Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 849 - 864

 

EFFECTIVE AND FAST ADSORPTIVE REMOVAL OF COOMASSIE BRILLIANT BLUE G 250 DYE FROM WATER USING Fe3O4

MAGNETIC NANOPARTICLES

 

(Penjerapan Penyingkiran Pewarna Coomassie Brilliant Biru G 250 Secara Berkesan dan Pantas Menggunakan Fe3O4 Magnetik Nanopartikel)

 

Siti Khalijah Mahmad Rozi1,2*, Nur Atikah Saufi1, and Nur Atiqah Nabilah Mohammad Rashidi1

 

1Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau,Perlis, Malaysia

2Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

 

*Correspondence: khalijahrozi@unimap.edu.my

 

 

Received: 29 March 2023; Accepted: 23 July 2023; Published:  22 August 2023

 

 

Abstract

Coomassie Brilliant Blue G 250 (CBB G 250) is mainly generated from industrial textile effluent. Due to its non-degradable nature, it is not only environmentally hazardous, but also affect human health, causing irritations of the eye, respiratory or gastrointestinal tract. Therefore, a strategy for treating this colorant is necessary. This research highlights the synthesis of Fe3O4 Magnetic nanoparticles (Fe3O4 MNPs) as a low-cost adsorbent for removal of CBB G 250 dye from aqueous solutions. Fe3O4 MNPs were synthesized using chemical coprecipitation method. Characterization results revealed that the peaks at 537, 3400 and 1604 cm-1 in the Fourier Transform Infrared Spectroscopy spectrum represented the Fe-O band, O-H stretching and bending on the Fe3O4 MNPs surface, respectively. Crystal phase analysis indicated that Fe3O4 MNPs has a cubic spinel structure. Morphological analysis showed Fe3O4 MNPs are in nano-sized, spherical in shape, and have uniformly distributed particle size. The result from magnetic and surface area analyses demonstrated that Fe3O4 MNPs have 63.30 emu g-1 saturation magnetization and 123.5 m2 g-1 surface area. Thermal stability analysis showed that adsorbed water and hydroxyl group (6.25%) were lost at temperature below 100 ℃. At temperature between 260 ℃ and 540 ℃, approximately 2.09% weight loss were recorded due to change from magnetite (Fe3O4) to maghemite (Ɣ- Fe2O3) in crystal phase. Elemental analysis revealed that the Fe3O4 MNPs showed 24.50 % of Fe and 75.50 % of O. Following the confirmation of Fe3O4 MNPs structure, the impact of various parameters such as adsorbent dosage (0.02-0.14 g), contact time (5-20 minutes), initial concentration (25-100 ppm) and pH (3-10) on the adsorption of CBB G 250 dyes were investigated. Experimental results showed that Fe3O4 MNPs achieved 95% removal of CBB G 250 at optimum conditions of 0.12 g dosage, 15 minutes contact time, 50 ppm initial dye concentration and at pH value of 8. Adsorption isotherms and kinetics revealed that the adsorption process using Fe3O4 MNPs in this study obeys both Langmuir and Freundlich isotherm and pseudo-second-order kinetic. The results obtained from this study confirmed that Fe3O4 MNPs can be used as an adsorbent material for the removal of dye from effluent.

 

Keywords: Fe3O4 magnetic nanoparticles, adsorbents, Coomassie Brilliant Blue G 250, dye removal

 

