Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 816 - 839
MAGNETIC NANOPARTICLE
FOR REMOVING SUNSET YELLOW DYE: TAGUCHI OPTIMIZATION
(Zarah Nano Magnetit
untuk Penyingkiran Pewarna Kuning Matahari Terbenam:
Pengoptimuman Taguchi)
Nurina Izzah Mohd Husani1,
Nur Amani Izzati Mohamad Hisham2, Nor Munira Hashim1,
Clayrine Shima Anak Lasu1, Noorfatimah Yahaya1, Muggundha
Raoov3, and Nur Nadhirah Mohamad Zain1*
1Department of Toxicology,
Advanced Medical And Dental Institute, Universiti Sains Malaysia,
13200 Kepala Batas,
Penang, Malaysia
2Faculty of Science and
Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai,
71800, Nilai, Negeri
Sembilan, Malaysia
3Department of Chemistry,
Faculty of Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding
author: nurnadhirah@usm.my
Received: 9 March 2022; Accepted: 30
May 2023; Published: 22 August 2023
Abstract
This study describes the role of
magnetite nanoparticle (MNP) or Fe3O4, which are magnetic
nanomaterials (MNMs), as adsorbents for the removal of a synthetic azo dye
called sunset yellow FCF (SY) from aqueous samples. Improper release of the SY dye into
water can have significant adverse effects on the environmental, including
disruption of photosynthesis, obstructs sunlight penetration, and risks to
aquatic life and human health. Therefore, it is crucial to develop effective
methods for removing the SY dye from water sources. This research aims to
investigate the potential of Fe3O4 magnetic nanoparticles
in removing the SY dye from water samples. By analyzing the effects of Fe3O4
nanoparticles, this study aims to provide insights into their efficiency and
effectiveness as a potential solution for the removal of the SY dye, contributing
to the development of sustainable water treatment strategies. The
adsorbents was prepared using
co-precipitation method, and their characteristics were analyzed using various
instruments. Furthermore, the study investigated the adsorption conditions,
including the optimization of pH, adsorbent dosage, and contact time using the
Taguchi optimization method. The optimization for the effect of temperature and
initial concentration of dye was conducted separately. The results of this
study showed that the interaction between the homogenous surface of the
adsorbents and the adsorbates or analytes molecules involved chemisorption and
monolayer adsorption. The adsorption was found to be feasible, spontaneous,
increased randomness, and endothermic. Additionally, the prepared adsorbents
were validated by applying to remove the SY dye from three actual wastewater
samples. The removal percentage ranged approximately from 30% to 85% with a low
relative standard deviation (RSD% < 9.2%). This demonstrated that the
adsorbents remained reliable for removing the dye from real samples were spiked
with a high concentration of analytes. Overall, this study presents a promising
approach for removing the SY dye from wastewater samples. It shows that even
the bare form of MNMs base can be extensively developed for analyte removal
from real aqueous samples.
Keywords: magnetic nanoparticles, sunset yellow dye FCF, Taguchi
optimization, adsorption, wastewater
Abstrak
Artikel ini menerangkan peranan zarah nano magnetit (MNP) atau Fe3O4,
yang merupakan bahan nano magnetik (MNMs), sebagai bahan jerap untuk menyingkirkan pewarna azo
sintetik yang dipanggil kuning matahari terbenam FCF (SY) daripada sampel berakua. Pembebasan pewarna SY yang tidak betul ke dalam
air boleh memberi kesan buruk yang ketara kepada alam sekitar, termasuk
gangguan fotosintesis, menghalang penembusan cahaya matahari, dan risiko kepada
hidupan akuatik serta kesihatan manusia. Oleh itu, adalah penting untuk
membangunkan kaedah yang berkesan untuk mengeluarkan pewarna SY daripada sumber
air. Penyelidikan ini bertujuan untuk
menyiasat potensi nanopartikel magnet Fe3O4
dalam menyingkirkan pewarna SY daripada sampel air. Dengan menganalisis kesan nanopartikel Fe3O4, kajian ini
bertujuan untuk memberikan pandangan tentang kecekapan dan keberkesanannya
sebagai penyelesaian yang berpotensi untuk penyingkiran pewarna SY, menyumbang
kepada pembangunan strategi rawatan air yang mampan.
