Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 816 - 839

 

MAGNETIC NANOPARTICLE FOR REMOVING SUNSET YELLOW DYE: TAGUCHI OPTIMIZATION

 

(Zarah Nano Magnetit untuk Penyingkiran Pewarna Kuning Matahari Terbenam:

Pengoptimuman Taguchi)

 

Nurina Izzah Mohd Husani1, Nur Amani Izzati Mohamad Hisham2, Nor Munira Hashim1, Clayrine Shima Anak Lasu1, Noorfatimah Yahaya1, Muggundha Raoov3, and Nur Nadhirah Mohamad Zain1*

 

1Department of Toxicology, Advanced Medical And Dental Institute, Universiti Sains Malaysia,

13200 Kepala Batas, Penang, Malaysia

2Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai,

71800, Nilai, Negeri Sembilan, Malaysia

3Department of Chemistry, Faculty of Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author: nurnadhirah@usm.my

 

 

Received: 9 March 2022; Accepted: 30 May 2023; Published:  22 August 2023

 

 

Abstract

This study describes the role of magnetite nanoparticle (MNP) or Fe3O4, which are magnetic nanomaterials (MNMs), as adsorbents for the removal of a synthetic azo dye called sunset yellow FCF (SY) from aqueous samples. Improper release of the SY dye into water can have significant adverse effects on the environmental, including disruption of photosynthesis, obstructs sunlight penetration, and risks to aquatic life and human health. Therefore, it is crucial to develop effective methods for removing the SY dye from water sources. This research aims to investigate the potential of Fe3O4 magnetic nanoparticles in removing the SY dye from water samples. By analyzing the effects of Fe3O4 nanoparticles, this study aims to provide insights into their efficiency and effectiveness as a potential solution for the removal of the SY dye, contributing to the development of sustainable water treatment strategies. The adsorbents was prepared using co-precipitation method, and their characteristics were analyzed using various instruments. Furthermore, the study investigated the adsorption conditions, including the optimization of pH, adsorbent dosage, and contact time using the Taguchi optimization method. The optimization for the effect of temperature and initial concentration of dye was conducted separately. The results of this study showed that the interaction between the homogenous surface of the adsorbents and the adsorbates or analytes molecules involved chemisorption and monolayer adsorption. The adsorption was found to be feasible, spontaneous, increased randomness, and endothermic. Additionally, the prepared adsorbents were validated by applying to remove the SY dye from three actual wastewater samples. The removal percentage ranged approximately from 30% to 85% with a low relative standard deviation (RSD% < 9.2%). This demonstrated that the adsorbents remained reliable for removing the dye from real samples were spiked with a high concentration of analytes. Overall, this study presents a promising approach for removing the SY dye from wastewater samples. It shows that even the bare form of MNMs base can be extensively developed for analyte removal from real aqueous samples.

 

Keywords: magnetic nanoparticles, sunset yellow dye FCF, Taguchi optimization, adsorption, wastewater

 

Abstrak

Artikel ini menerangkan peranan zarah nano magnetit (MNP) atau Fe3O4, yang merupakan bahan nano magnetik (MNMs), sebagai bahan jerap untuk menyingkirkan pewarna azo sintetik yang dipanggil kuning matahari terbenam FCF (SY) daripada sampel berakua. Pembebasan pewarna SY yang tidak betul ke dalam air boleh memberi kesan buruk yang ketara kepada alam sekitar, termasuk gangguan fotosintesis, menghalang penembusan cahaya matahari, dan risiko kepada hidupan akuatik serta kesihatan manusia. Oleh itu, adalah penting untuk membangunkan kaedah yang berkesan untuk mengeluarkan pewarna SY daripada sumber air. Penyelidikan ini bertujuan untuk menyiasat potensi nanopartikel magnet Fe3O4 dalam menyingkirkan pewarna SY daripada sampel air. Dengan menganalisis kesan nanopartikel Fe3O4, kajian ini bertujuan untuk memberikan pandangan tentang kecekapan dan keberkesanannya sebagai penyelesaian yang berpotensi untuk penyingkiran pewarna SY, menyumbang kepada pembangunan strategi rawatan air yang mampan. Bahan jerap telah disediakan menggunakan kaedah pemendakan bersama, dan ciri-cirinya dianalisis dengan menggunakan pelbagai instrumen. Tambahan pula, kajian ini menyiasat keadaan penjerapan, termasuk pengoptimuman pH, dos penjerap, dan masa sentuhan menggunakan kaedah pengoptimuman Taguchi. Pengoptimuman untuk kesan suhu dan kepekatan awal pewarna dijalankan secara berasingan. Hasil kajian ini menunjukkan bahawa interaksi antara permukaan homogen bahan jerap dan bahan dijerap atau molekul analit melibatkan penjerapan kimia dan monolapisan. Penjerapan didapati tersaur, spontan, peningkatan kerawakan, dan endoterma. Tambahan pula, bahan jerap yang disediakan telah disahkan potensinya dengan menggunakannya untuk menyingkirkan pewarna SY daripada tiga sampel air buangan sebenar. Peratusan penyingkiran berjulat kira-kira dari 30% hingga 85% dengan sisihan piawai relatif rendah (RSD% < 9.2%). Ini menunjukkan bahawa bahan jerap kekal boleh dipercayai untuk menyingkirkan pewarna daripada sampel sebenar yang telah dicemari dengan kepekatan analit yang tinggi. Secara keseluruhan, kajian ini membentangkan pendekatan yang menjanjikan dalam mengeluarkan pewarna SY daripada sampel air buangan. Ia menunjukkan bahawa walaupun bentuk yang asas MNMs dapat dibangunkan secara meluas untuk penyingkiran analit daripada sampel berakua sebenar.

