Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 840 - 848

 

VALIDATION OF HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) METHOD FOR DELPHINIDIN-3-O-GLUCOSIDE CHLORIDE IN RAT PLASMA

 

(Pengesahan Kaedah Kromatografi Cecair Berprestasi Tinggi (KCPT) bagi Delfinidin-3-O-Glukosida Klorida dalam Plasma Tikus)

 

Nur Atielah Nabila Mohd Shafawi1, Ruzilawati Abu Bakar2, Liza Noordin3, Shafreena Shaukat Ali1,

and Wan Amir Nizam Wan Ahmad1

 

1School of Health Sciences, Health Campus, Universiti Sains Malaysia Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia

2Department of Phamacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia

3Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia

 

*Corresponding author: wanamir@usm.my

 

 

Received: 7 April 2023; Accepted: 23 July 2023; Published:  22 August 2023

 

 

Abstract

This study involved the development and validation of a high-performance liquid chromatography (HPLC) assay for the determination of delphinidin-3-O-glucoside chloride, specifically to be applied in future pharmacokinetic and bioavailability studies in rats supplemented with roselle extract. The HPLC method was validated following solid-phase extraction, with six validation parameters (linearity, recovery, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) assessed according to Food and Drug Administration guidelines. Chromatographic separations were performed using Agilent Reverse Phase EC-C18 (4.6×150 mm; 2.7 µm particle size) and mobile phase acetonitrile with 0.1% trifluoracetic acid in an aqueous solution (81:19, v/v). The calibration curve of delphinidin-3-O-glucoside chloride had a coefficient determination (R2) of ≥95.0% and recovery percentage of 80.37%. It also showed good precision and accuracy, and its method detection and quantification limits were 47 ng/mL and 213 ng/mL, respectively. In conclusion, the validated HPLC method in this study can be used to determine the pharmacokinetic of delphinidin-3-O-glucoside chloride or other type of anthocyanins in the future.

 

Keywords: delphinidin-3-o-glucoside chloride, rat plasma, high-performance liquid chromatography, method validation

 

Abstrak

Kajian ini melibatkan pembangunan dan pengesahan kaedah kromatografi cecair berprestasi tinggi (KCPT) bagi pengesanan sejenis antosianin, iaitu delfinidin-3-O-glukosida klorida, khususnya bertujuan untuk digunakan dalam kajian lanjutan untuk farmakokinetik dan bioavailibiliti antosianin di dalam tikus yang disuplementasi dengan ekstrak rosel. Kaedah KCPT ini disahkan menggunakan kaedah pengekstrakan fasa pepejal dan enam parameter pengesahan dinilai mengikut garis panduan Pentadbiran Makanan dan Dadah iaitu kelinearan, pemulihan, ketepatan, kejituan, had pengesanan, dan had kuantifikasi. Pengasingan kromatografik dilakukan menggunakan Agilent Fasa Berbalik EC-C18 (4.6×150 mm; 2.7µm saiz partikel) manakala fasa gerak adalah asetonitril bersama 0.1% trifluoroasetik asid di dalam air (81:19, v/v). Lengkung penentukuran delfinidin-3-0-glukosida klorida mempunyai penentuan pekali (R2) ≥95.0% dan peratusan pemulihan delfinidin-3-0-glukosida klorida adalah 80.37%. Delfinidin-3-0-glukosida klorida juga menunjukkan ketepatan dan kejituan yang baik dan had pengesanan dan kuantifikasi kaedah untuk delfinidin-3-0-glukosida klorida masing-masing adalah 47 ng/mL dan 213 ng/mL. Kesimpulannya, kaedah HPLC yang disahkan dalam kajian ini boleh digunakan untuk menentukan tahap antosianin dalam kajian farmakokinetik pada masa depan.

 

Kata kunci: delfinidin-3-o-glukosida klorida, plasma tikus, kromatografi cecair berprestasi tinggi, pengesahan kaedah

 


 

References

1.       Shan, X., Lv, ZY., Yin, M. J., Chen, J., Wang, J, and Wu, Q. N. (2021). The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxidative Medicine and Cellular Longevity, 6(2021): 1-5.

2.       Wang, M., Zhang, Z., Sun, H., He, S., Liu, S., Zhang, T., Wang, L. and Ma, G. (2022). Research progress of anthocyanin prebiotic activity: A review. Phytomedicine, 20(102): 154145.

3.       Khoo, H. E., Azlan, A., Tang, S. T. and Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1): 1361779.

4.       Rosales, T. K. O. and Fabi, J. P. (2022). Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids and Surfaces B: Biointerfaces, 2022: 112707.

5.       Liu, Y., Tikunov, Y., Schouten, R. E., Marcelis, L. F., Visser, R. G. and Bovy, A. (2018). Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A Review. Frontiers in chemistry, 6: 52.