Bahan jerap telah disediakan menggunakan kaedah pemendakan bersama, dan
ciri-cirinya dianalisis dengan menggunakan pelbagai instrumen. Tambahan pula,
kajian ini menyiasat keadaan penjerapan, termasuk pengoptimuman
pH, dos penjerap, dan masa
sentuhan menggunakan kaedah pengoptimuman Taguchi. Pengoptimuman untuk
kesan suhu dan kepekatan awal pewarna dijalankan secara berasingan. Hasil kajian ini menunjukkan bahawa interaksi antara
permukaan homogen bahan jerap dan bahan dijerap atau molekul analit melibatkan penjerapan kimia dan monolapisan.
Penjerapan didapati tersaur, spontan, peningkatan
kerawakan, dan endoterma. Tambahan pula, bahan jerap yang disediakan telah
disahkan potensinya dengan menggunakannya untuk menyingkirkan pewarna SY
daripada tiga sampel air buangan sebenar. Peratusan penyingkiran berjulat
kira-kira dari 30% hingga 85% dengan sisihan piawai relatif rendah (RSD% <
9.2%). Ini menunjukkan bahawa bahan jerap kekal boleh dipercayai untuk
menyingkirkan pewarna daripada sampel sebenar yang telah dicemari dengan
kepekatan analit yang tinggi. Secara keseluruhan,
kajian ini membentangkan pendekatan yang menjanjikan dalam mengeluarkan pewarna
SY daripada sampel air buangan. Ia menunjukkan bahawa walaupun bentuk yang asas
MNMs dapat dibangunkan secara meluas untuk
penyingkiran analit daripada sampel berakua sebenar.
Kata kunci: zarah nano magnetit,
pewarna kuning matahari terbenam FCF, pengoptimuman Taguchi, penjerapan, air kumbahan
1. Jeeva, M., Lakkaboya,
S. K., and Wan Zuhairi, W. Y. (2019). The adsorption
of direct brown 1 dye using kaolinite and surfactant modified kaolinite. Bulletin
of the Geological Society of Malaysia, 2019(67): 35-45.
2. Xiao, W., Jiang, X., Liu, X.,
Zhou, W., Garba, Z. N., Lawan, I., Wang, L., and Yuan, Z. (2021). Adsorption of
organic dyes from wastewater by metal-doped porous carbon materials. Journal
of Cleaner Production, 284: 124773.
3. Lu, Y., Song, S., Wang, R.,
Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo,
W., and Wang, T. (2015). Impacts of soil and water pollution on food safety and
health risks in China. Environment International, 77: 5-15.
4. Ma, X., Liu, Y., Li, X., Xu, J., Gu, G., and Xia, C. (2015). Water: The most effective solvent for liquid-phase hydrodechlorination
of chlorophenols over Raney Ni catalyst. Applied Catalysis B: Environmental,
165: 351-359.
5. Belachew, N., and Hinsene, H. (2020). Preparation of
cationic surfactant-modified kaolin for enhanced adsorption of hexavalent
chromium from aqueous solution. Applied Water Science, 10(1): 38.
6. Foroughirad, S., Haddadi-Asl, V., Khosravi, A., and
Salami-Kalajahi, M. (2020f). Synthesis of magnetic nanoparticles-decorated
halloysite nanotubes/poly([2-(acryloyloxy)ethyl]trimethylammonium
chloride) hybrid nanoparticles for removal of Sunset Yellow from water. Journal
of Polymer Research, 27(10): 320.
7. Mosayebian, M. B. and Reza Moradi, K. M. (2021). Modelling the degradation of
sunset yellow FCF azo dye by Fe2O3/Bentonite catalyst
using artificial neural networks. Journal of Nanoanalysis,
8(3): 209-220.
8. Rovina, K., Acung, L. A., Siddiquee,
S., Akanda, J. H., and Shaarani,
S. M. (2017h). Extraction and analytical methods for determination of sunset
yellow (E110)—a review. Food Analytical Methods, 10: 773-787.