 

Kata kunci:  zarah nano magnetit, pewarna kuning matahari terbenam FCF, pengoptimuman Taguchi, penjerapan, air kumbahan

 


References

1.       Jeeva, M., Lakkaboya, S. K., and Wan Zuhairi, W. Y. (2019). The adsorption of direct brown 1 dye using kaolinite and surfactant modified kaolinite. Bulletin of the Geological Society of Malaysia, 2019(67): 35-45.

2.       Xiao, W., Jiang, X., Liu, X., Zhou, W., Garba, Z. N., Lawan, I., Wang, L., and Yuan, Z. (2021). Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. Journal of Cleaner Production, 284: 124773.

3.       Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., and Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77: 5-15.

4.       Ma, X., Liu, Y., Li, X., Xu, J., Gu, G., and Xia, C. (2015). Water: The most effective solvent for liquid-phase hydrodechlorination of chlorophenols over Raney Ni catalyst. Applied Catalysis B: Environmental, 165: 351-359.

5.       Belachew, N., and Hinsene, H. (2020). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Applied Water Science, 10(1): 38.

6.       Foroughirad, S., Haddadi-Asl, V., Khosravi, A., and Salami-Kalajahi, M. (2020f). Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. Journal of Polymer Research, 27(10): 320.

7.       Mosayebian, M. B. and Reza Moradi, K. M. (2021). Modelling the degradation of sunset yellow FCF azo dye by Fe2O3/Bentonite catalyst using artificial neural networks. Journal of Nanoanalysis, 8(3): 209-220.

8.       Rovina, K., Acung, L. A., Siddiquee, S., Akanda, J. H., and Shaarani, S. M. (2017h). Extraction and analytical methods for determination of sunset yellow (E110)—a review. Food Analytical Methods, 10: 773-787.

9.       Gholami, Z., Marhamatizadeh, M. H., Yousefinejad, S., Rashedinia, M., and Mazloomi, S. M. (2021). Vortex-assisted dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent for the simultaneous identification of eight synthetic dyes in jellies and drinks using HPLC-PDA. Microchemical Journal, 170: 106671.

10.    El-Borm, H., Badawy, G., Hassab El-Nabi, S., El-Sherif, W., and Atallah, M. (2020). Toxicity of sunset yellow FCF and tartrazine dyes on DNA and cell cycle of liver and kidneys of the chick embryo: the alleviative effects of curcumin. Egyptian Journal of Zoology, 74(74): 43-55.

11.    Rovina, K., Siddiquee, S., and Shaarani, S. M. (2016k). Highly sensitive determination of sunset yellow FCF (E110) in food products based on chitosan/nanoparticles/MWCNTs with modified gold electrode. IOP Conference Series: Earth and Environmental Science, 36(1): 012023.

12.    Nwuzor, I. C., Chukwuneke, J. L., Nwanoneyi, S. C., Obasi, H. C., and Ihekweme, G. O. (2018). Modification and Physiochemical Characterization of Kaolin Clay for Adsorption of Pollutants from Industrial Paint Effluent. European Journal of Advances in Engineering and Technology, 5(8): 609-620.

13.    Villar Blanco, L., González Sas, O., Sánchez, P. B., Domínguez Santiago, Á., and González de Prado, B. (2022). Congo red recovery from water using green extraction solvents. Water Resources and Industry, 27: 100170.

