., Ramdani, A., Adjdir, M., Guendouzi, A., Taleb, S., Kaid, M., and
Deratani, A. (2020). Preparation, characterization and application of
Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous
solutions. Research on Chemical Intermediates, 46: 4985-5008.
25. Kulal, P., and Badalamoole, V. (2020). Magnetite nanoparticle embedded Pectin-graft-poly
(N-hydroxyethylacrylamide) hydrogel: Evaluation as
adsorbent for dyes and heavy metal ions from wastewater. International
Journal of biological macromolecules, 156: 1408-1417.
26. Othman,
N. H., Alias, N. H., Shahruddin, M. Z., Bakar, N. F.
A., Him, N. R. N., and Lau, W. J. (2018). Adsorption kinetics of methylene blue
dyes onto magnetic graphene oxide. Journal of Environmental Chemical
Engineering, 6(2): 2803-2811.
27. Sharma,
G., Naushad, M., Kumar, A., Rana, S., Sharma, S., Bhatnagar, A., J. Stadler,
F., Ghfar, A. A., and Khan, M. R. (2017). Efficient
removal of Coomassie brilliant blue R-250 dye using starch/poly (alginic
acid-cl-acrylamide) nanohydrogel. Process Safety and Environmental
Protection, 109: 301-310.
28. Cherfi
Abdelhamid, A. M. (2014). Kinetic and equilibrium studies of Coomassie Blue
G-250 adsorption on apricot stone activated carbon. Journal of Environmental
& Analytical Toxicology, 05(2): 1000264.
29. Thamer,
B. M., Aldalbahi, A., Moydeen
A, M., El-Hamshary, H., Al-Enizi,
A. M., and El-Newehy, M. H. (2019). Effective
adsorption of Coomassie brilliant blue dye using poly (phenylene diamine)
grafted electrospun carbon nanofibers as a novel
adsorbent. Materials Chemistry and Physics, 234(1): 133-145.