9. Gholami, Z., Marhamatizadeh, M. H., Yousefinejad, S., Rashedinia, M.,
and Mazloomi, S. M. (2021). Vortex-assisted dispersive liquid-liquid
microextraction based on hydrophobic deep eutectic solvent for the simultaneous
identification of eight synthetic dyes in jellies and drinks using HPLC-PDA. Microchemical
Journal, 170: 106671.
10. El-Borm,
H., Badawy, G., Hassab
El-Nabi, S., El-Sherif, W., and Atallah,
M. (2020). Toxicity of sunset yellow FCF and tartrazine dyes on DNA and cell
cycle of liver and kidneys of the chick embryo: the alleviative effects of
curcumin. Egyptian Journal of Zoology, 74(74): 43-55.
11. Rovina, K., Siddiquee, S., and Shaarani,
S. M. (2016k). Highly sensitive determination of sunset yellow FCF (E110) in
food products based on chitosan/nanoparticles/MWCNTs with modified gold
electrode. IOP Conference Series: Earth and Environmental Science,
36(1): 012023.
12. Nwuzor, I. C., Chukwuneke, J. L., Nwanoneyi, S. C., Obasi, H. C., and Ihekweme,
G. O. (2018). Modification and Physiochemical Characterization of Kaolin Clay
for Adsorption of Pollutants from Industrial Paint Effluent. European
Journal of Advances in Engineering and Technology, 5(8): 609-620.
13. Villar Blanco, L., González
Sas, O., Sánchez, P. B., Domínguez Santiago, Á., and González de Prado, B.
(2022). Congo red recovery from water using green extraction solvents. Water
Resources and Industry, 27: 100170.
14. El Mouhri,
G., Merzouki, M., Belhassan,
H., Miyah, Y., Amakdouf,
H., Elmountassir, R., and Lahrichi,
A. (2020). Continuous adsorption modelling and fixed bed column studies:
Adsorption of tannery wastewater pollutants using beach sand. Journal of
Chemistry, 2020: 7613484.
15. Benjelloun, M., Miyah, Y., Akdemir
Evrendilek, G., Zerrouq,
F., and Lairini, S. (2021). Recent advances in
adsorption kinetic models: Their application to dye types. Arabian Journal
of Chemistry, 14(4): 103031.
16. Lawal, I. A., Lawal, M. M.,
Azeez, M. A., and Ndungu, P. (2019). Theoretical and
experimental adsorption studies of phenol and crystal violet dye on carbon
nanotube functionalized with deep eutectic solvent. Journal of Molecular
Liquids, 288: 110895.
17. Panda, S. K., Aggarwal, I.,
Kumar, H., Prasad, L., Kumar, A., Sharma, A., Vo, D. V. N., Van Thuan, D., and
Mishra, V. (2021). Magnetite nanoparticles as sorbents for dye removal: A
review. Environmental Chemistry Letters, 19(3): 2487-2525.
18. Soliman, N. K., and Moustafa, A. F. (2020). Industrial solid waste for heavy
metals adsorption features and challenges: A review. Journal of Materials
Research and Technology, 9(5): 10235-10253.
19. Husin, N. A., Muhamad, M.,
Yahaya, N., Miskam, M., Syazni
Nik Mohamed Kamal, N. N., Asman, S., Raoov, M., and
Mohamad Zain, N. N. (2021). Application of a new choline-imidazole based deep eutectic
solvents in hybrid magnetic molecularly imprinted polymer for efficient and
selective removal of naproxen from aqueous samples. Materials Chemistry and
Physics, 261: 124228.
20. Husin, N. A., Hashim, N. M.,
Yahaya, N., Miskam, M., Raoov,
M., and Zain, N. N. M. (2021). Exploring magnetic particle surface embedded
with imidazole-based deep eutectic solvent for diclofenac removal from
pharmaceutical wastewater samples. Journal of Molecular Liquids, 332:
115809.
21. Rodríguez-Ramos, R.,
Santana-Mayor, Á., Socas-Rodríguez, B., and
Rodríguez-Delgado, M. Á. (2021). Recent applications of deep eutectic solvents
in environmental analysis. Applied Sciences (Switzerland), 11(11):
11114779.