14.    El Mouhri, G., Merzouki, M., Belhassan, H., Miyah, Y., Amakdouf, H., Elmountassir, R., and Lahrichi, A. (2020). Continuous adsorption modelling and fixed bed column studies: Adsorption of tannery wastewater pollutants using beach sand. Journal of Chemistry, 2020: 7613484.

15.    Benjelloun, M., Miyah, Y., Akdemir Evrendilek, G., Zerrouq, F., and Lairini, S. (2021). Recent advances in adsorption kinetic models: Their application to dye types. Arabian Journal of Chemistry, 14(4): 103031.

16.    Lawal, I. A., Lawal, M. M., Azeez, M. A., and Ndungu, P. (2019). Theoretical and experimental adsorption studies of phenol and crystal violet dye on carbon nanotube functionalized with deep eutectic solvent. Journal of Molecular Liquids, 288: 110895.

17.    Panda, S. K., Aggarwal, I., Kumar, H., Prasad, L., Kumar, A., Sharma, A., Vo, D. V. N., Van Thuan, D., and Mishra, V. (2021). Magnetite nanoparticles as sorbents for dye removal: A review. Environmental Chemistry Letters, 19(3): 2487-2525.

18.    Soliman, N. K., and Moustafa, A. F. (2020). Industrial solid waste for heavy metals adsorption features and challenges: A review. Journal of Materials Research and Technology, 9(5): 10235-10253.

19.    Husin, N. A., Muhamad, M., Yahaya, N., Miskam, M., Syazni Nik Mohamed Kamal, N. N., Asman, S., Raoov, M., and Mohamad Zain, N. N. (2021). Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Materials Chemistry and Physics, 261: 124228.

20.    Husin, N. A., Hashim, N. M., Yahaya, N., Miskam, M., Raoov, M., and Zain, N. N. M. (2021). Exploring magnetic particle surface embedded with imidazole-based deep eutectic solvent for diclofenac removal from pharmaceutical wastewater samples. Journal of Molecular Liquids, 332: 115809.

21.    Rodríguez-Ramos, R., Santana-Mayor, Á., Socas-Rodríguez, B., and Rodríguez-Delgado, M. Á. (2021). Recent applications of deep eutectic solvents in environmental analysis. Applied Sciences (Switzerland), 11(11): 11114779.

22.    Wei, X., Wang, Y., Chen, J., Xu, P., Xu, W., Ni, R., Meng, J., and Zhou, Y. (2019). Poly(deep eutectic solvent)-functionalized magnetic metal-organic framework composites coupled with solid-phase extraction for the selective separation of cationic dyes. Analytica Chimica Acta, 1056: 47-61.

23.    Badu Latip, N. M., Gopal, K., Suwaibatu, M., Hashim, N. M., Rahim, N. Y., Raoov, M., Yahaya, N., and Mohamad Zain, N. N. (2021). Removal of 2,4-dichlorophenol from wastewater by an efficient adsorbent of magnetic activated carbon. Separation Science and Technology (Philadelphia), 56(2): 252-265.

24.    Rezaei, H., Haghshenasfard, M., and Moheb, A. (2017). Optimization of dye adsorption using Fe3O4 nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption Science and Technology, 35(1–2): 55-71.

25.    Nandhini, M., Suchithra, B., Saravanathamizhan, R., and Prakash, D. G. (2014). Optimization of parameters for dye removal by electro-oxidation using Taguchi design. Journal of Electrochemical Science and Engineering, 4(4): 227-234.

26.    Korake, S. R., and Jadhao, P. D. (2021). Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt. Heliyon, 7(1): e05755.

27.    Wang, J., and Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390: 122156.

28.    Ebelegi, A. N., Ayawei, N., and Wankasi, D. (2020ab). Interpretation of adsorption thermodynamics and kinetics. Open Journal of Physical Chemistry, 10(03): 166-182.

29.    Chen, X. (2015). Modelling of experimental adsorption isotherm data. Information (Switzerland), 6(1): 14-22.

30.    Al-Ghouti, M. A., and Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393: 122383.

31.    Al-Khateeb, L. A., Hakami, W., and Salam, M. A. (2017). Removal of non-steroidal anti-inflammatory drugs from water using high surface area nanographene: Kinetic and thermodynamic studies. Journal of Molecular Liquids, 241: 733-741.

32.    Thaligari, S. K., Srivastava, V. C., and Prasad, B. (2016). Adsorptive desulfurization by zinc-impregnated activated carbon: characterization, kinetics, isotherms, and thermodynamic modelling. Clean Technologies and Environmental Policy, 18(4): 1021-1030.

