Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 802 - 815
REVIEW OF MOLYBDENUM
DISULFIDE PREPARATION AND ITS ROLE AS A PHOTOCATALYST TO DEGRADE ORGANIC
CONTAMINANTS
(Ulasan Penyediaan Molibdenum
Disulfida dan Peranannya Sebagai Pemangkin Fotodegradasi Pencemaran Organik)
Izyan Najwa Mohd Norsham 1,
Nur Zatulhusna Zulkifli1, Kavirajaa Pandian Sambasevam1,2
Siti Nor Atika Baharin1,3*
1Advanced Material for Environmental Remediation (AMER)
Research Group, Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia.
2Electrochemical Material and Sensor (EMas) Group, Universiti
Teknologi MARA, 40450 Shah Alam Selangor, Malaysia
3Advanced Biomaterials & Carbon Development (ABCD),
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: atikabaharin@uitm.edu.my
Received: 22 September 2022;
Accepted: 23 July 2023; Published: 22 August
2023
Photocatalytic degradation appeared as a future alternative for the
removal of many organic contaminants with high efficiency and energy-saving
technology. As a photocatalyst, molybdenum disulphide (MoS2)
exhibits good photocatalytic properties due to great potential for organic
contaminant degradation. It is ascribed that various approaches for MoS2
preparation serve a diverse number of exposed active sites that facilitate MoS2
efficiency for photocatalytic reaction. Several methods have been extensively applied
to improve MoS2 photocatalytic efficiency, including synthesized
different surface morphology and heterojunction formation with other
semiconductors. Therefore, it will increase the photocatalytic activities of
the composites by combining MoS2 with other semiconductor
photocatalyst materials. Integration of MoS2 as a binary or ternary
photocatalyst will produce a synergic effect that hinders the recombination
process and enhancement of the surface areas. On the other hand, it improved on
conductivity of the nanosheets, whereby it is believed to be able to deal with
photocatalytic material challenges and provide efficient solutions to deal with
degradation of organic contaminants.
Keywords: conducting polymer, metal disulphide, organic
pollutants, photocatalytic degradation, sustainable water management
Abstrak
Degradasi
fotokatalitik muncul sebagai alternatif masa depan untuk penyingkiran banyak
bahan cemar organik dengan kecekapan tinggi dan teknologi penjimatan tenaga.
Molibdenum disulfida (MoS2) sebagai fotomangkin mempamerkan sifat
fotokatalitik yang baik kerana potensi besar untuk degradasi bahan cemar
organik. Disifatkan bahawa pelbagai pendekatan penyediaan MoS2
menyediakan bilangan tapak aktif terdedah yang berbeza yang memudahkan
kecekapan MoS2 untuk tindak balas fotokatalitik. Beberapa kaedah
telah digunakan secara meluas untuk meningkatkan kecekapan fotokatalitik MoS2,
termasuk morfologi permukaan yang berbeza yang disintesis dan pembentukan
heterojunction dengan semikonduktor lain. Oleh itu, dengan menggabungkan MoS2
dengan bahan semikonduktor fotomangkin lain, ia akan meningkatkan aktiviti
fotomangkin komposit. Penyepaduan MoS2 sebagai fotomangkin binari
atau ternari akan menghasilkan kesan sinergik yang menghalang proses
penggabungan semula dan peningkatan kawasan permukaan. Sebaliknya, ia bertambah
baik dalam kekonduksian helaian nano di mana ia dipercayai mampu menangani
cabaran bahan fotokatalitik dan menyediakan penyelesaian yang cekap untuk
menangani degradasi bahan cemar organik
Kata kunci: pengalir polimer, logam disulfida, bahan pencemar organik,
degradasi fotokatalitik, pengurusan air yang mampan
References
1.
Wu, M. Hong, Li, L., Liu, N., Wang, D. Jin, Xue, Y.
Cheng, and Tang, L. (2018). Molybdenum disulfide (MoS2) as a
co-catalyst for photocatalytic degradation of organic contaminants: A review. Process
Safety and Environmental Protection, 118: 40-58.
2.
Wang, Z. M. (Ed.). (2013). MoS2: Materials,
physics, and devices (Vol. 21). Springer Science and Business Media.