6.       Chen, Y., Chen, H., Zhang, W., Ding, Y., Zhao, T., Zhang, M., Mao, G., Feng, W., Wu, X. and Yang, L. (2019). Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats. Food & Function, 10(9): 6052-6061.

7.       Harada, K., Kano, M., Takayanagi, T., Yamakawa, O. and Ishikawa, F. (2004). Absorption of acylated anthocyanins in rats and humans after ingesting an extract of Ipomoea batatas purple sweet potato tuber. Bioscience, Biotechnology, and Biochemistry, 68(7): 1500-1507.

8.       Jokioja, J., Percival, J., Philo, M., Yang, B., Kroon, P. A. and Linderborg, K. M. (2021). Phenolic metabolites in the urine and plasma of healthy men after acute intake of purple potato extract rich in methoxysubstituted monoacylated anthocyanins. Molecular Nutrition & Food Research, 65(9): 2000898.

9.       Lang, Y., Tian, J., Meng, X., Si, X., Tan, H., Wang, Y., Shu, C., Chen, Y., Zang, Z., Zhang, Y, and Wang, J. (2021). Effects of α-casein on the absorption of blueberry anthocyanins and metabolites in rat plasma based on pharmacokinetic analysis. Journal of Agricultural and Food Chemistry. 28(69) :6200-6213.

10.    Stuppner, S., Mayr, S., Beganovic, A., Beć, K., Grabska, J., Aufschnaiter, U., Groeneveld, M., Rainer, M., Jakschitz, T., Bonn, G. K. and Huck, C. W. (2020). Near-infrared spectroscopy as a rapid screening method for the determination of total anthocyanin content in Sambucus fructus. Sensors.  2(17): 4983.

11.    Frank, T., Janßen, M., Netzel, M., Straß, G., Kler, A., Kriesl, E. and Bitsch, I. (2005). Pharmacokinetics of anthocyanidin3glycosides following consumption of Hibiscus sabdariffa L. extract. The Journal of Clinical Pharmacology. 45(2): 203-210.

12.    Centre for Drug Evaluation and Research (2018). Bioanalytical Method Validation Guidance for Industry. Access from https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf

13.    Sauji, N. A., Wan-Ahmad, W. A. N., Nordin, L. and Bakar, R. A. (2022) Development and optimization of a rapid resolution liquid chromatography method for cyanidin-3-o-glucoside in rat plasma. Malaysian Journal of Analytical Sciences. 26(2): 360-369.

14.    Ahmadiani, N., Sigurdson, G. T., Robbins, R. J., Collins, T. M. and Giusti, M. M. (2019). Solid phase fractionation techniques for segregation of red cabbage anthocyanins with different colorimetric and stability properties. Food Research International, 120: 688-696.

15.    Da-Costa, C. T., Horton, D. and Margolis, S. A. (2000). Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectrometry and capillary electrophoresis. Journal of Chromatography, 881(1-2): 403-410.

16.    Diaconeasa, Z., Rugină, D. and Socaciu, C. (2016). High-purity anthocyanins isolation using solid phase extraction tehniques. Food Science and Technology, 73(1): 1-6.

17.    Xu, Y., Hu, D., Bao, T., Xie, J. and Chen, W. (2017). A simple and rapid method for the preparation of pure delphinidin-3-o-sambubioside from roselle and its antioxidant and hypoglycemic activity. Journal of Functional Foods, 39: 9-17.

18.    Agyei, E. and Edward, M. (2019). Calibration curve. Undergraduate scholarly showcase. Access from https://journals.uc.edu/index.php/Undergradshowcase/article/view/1111

19.    Betz, J. M., Brown, P. N. and Roman, M. C. (2011). Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia, 82(1): 44-52.

20.    McMillan, J. (2013). Principles of Analytical Validation. In P. Ciborowski and J. Silberring (Eds.), Proteomic profiling and analytical chemistry. Elsevier, Amsterdam: pp. 205-215.

21.    Kaiser, M., Müller-Ehl, L., Passon, M. and Schieber, A. (2020). Development and validation of methods for the determination of anthocyanins in physiological fluids via UHPLC-MS. Molecules, 25(3): 518.

22.    Vieira, G. S., Marques, A. S. F., Machado, M. T. C., Silva, V. M. and Hubinger, M. D. (2017). Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in Jussara (Euterpe edulis) extracts. Journal of Food Science and Technology, 54(7): 2135-2144.

23.    Shim, Y. S., Kim, S., Seo, D., Park, H. J. and Ha, J. (2014). Rapid method for determination of anthocyanin glucosides and free delphinidin in grapes using UHPLC. Journal of Chromatographic Science, 52(7): 629-635.