33.    Mokadem, Z., Mekki, S., Saïdi-Besbes, S., Agusti, G., Elaissari, A., and Derdour, A. (2017). Triazole containing magnetic core-silica shell nanoparticles for Pb2+, Cu2+ and Zn2+ removal. Arabian Journal of Chemistry, 10(8): 1039-1051.

34.    Cao, H., He, J., Deng, L., and Gao, X. (2009). Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4 /amino-silane core-shell nanoparticles via layer-by-layer method. Applied Surface Science, 255(18): 7974-7980.

35.    Hashim, N. M., Mohamad, M., Kamal, N. N. S. N. M., Aziz, M. Y., Mohamad, S., Yahaya, N., and Zain, N. N. M. (2023). Revolutionizing drug removal: Green magnetic nanoparticles functionalized with hydrophobic deep eutectic solvents for anti-inflammatory drug adsorption. Journal of Molecular Liquids, 383: 122082.

36.    Mamman, S., Suah, F. B. M., Raaov, M., Mehamod, F. S., Asman, S., and Zain, N. N. M. (2021). Removal of bisphenol A from aqueous media using a highly selective adsorbent of hybridization cyclodextrin with magnetic molecularly imprinted polymer. Royal Society Open Science, 8(3): 201604

37.    Shahriman, M. S., Mohamad Zain, N. N., Mohamad, S., Abdul Manan, N. S., Yaman, S. M., Asman, S., and Raoov, M. (2018). Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine B (RB) from aqueous solution. RSC Advances, 8(58): 33180–33192.

38.    Meftah Elgubbi, H., Salhah Othman, S., and Wahida Harun, F. (2020). Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization. International Journal of Engineering & Technology, 9(4): 31088.

39.    Mosoarca, G., Popa, S., Vancea, C., and Boran, S. (2021). Optimization, equilibrium and kinetic modeling of methylene blue removal from aqueous solutions using dry bean pods husks powder. Materials, 14(19): 14195673.

40.    Noreen, S., Mustafa, G., Ibrahim, S. M., Naz, S., Iqbal, M., Yaseen, M., Javed, T., and Nisar, J. (2020). Iron oxide (Fe2O3) prepared via green route and adsorption efficiency evaluation for an anionic dye: Kinetics, isotherms and thermodynamics studies. Journal of Materials Research and Technology, 9(3): 4206-4217.

41.    De , F. P., Cunha, B. N., and Nunes, L. M. (2013). Effect of pH on the adsorption of sunset yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chemical Engineering Journal, 215–216: 122-127.

42.    Rajabi, H. R., Arjmand, H., Hoseini, S. J., and Nasrabadi, H. (2015). Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye. Journal of Magnetism and Magnetic Materials, 394: 7-13.

43.    Bagheri, A. R., Ghaedi, M., Asfaram, A., Bazrafshan, A. A., and Jannesar, R. (2017). Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. Ultrasonics Sonochemistry, 34: 294-304.

44.    Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G., Nnaji, J. C., and Okereafor, A. G. (2021). Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass. Applied Water Science, 11(2): 27.

45.    Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., and Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low-cost adsorbent. Arabian Journal of Chemistry, 10: 3229-3238.

46.    Aziz, A. S. A., Manaf, L. A., Man, H. C., and Kumar, N. S. (2014). kinetic modeling and isotherm studies for copper(II) adsorption onto palm oil boiler mill fly ash (POFA) as a natural low-cost adsorbents. BioResources, 9(1): 336-356.

47.    Marć, M., Drzewiński, A., Wolak, W. W., Najder-Kozdrowska, L., and Dudek, M. R. (2021). Filtration of nanoparticle agglomerates in aqueous colloidal suspensions exposed to an external radio-frequency magnetic field. Nanomaterials, 11(7):1737

48.    Madan, S. S., and Wasewar, K. L. (2017). Optimization for benzeneacetic acid removal from aqueous solution using CaO2 nanoparticles based on Taguchi method. Journal of Applied Research and Technology, 15(4): 332-339.

49.    Oetjik, W., and Aida Ibrahim, S. (2021). A review: The effect of initial dye concentration and contact time on the process of dye adsorption using agricultural wastes adsorbent. Progress in Engineering Application and Technology, 2(2): 2773-5303.

50.    Panda, H., Tiadi, N., Mohanty, M., and Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23: 132-138.

51.     Javadian, H., Koutenaei, B. B., Shekarian, E., Sorkhrodi, F. Z., Khatti, R., and Toosi, M. (2017). Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb(II) from aqueous media and industrial wastewater. Journal of Saudi Chemical Society, 21: 219-230.