Abstrak

Coomassie Brilliant Blue G 250 (CBB G 250) ialah efluen tekstil perindustrian yang kebanyakannya dihasilkan daripada efluen tekstil. Disebabkan sifatnya yang tidak terdegradasi, ia berbahaya kepada alam sekitar dan kesihatan manusia dan membawa kepada kerengsaan mata, saluran pernafasan atau gastrousus. Oleh itu, strategi untuk merawat pewarna ini adalah perlu. Oleh itu, penyelidikan ini mengetengahkan sintesis Magnetik nanopartikel Fe3O4 (Fe3O4 MNPs) sebagai penjerap kos rendah untuk penyingkiran pewarna CBB G 250 daripada larutan akueus. MNP Fe3O4 telah disintesis dengan menggunakan kaedah kopresipitasi kimia. Keputusan pencirian mendedahkan bahawa puncak pada 537, 3400 dan 1604 cm-1 dalam spektrum Spektroskopi Inframerah Transformasi Fourier masing-masing mewakili jalur Fe-O, regangan O-H dan lenturan pada permukaan Fe3O4  MNPs. Analisis fasa kristal menunjukkan bahawa Fe3O4 MNPs mempunyai struktur spinel padu. Analisis morfologi menunjukkan Fe3O4 MNPs dalam saiz nano, dalam bentuk sfera, dan mempunyai saiz zarah teragih seragam. Hasil daripada analisis magnet dan kawasan permukaan menunjukkan bahawa Fe3O4 MNPs mempunyai 63.30 emu g-1 kemagnetan tepu dan 123.5 m2 g-1, masing-masing. Analisis kestabilan terma menunjukkan bahawa air terjerap dan kumpulan hidroksil (6.25 %) hilang pada suhu di bawah 100 ℃. Pada suhu 260 hingga 540 ℃, penurunan berat lebih kurang 2.09 % direkodkan hasil daripada perubahan daripada magnetit (Fe3O4) kepada maghemit (Ɣ- Fe2O3) seperti dalam fasa kristal. Analisis unsur mendedahkan bahawa Fe3O4 MNPs masing-masing menunjukkan 24.50% dan 75.50% Fe dan O. Selepas struktur Fe3O4 MNPs  disahkan, pelbagai parameter seperti kesan dos penjerap (0.02-0.14 g), masa sentuhan (5-20 minit), awal kepekatan (25-100 ppm) dan pH (3-10) pada penjerapan pewarna CBB G 250 telah disiasat. Keputusan eksperimen menunjukkan bahawa Fe3O4  MNPs mencapai 95% pada keadaan optimum pada 0.12 g dos, 15 minit masa sentuhan, 50 ppm kepekatan awal dan nilai pH 8. Isoterma dan kinetik penjerapan mendedahkan bahawa proses penjerapan menggunakan Fe3O4 MNPs pada kajian ini mematuhi kedua-dua Langmuir dan Freundlich isoterm dan kinetik pseudo-second order, masing-masing. Keputusan yang diperolehi daripada kajian ini mengesahkan bahawa Fe3O4 MNPs boleh digunakan sebagai bahan penjerap untuk penyingkiran bahan pewarna daripada efluen.

 

Kata kunci:  magnetik nanopartikel Fe3O4, penjerap, Coomassie Brilliant Blue G 250, penyingkiran pewarna

 


References

1.       Verma, R. K., Sankhla, M. S., Rathod, N. V., Sonone, S. S., Parihar, K., and Singh, G. K. (2021). Eradication of fatal textile industrial dyes by wastewater treatment. Biointerface Research Applied Chemistry, 12: 567-587.

2.       Ibrahim, Hanadi K., Muneer A. Amy, and Eman T. K. (2019). Decolorization of Coomassie brilliant blue G-250 dye using snail shell powder by action of adsorption processes. Research Journal of Pharmacy and Technology, 12: 4921-4925.

3.       Ezzat, A. O., Tawfeek, A. M., Rajabathar, J. R., and Al-Lohedan, H. A. (2022). Synthesis of new hybrid structured magnetite crosslinked poly ionic liquid for efficient removal of Coomassie brilliant blue R-250 dye in aqueous medium. Molecules, 27(2): 441.

4.       Nahiun, K. M., Sarker, B., Keya, K. N., Mahir, F. I., Shahida, S., and Khan, R. A. (2021). A review on the methods of industrial wastewater treatment. Scientific Review, 7(3): 20-31.

5.       Saya, L., Malik, V., Gautam, D., Gambhir, G., Singh, W. R., and Hooda, S. (2022). A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Science of The Total Environment, 813: 152529.

6.       Kumar, M., Sridharan, S., Sawarkar, A. D., Shakeel, A., Anerao, P., Mannina, G., ... and Pandey, A. (2022). Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Science of The Total Environment, 2022: 160031.

7.       Jing, G., Meng, X., Sun, W., Kowalczuk, P., and Gao, Z. (2023). Recent advances in treatment and recycling of mineral processing wastewater. Environmental Science: Water Research & Technology, 9: 1290-1304.

8.       Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., ... and Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296: 126589.

9.       Ariffin, M. M., Azmi, A. H. M., Saleh, N. M., Mohamad, S., and Rozi, S. K. M. (2019). Surfactant functionalisation of magnetic nanoparticles: A greener method for parabens determination in water samples by using magnetic solid phase extraction. Microchemical Journal, 147(1): 930-940.

10.    Ajinkya, N., Yu, X., Kaithal, P., Luo, H., Somani, P., and Ramakrishna, S. (2020). Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials, 13(20): 4644.

11.    Zarei, A. R., Nedaei, M., and Ghorbanian, S. A. (2018). Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples. Journal of Chromatography A, 1553: 32-42.

12.    Shokry, H., Elkady, M., and Hamad, H. (2019). Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. Journal of Materials Research and Technology, 8(5): 4477-4488.

13.    Rozi, S. K. M., Berhanundin, K. M., Ishak, A. R., Mohd, F. L., Rasdi, N. C. D., Rahim, N. Y., ... and Abdullah, A. M. (2023). Novel magnetic eggshell membrane functionalized with waste palm fatty acid for selective adsorption of oil from aqueous solution. Malaysian Journal of Analytical Sciences, 27(1): 74-86.