22. Wei, X., Wang, Y., Chen, J.,
Xu, P., Xu, W., Ni, R., Meng, J., and Zhou, Y. (2019). Poly(deep eutectic
solvent)-functionalized magnetic metal-organic framework composites coupled
with solid-phase extraction for the selective separation of cationic dyes. Analytica
Chimica Acta, 1056: 47-61.
23. Badu Latip,
N. M., Gopal, K., Suwaibatu, M., Hashim, N. M.,
Rahim, N. Y., Raoov, M., Yahaya, N., and Mohamad
Zain, N. N. (2021). Removal of 2,4-dichlorophenol from wastewater by an
efficient adsorbent of magnetic activated carbon. Separation Science and
Technology (Philadelphia), 56(2): 252-265.
24. Rezaei, H., Haghshenasfard, M., and Moheb, A.
(2017). Optimization of dye adsorption using Fe3O4
nanoparticles encapsulated with alginate beads by Taguchi method. Adsorption
Science and Technology, 35(1–2): 55-71.
25. Nandhini, M., Suchithra, B., Saravanathamizhan,
R., and Prakash, D. G. (2014). Optimization of parameters for dye removal by
electro-oxidation using Taguchi design. Journal of Electrochemical Science
and Engineering, 4(4): 227-234.
26. Korake, S. R., and Jadhao, P. D. (2021).
Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt. Heliyon, 7(1): e05755.
27. Wang, J., and Guo, X. (2020).
Adsorption kinetic models: Physical meanings, applications, and solving
methods. Journal of Hazardous Materials, 390: 122156.
28. Ebelegi, A. N., Ayawei, N., and Wankasi,
D. (2020ab). Interpretation of adsorption thermodynamics and kinetics. Open
Journal of Physical Chemistry, 10(03): 166-182.
29. Chen, X. (2015). Modelling of
experimental adsorption isotherm data. Information (Switzerland), 6(1):
14-22.
30. Al-Ghouti,
M. A., and Da’ana, D. A. (2020). Guidelines for the
use and interpretation of adsorption isotherm models: A review. Journal of
Hazardous Materials, 393: 122383.
31. Al-Khateeb,
L. A., Hakami, W., and Salam, M. A. (2017). Removal
of non-steroidal anti-inflammatory drugs from water using high surface area
nanographene: Kinetic and thermodynamic studies. Journal of Molecular
Liquids, 241: 733-741.
32. Thaligari, S. K., Srivastava, V. C., and Prasad, B. (2016). Adsorptive
desulfurization by zinc-impregnated activated carbon: characterization,
kinetics, isotherms, and thermodynamic modelling. Clean Technologies and
Environmental Policy, 18(4): 1021-1030.
33. Mokadem, Z., Mekki, S., Saïdi-Besbes,
S., Agusti, G., Elaissari,
A., and Derdour, A. (2017). Triazole containing
magnetic core-silica shell nanoparticles for Pb2+, Cu2+
and Zn2+ removal. Arabian Journal of Chemistry, 10(8):
1039-1051.
34. Cao, H., He, J., Deng, L., and
Gao, X. (2009). Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4
/amino-silane core-shell nanoparticles via layer-by-layer method. Applied
Surface Science, 255(18): 7974-7980.
35. Hashim, N. M., Mohamad, M.,
Kamal, N. N. S. N. M., Aziz, M. Y., Mohamad, S., Yahaya, N., and Zain, N. N. M.
(2023). Revolutionizing drug removal: Green magnetic nanoparticles
functionalized with hydrophobic deep eutectic solvents for anti-inflammatory
drug adsorption. Journal of Molecular Liquids, 383: 122082.
36. Mamman, S., Suah, F. B. M., Raaov,
M., Mehamod, F. S., Asman, S., and Zain, N. N. M.
