Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 840 - 848
VALIDATION OF HIGH-PERFORMANCE LIQUID
CHROMATOGRAPHY (HPLC) METHOD FOR DELPHINIDIN-3-O-GLUCOSIDE CHLORIDE IN RAT
PLASMA
(Pengesahan Kaedah Kromatografi
Cecair Berprestasi Tinggi (KCPT) bagi Delfinidin-3-O-Glukosida Klorida dalam
Plasma Tikus)
Nur Atielah Nabila Mohd Shafawi1, Ruzilawati Abu
Bakar2, Liza Noordin3, Shafreena Shaukat Ali1,
and Wan Amir Nizam Wan Ahmad1
1School of Health Sciences, Health
Campus, Universiti Sains Malaysia Kubang
Kerian, 16150 Kota Bharu, Kelantan, Malaysia
2Department of Phamacology, School of
Medical Sciences, Health Campus, Universiti Sains Malaysia Kubang Kerian, 16150
Kota Bharu, Kelantan, Malaysia
3Department of Physiology, School of
Medical Sciences, Health Campus, Universiti Sains Malaysia Kubang Kerian, 16150
Kota Bharu, Kelantan, Malaysia
*Corresponding
author: wanamir@usm.my
Received: 7 April 2023; Accepted: 23
July 2023; Published: 22 August 2023
This
study involved the development and validation of a high-performance liquid
chromatography (HPLC) assay for the determination of delphinidin-3-O-glucoside
chloride, specifically to be applied in future pharmacokinetic and
bioavailability studies in rats supplemented with roselle extract. The HPLC
method was validated following solid-phase extraction, with six validation
parameters (linearity, recovery, precision, accuracy, limit of detection (LOD),
and limit of quantification (LOQ) assessed according to Food and Drug
Administration guidelines. Chromatographic separations were performed using
Agilent Reverse Phase EC-C18 (4.6×150 mm; 2.7 µm particle size) and mobile
phase acetonitrile with 0.1% trifluoracetic acid in an aqueous solution (81:19,
v/v). The calibration curve of delphinidin-3-O-glucoside chloride had a
coefficient determination (R2) of ≥95.0%
and recovery percentage of 80.37%. It also showed good precision and accuracy,
and its method detection and quantification limits were 47 ng/mL and 213 ng/mL,
respectively. In conclusion, the validated HPLC method in this study can be
used to determine the pharmacokinetic of delphinidin-3-O-glucoside chloride or
other type of anthocyanins in the future.
Keywords:
delphinidin-3-o-glucoside chloride, rat plasma, high-performance liquid
chromatography, method validation
Abstrak
Kata kunci:
delfinidin-3-o-glukosida klorida, plasma tikus, kromatografi cecair berprestasi
tinggi, pengesahan kaedah
References
1. Shan, X., Lv, ZY., Yin, M. J., Chen, J., Wang, J, and Wu, Q. N.
(2021). The protective effect of cyanidin-3-glucoside on myocardial
ischemia-reperfusion injury through ferroptosis. Oxidative Medicine and
Cellular Longevity, 6(2021): 1-5.
2. Wang, M., Zhang, Z., Sun,
H., He, S., Liu, S., Zhang, T., Wang, L. and Ma, G. (2022). Research progress
of anthocyanin prebiotic activity: A review. Phytomedicine, 20(102):
154145.
3. Khoo, H. E., Azlan, A., Tang, S. T. and Lim, S. M. (2017).
Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical
ingredients, and the potential health benefits. Food & Nutrition
Research, 61(1): 1361779.
4. Rosales, T. K. O. and Fabi, J. P. (2022). Nanoencapsulated
anthocyanin as a functional ingredient: Technological application and future
perspectives. Colloids and Surfaces B: Biointerfaces,
2022: 112707.
5. Liu, Y., Tikunov, Y., Schouten, R. E., Marcelis,
L. F., Visser, R. G. and Bovy, A. (2018). Anthocyanin
biosynthesis and degradation mechanisms in solanaceous vegetables: A Review. Frontiers
in chemistry, 6: 52.
6. Chen, Y., Chen, H., Zhang, W., Ding, Y., Zhao, T., Zhang, M., Mao, G.,
Feng, W., Wu, X. and Yang, L. (2019). Bioaccessibility
and biotransformation of anthocyanin monomers following in vitro
simulated gastric-intestinal digestion and in vivo metabolism in rats. Food
& Function, 10(9): 6052-6061.
7. Harada, K., Kano, M., Takayanagi, T., Yamakawa, O. and
Ishikawa, F. (2004). Absorption of acylated anthocyanins in rats and humans
after ingesting an extract of Ipomoea batatas purple sweet potato tuber.