3.
Vattikuti, S. V. P., and Byon, C. (2017). Molybdenum
disulfide-based photocatalysis: bulk-to-single layer structure and related
photomechansim for environmental applications. Nanoscaled Films and Layers,
2: 239.
4.
Saha, S., Chaudhary, N., Mittal, H., Gupta, G., and
Khanuja, M. (2019). Inorganic–organic nanohybrid of MoS2-PANI for
advanced photocatalytic application. International Nano Letters,
9(2):127-139.
5.
Feng,
H., Zhou, W., Zhang, X., Zhang, S., Liu, B., and Zhen, D. (2019). Synthesis of
Z-scheme Mn-CdS/MoS2/TiO2 ternary photocatalysts for
high-efficiency sunlight-driven photocatalysis. Advanced Composites Letters,
28: 1-10.
6.
Rauf, M. A., and Ashraf, S. S. (2009). Fundamental
principles and application of heterogeneous photocatalytic degradation of dyes
in solution. Chemical Engineering Journal, 151(1-3): 10-18.
7.
Rajamanickam, D., Dhatshanamurthi, P., and Shanthi, M.
(2015). Preparation and characterization of SeO2/TiO2
composite photocatalyst with excellent performance for sunset yellow azo dye
degradation under natural sunlight illumination. Spectrochimica Acta - Part
A: Molecular and Biomolecular Spectroscopy, 138: 489-498.
8.
Li, T., Hu, X., Liu, C., Tang, C., Wang, X., and Luo, S.
(2016). Efficient photocatalytic degradation of organic dyes and reaction
mechanism with Ag2CO3/Bi2O2CO3
photocatalyst under visible light irradiation. Journal of Molecular
Catalysis A: Chemical, 425:124-135.
9.
Aliaga,
J., Cifuentes, N., González, G., Sotomayor-Torres, C., and Benavente, E.
(2018). Enhancement of photocatalytic activity of the heterojunction of
two-dimensional hybrid semiconductors ZnO/V2O5. Catalysts,
8(9):374-377.
10.
Mirza Hedayat, B., Noorisepehr, M., Dehghanifard, E.,
Esrafili, A., and Norozi, R. (2018). Evaluation of photocatalytic degradation
of 2, 4-dinitrophenol from synthetic wastewater using Fe3O4,
SiO2, TiO2/rGO magnetic nanoparticles. Journal of
Molecular Liquids, 264: 571-578.
11.
Ajmal,
A., Majeed, I., Malik, R. N., Idriss, H., and Nadeem, M. A. (2014). Principles
and mechanisms of photocatalytic dye degradation on TiO2 based
photocatalysts: comparative overview. RSC Advances, 4(70): 37003-37026.
12. Chang, L., Yang, H., Fu, W.,
Zhang, J., Yu, Q., Zhu, H., and Zou, G. (2008). Simple synthesis of MoS2
inorganic fullerene-like nanomaterials from MoS2 amorphous
nanoparticles. Materials Research
Bulletin, 43(8-9): 2427-2433.
13. Hou, S. X., Wu, C., and Huo,
Y. J. (2017). Controllable preparation of nano molybdenum disulfide by
hydrothermal method. Ceramics-Silikaty, 61:158-162.
14.
Kaur, K., Badru, R., Singh, P. P., and Kaushal, S.
(2020). Photodegradation of organic pollutants using heterojunctions: A review.
Journal of Environmental Chemical Engineering, 8(2):103666.
15.
Zhang, X., Ma, G., and Wang, J. (2019). Hydrothermal
synthesis of two-dimensional MoS2 and its applications. Tungsten,
1(1):59-79.
16.
Li, Y., Xiang, F., Lou, W., and Zhang, X. (2019). MoS2
with structure tuned photocatalytic ability for degradation of methylene blue.
In IOP Conference Series: Earth and Environmental Science, 300(5):
0502021.
17.
Sun,
Y., Wang, S., and Wang, Q. (2009). Flowerlike MoS2 nanoparticles:
solvothermal synthesis and characterization. Frontiers of Chemistry in China, 4(2):173-176.