14.    Shahriman, M. S., Zain, N. N. M., Mohamad, S., Manan, N. S. A., Yaman, S. M., Asman, S., and Raoov, M. (2018). Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine B (RB) from aqueous solution. RSC Advances, 8(58): 33180-33192.

15.    Shahriman, M. S., Ramachandran, M. R., Zain, N. N. M., Mohamad, S., Manan, N. S. A., and Yaman, S. M. (2018). Polyaniline-dicationic ionic liquid coated with magnetic nanoparticles composite for magnetic solid phase extraction of polycyclic aromatic hydrocarbons in environmental samples. Talanta, 178: 211-221.

16.    Bakhshaei, S., Kamboh, M. A., Nodeh, H. R., Zain, S. M., Rozi, S. K. M., Mohamad, S., and Mohialdeen, I. A. M. (2016). Magnetic solid phase extraction of polycyclic aromatic hydrocarbons and chlorophenols based on cyano-ionic liquid functionalized magnetic nanoparticles and their determination by HPLC-DAD. RSC Advances, 6(80): 77047-77058.

17.    Ahmad, N., Sereshti, H., Mousazadeh, M., Nodeh, H. R., Kamboh, M. A., and Mohamad, S. (2019). New magnetic silica-based hybrid organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions from aqueous solutions. Materials Chemistry and Physics, 226: 73-81.

18.    Yaacob, S. F. F. S., Abd Razak, N. S., Aun, T. T., Rozi, S. K. M., Jamil, A. K. M., and Mohamad, S. (2018). Synthesis and characterizations of magnetic bio-material sporopollenin for the removal of oil from aqueous environment. Industrial Crops and Products, 124: 442-448.

19.    Yusoff, M. M., Raoov, M., Yahaya, N., and Salleh, N. M. (2017). An ionic liquid loaded magnetically confined polymeric mesoporous adsorbent for extraction of parabens from environmental and cosmetic samples. RSC Advances, 7(57): 35832-35844.

20.    Yusoff, M. M., Yahaya, N., Saleh, N. M., and Raoov, M. (2018). A study on the removal of propyl, butyl, and benzyl parabens via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Advances, 8(45): 25617-25635.

21.    Pandey, S., Do, J. Y., Kim, J., and Kang, M. (2020). Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum-based hydrogels as adsorbent. International Journal of Biological Macromolecules, 143: 60-75.

22.    Betancur, J. C., Montoya, P. M., and Calderón, J. A. (2019). Gold recovery from ammonia-thiosulfate leaching solution assisted by PEI-functionalized magnetite nanoparticles. Hydrometallurgy, 189: 105128.

23.    Dhananasekaran, S., and Palanivel, R. (2015). Adsorption of methylene blue, bromophenol blue and coomassie brilliant adsorption of methylene blue, bromophenol blue and Coomassie brilliant blue by a -chitin nanoparticles. Journal of Advanced Research, 7: 113-124.

24.    Kadeche, A., Ramdani, A., Adjdir, M., Guendouzi, A., Taleb, S., Kaid, M., and Deratani, A. (2020). Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions. Research on Chemical Intermediates, 46: 4985-5008.

25.    Kulal, P., and Badalamoole, V. (2020). Magnetite nanoparticle embedded Pectin-graft-poly (N-hydroxyethylacrylamide) hydrogel: Evaluation as adsorbent for dyes and heavy metal ions from wastewater. International Journal of biological macromolecules, 156: 1408-1417.

26.    Othman, N. H., Alias, N. H., Shahruddin, M. Z., Bakar, N. F. A., Him, N. R. N., and Lau, W. J. (2018). Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. Journal of Environmental Chemical Engineering, 6(2): 2803-2811.

27.    Sharma, G., Naushad, M., Kumar, A., Rana, S., Sharma, S., Bhatnagar, A., J. Stadler, F., Ghfar, A. A., and Khan, M. R. (2017). Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly (alginic acid-cl-acrylamide) nanohydrogel. Process Safety and Environmental Protection, 109: 301-310.

28.    Cherfi Abdelhamid, A. M. (2014). Kinetic and equilibrium studies of Coomassie Blue G-250 adsorption on apricot stone activated carbon. Journal of Environmental & Analytical Toxicology, 05(2): 1000264.

29.    Thamer, B. M., Aldalbahi, A., Moydeen A, M., El-Hamshary, H., Al-Enizi, A. M., and El-Newehy, M. H. (2019). Effective adsorption of Coomassie brilliant blue dye using poly (phenylene diamine) grafted electrospun carbon nanofibers as a novel adsorbent. Materials Chemistry and Physics, 234(1): 133-145.