Bioscience, Biotechnology, and Biochemistry, 68(7): 1500-1507.
8. Jokioja, J., Percival, J., Philo, M., Yang, B., Kroon, P.
A. and Linderborg, K. M. (2021). Phenolic metabolites
in the urine and plasma of healthy men after acute intake of purple potato
extract rich in methoxysubstituted monoacylated anthocyanins. Molecular Nutrition &
Food Research, 65(9): 2000898.
9. Lang, Y., Tian, J., Meng, X., Si, X., Tan, H., Wang, Y., Shu, C., Chen,
Y., Zang, Z., Zhang, Y, and Wang, J. (2021). Effects of α-casein on the
absorption of blueberry anthocyanins and metabolites in rat plasma based on
pharmacokinetic analysis. Journal of Agricultural and Food Chemistry.
28(69) :6200-6213.
10. Stuppner, S., Mayr, S., Beganovic, A., Beć, K., Grabska, J., Aufschnaiter, U.,
Groeneveld, M., Rainer, M., Jakschitz, T., Bonn, G.
K. and Huck, C. W. (2020). Near-infrared spectroscopy as a rapid screening
method for the determination of total anthocyanin content in Sambucus
fructus. Sensors. 2(17):
4983.
11. Frank, T., Janßen, M., Netzel,
M., Straß, G., Kler, A., Kriesl, E. and Bitsch, I. (2005).
Pharmacokinetics of anthocyanidin‐3‐glycosides following consumption of Hibiscus
sabdariffa L. extract. The Journal of Clinical Pharmacology. 45(2):
203-210.
12. Centre for Drug
Evaluation and Research (2018). Bioanalytical Method Validation Guidance for
Industry. Access from https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
13. Sauji, N. A., Wan-Ahmad, W. A.
N., Nordin, L. and Bakar, R. A. (2022) Development
and optimization of a rapid resolution liquid chromatography method for
cyanidin-3-o-glucoside in rat plasma. Malaysian Journal of Analytical
Sciences. 26(2): 360-369.
14. Ahmadiani, N., Sigurdson, G.
T., Robbins, R. J., Collins, T. M. and Giusti, M. M. (2019). Solid phase
fractionation techniques for segregation of red cabbage anthocyanins with different
colorimetric and stability properties. Food Research International, 120:
688-696.
15. Da-Costa, C. T., Horton,
D. and Margolis, S. A. (2000). Analysis of anthocyanins in foods by liquid
chromatography, liquid chromatography-mass spectrometry and capillary
electrophoresis. Journal of Chromatography, 881(1-2): 403-410.
16. Diaconeasa, Z., Rugină,
D. and Socaciu, C. (2016). High-purity anthocyanins
isolation using solid phase extraction tehniques. Food
Science and Technology, 73(1): 1-6.
17. Xu, Y., Hu, D., Bao, T., Xie, J. and Chen, W. (2017). A simple and rapid method for
the preparation of pure delphinidin-3-o-sambubioside from roselle and its
antioxidant and hypoglycemic activity. Journal of Functional Foods, 39:
9-17.
18.
Agyei, E. and Edward, M.
(2019). Calibration curve. Undergraduate scholarly showcase. Access from https://journals.uc.edu/index.php/Undergradshowcase/article/view/1111
19. Betz, J. M., Brown, P. N.
and Roman, M. C. (2011). Accuracy, precision, and reliability of chemical
measurements in natural products research. Fitoterapia,
82(1): 44-52.
20.
McMillan, J. (2013).
Principles of Analytical Validation. In P. Ciborowski
and J. Silberring (Eds.), Proteomic profiling and
analytical chemistry. Elsevier, Amsterdam: pp. 205-215.
21. Kaiser, M., Müller-Ehl, L., Passon,
M. and Schieber, A. (2020). Development and
validation of methods for the determination of anthocyanins in physiological fluids
via UHPLC-MS. Molecules, 25(3): 518.
22. Vieira, G. S., Marques,
A. S. F., Machado, M. T. C., Silva, V. M. and Hubinger,
M. D. (2017). Determination of anthocyanins and non-anthocyanin polyphenols by
ultra performance liquid chromatography/electrospray ionization mass
spectrometry (UPLC/ESI–MS) in Jussara (Euterpe
edulis) extracts. Journal of Food Science and Technology, 54(7):
2135-2144.
23. Shim, Y. S., Kim, S., Seo, D., Park, H. J. and
Ha, J. (2014). Rapid method for determination of anthocyanin glucosides and
free delphinidin in grapes using UHPLC. Journal of Chromatographic Science,
52(7): 629-635.