18.
Gupta, A., Arunachalam, V., and Vasudevan, S. (2016).
Liquid-phase exfoliation of MoS2 nanosheets: The critical role of
trace water. Journal Physic Chemistry
Letters, 7: 4884-4890.
19.
Bai,
S., Wang, L., Chen, X., Du, J., and Xiong, Y. (2014). Chemically exfoliated
metallic MoS2 nanosheets: A promising supporting co-catalyst for
enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Research, 8:175-183
20.
Chang,
K., Hai, X., Pang, H., Zhang, H., Shi, L., Liu, G., Liu, H., Zhao, G., Li, M.,
and Ye, J., (2016). Targeted synthesis of 2H- and 1T-phase MoS2
monolayers for catalytic hydrogen evolution. Advance Materials, 28:10033-10041.
21.
Quinn, M. D. J., Ho, N. H., and Notley, S. M. (2013).
Aqueous dispersions of exfoliated molybdenum disulfide for use in visible-light
photocatalysis. ACS Applied Materials and Interfaces, 5(23):12751-12756.
22.
Khan, R., Riaz, A., Javed, S., Jan, R., Akram, M. A.,
and Mujahid, M. (2018). Synthesis and characterization of MoS2/TiO2
nanocomposites for enhanced photocatalytic degradation of methylene blue under
sunlight irradiation. In Key Engineering
Materials, 778: 137-143.
23.
Yue, J., Jian, J., Dong, P., Luo, L., and Chang, F.
(2019). Growth of single-layer MoS2 by chemical vapor deposition on
sapphire substrate. In IOP Conference Series: Materials Science and
Engineering 592(1): 012044.
24.
Kwack, Y. J., and Choi, W. S. (2019). Chemical vapor
deposition-free solution-processed synthesis method for two-dimensional MoS2
atomic layer films. Nanotechnology, 30(38): 385201.
25.
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei,
S., and Lou, J. (2013). Vapour phase growth and grain boundary structure of
molybdenum disulphide atomic layers. Nature
Materials, 12(8): 754-759.
26.
Liu, H., Ting, Lv, Chunkui, Z., Xing, S., and Zhenfeng,
Z. (2015). Efficient synthesis of MoS2 nanoparticles modified TiO2
nanobelts with enhanced visible-light-driven photocatalytic activity. Journal
of Molecular Catalysis A: Chemical 396: 136-142.
27.
Alomar,
M., Yueli, L., Wen, C., and Hussain, F. (2019). Controlling the growth of
ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal
synthesis for enhancing photocatalytic activities under visible light. Applied
Surface Science, 480: 1078-1088.
28.
Guan, Y., Wu, J., Liu, Q., Gu, M., Lin, Y., Qi, Y., ... and Li, Q. (2019).
Fabrication of BiOI/MoS2 heterojunction photocatalyst with different
treatment methods for enhancing photocatalytic performance under visible-light.
Materials Research Bulletin, 120: 110579.
29.
Luo, S., Dong, S., Lu, C., Yu, C., Ou, Y., Luo, L., ... and Sun, J. (2018). Rational
and green synthesis of novel two-dimensional WS2/MoS2 heterojunction
via direct exfoliation in ethanol-water targeting advanced
visible-light-responsive photocatalytic performance. Journal of Colloid and
Interface Science, 513: 389-399.
30.
Krishnan, U., Kaur, M., Kaur, G., Singh, K., Dogra, A.
R., Kumar, M., and Kumar, A. (2019). MoS2/ZnO nanocomposites for
efficient photocatalytic degradation of industrial pollutants. Materials
Research Bulletin, 111: 212-221.
31.
Zhao, W., Liu, Y., Wei, Z., Yang, S., He, H., and Sun,
C. (2016). Fabrication of a novel P–N heterojunction photocatalyst
n-BiVO4@p-MoS2 with core–shell structure and its excellent
visible-light photocatalytic reduction and oxidation activities. Applied
Catalysis B: Environmental, 185: 242-252.
32.
Khan, M. M., Adil, S. F., and Al-Mayouf, A. (2015).