(2021). Removal of bisphenol A from aqueous media using a highly selective
adsorbent of hybridization cyclodextrin with magnetic molecularly imprinted
polymer. Royal Society Open Science, 8(3): 201604
37. Shahriman, M. S., Mohamad Zain, N. N., Mohamad, S., Abdul Manan, N. S., Yaman, S. M., Asman, S., and Raoov,
M. (2018). Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine
B (RB) from aqueous solution. RSC Advances, 8(58): 33180–33192.
38. Meftah Elgubbi, H., Salhah
Othman, S., and Wahida Harun, F. (2020). Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant:
Preparation and characterization. International Journal of Engineering &
Technology, 9(4): 31088.
39. Mosoarca, G., Popa, S., Vancea, C., and Boran, S. (2021). Optimization, equilibrium and kinetic modeling of methylene blue removal from aqueous solutions
using dry bean pods husks powder. Materials, 14(19): 14195673.
40. Noreen, S., Mustafa, G.,
Ibrahim, S. M., Naz, S., Iqbal, M., Yaseen, M., Javed, T., and Nisar, J.
(2020). Iron oxide (Fe2O3) prepared via green route and
adsorption efficiency evaluation for an anionic dye: Kinetics, isotherms and
thermodynamics studies. Journal of Materials Research and Technology, 9(3): 4206-4217.
41. De Sá,
F. P., Cunha, B. N., and Nunes, L. M. (2013). Effect of pH on the adsorption of sunset yellow FCF food dye into a
layered double hydroxide (CaAl-LDH-NO3). Chemical Engineering
Journal, 215–216: 122-127.
42. Rajabi, H. R., Arjmand, H., Hoseini,
S. J., and Nasrabadi, H. (2015). Surface modified
magnetic nanoparticles as efficient and green sorbents: Synthesis,
characterization, and application for the removal of anionic dye. Journal of
Magnetism and Magnetic Materials, 394: 7-13.
43. Bagheri, A. R., Ghaedi, M., Asfaram, A., Bazrafshan, A. A., and Jannesar,
R. (2017). Comparative study on ultrasonic assisted adsorption of dyes from
single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon:
Experimental design methodology. Ultrasonics Sonochemistry, 34: 294-304.
44. Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G.,
Nnaji, J. C., and Okereafor, A. G. (2021). Adsorption
of tartrazine and sunset yellow anionic dyes onto activated carbon derived from
cassava sievate biomass. Applied Water Science,
11(2): 27.
45. Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut,
P. D., Anuse, M. A., and Kolekar,
S. S. (2017). Removal of malachite green dye from aqueous solution with
adsorption technique using Limonia acidissima (wood apple) shell as low-cost adsorbent. Arabian
Journal of Chemistry, 10:
3229-3238.
46. Aziz, A. S. A., Manaf, L. A., Man, H. C., and Kumar, N. S. (2014). kinetic modeling and isotherm studies for copper(II) adsorption
onto palm oil boiler mill fly ash (POFA) as a natural low-cost adsorbents. BioResources, 9(1): 336-356.
47. Marć, M., Drzewiński, A., Wolak, W. W., Najder-Kozdrowska, L., and Dudek, M. R. (2021). Filtration
of nanoparticle agglomerates in aqueous colloidal suspensions exposed to an
external radio-frequency magnetic field. Nanomaterials, 11(7):1737
48. Madan, S. S., and Wasewar, K. L. (2017). Optimization for benzeneacetic
acid removal from aqueous solution using CaO2 nanoparticles based on
Taguchi method. Journal of Applied Research and Technology, 15(4):
332-339.
49. Oetjik, W., and Aida Ibrahim, S. (2021). A review: The effect of initial dye
concentration and contact time on the process of dye adsorption using
agricultural wastes adsorbent. Progress in Engineering Application and
Technology, 2(2): 2773-5303.
50. Panda, H., Tiadi,
N., Mohanty, M., and Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium
from aqueous solution. South African Journal of Chemical Engineering, 23:
132-138.
51. Javadian, H., Koutenaei, B. B., Shekarian,
E., Sorkhrodi, F. Z., Khatti, R., and Toosi, M. (2017). Application of functionalized nano HMS
type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane
as a suitable adsorbent for removal of Pb(II) from aqueous media and industrial
wastewater. Journal of Saudi Chemical Society, 21: 219-230.