Metal oxides as photocatalysts. Journal of Saudi Chemical Society,
19(5): 462-464.
33.
Vattikuti, S. V., Prabhakar, and Byon, C. (2017).
Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g-C3N4
photocatalyst. Materials Research Bulletin, 96: 233-245.
34. Vattikuti, S. P., Byon, C.,
Reddy, C. V., Venkatesh, B., and Shim, J. (2015). Synthesis and structural
characterization of MoS2 nanospheres and nanosheets using
solvothermal method. Journal of Materials
Science, 50(14): 5024-5038.
35.
Li, Y., Li, Y. L., Araujo, C. M., Luo, W., and Ahuja, R.
(2013). Single-layer MoS2 as an efficient photocatalyst. Catalysis
Science and Technology, 3(9): 2214-2220.
36.
Norsham, I. N. M., Sambasevam,
K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S.
N. A. (2022). Photocatalytic degradation of perfluoroctanoic
acid (PFOA) via MoS2/rGO for water
purification using indoor fluorescent irradiation. Journal of
Environmental Chemical Engineering, 10(5): 108466.
37.
Kasim, M. S., S. N. A. Baharin, F. Yunus, S.
Shahabuddin, and N. R. A. M. Noor. (2022) Molybdenum disulphide/polypyrrole hybrid composite for photocatalytic degradation
of 2-chlorophenol from aqueous solution. Akademi
Sains Malaysia 136(6) (2020): 66-72.
38.
Ren, B., Shen, W., Li, L., Wu, S., and Wang, W. (2018).
3D CoFe2O4 nanorod/flower-like MoS2 nanosheet
heterojunctions as recyclable visible light-driven photocatalysts for the
degradation of organic dyes. Applied Surface Science, 447: 711-723.
39.
Zhang, J., Huang, Y., Dan, Y., and Jiang, L. (2019). P3HT/Ag/TiO2
ternary photocatalyst with significantly enhanced activity under both visible
light and ultraviolet irradiation. Applied Surface Science, 488:
228-236.
40.
Lu, D., Wang, H., Zhao, X., Kondamareddy, K. K., Ding,
J., Li, C., and Fang, P. (2017). Highly efficient visible-light-induced
photoactivity of Z-scheme g-C3N4/Ag/MoS2
ternary photocatalysts for organic pollutant degradation and production of
hydrogen. ACS Sustainable Chemistry and Engineering, 5(2): 1436-1445.
41.
Zhang, Y., He, S., He, Z., Zhang, Y., Feng, Y., Wang,
Y., and Zhang, M. (2022). Preparation of MoS2 and MoO3
modified TiO2 composites with enhanced visible-light photocatalytic
activity for dye degradation. International Journal of Electrochemical
Science, 17(2): 220210.
42.
Pant, B., Park, M., & Park, S. J. (2019). MoS2/CdS/TiO2
ternary composite incorporated into carbon nanofibers for the removal of
organic pollutants from water. Inorganic Chemistry Communications, 102:
113-119.
43.
Huang, S., Chen, C., Tsai, H., Shaya, J., and Lu, C.
(2018). Photocatalytic degradation of thiobencarb by a visible light-driven MoS2
photocatalyst. Separation and Purification Technology, 197: 147-155.
44.
Zou, L., Qu, R., Gao, H., Guan, X., Qi, X., Liu, C., ...
and
Lei, X. (2019). MoS2/RGO hybrids prepared by a hydrothermal route as
a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results
in Physics, 14, 102458.
45.
Li, Y., Lai, Z., Huang, Z., Wang, H., Zhao, C., Ruan,
G., and Du, F. (2021). Fabrication of BiOBr/MoS2/graphene oxide
composites for efficient adsorption and photocatalytic removal of tetracycline
antibiotics. Applied Surface Science, 550: 149342.
46.
Karpuraranjith, M., Chen, Y., Rajaboopathi, S.,
Ramadoss, M., Srinivas, K., Yang, D., and Wang, B. (2022). Three-dimensional
porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for
highly efficient photocatalytic degradation of organic pollutant. Journal of
Colloid and Interface Science, 605: 613-623.
47.
Baharin, S. N. A., Rusmin, R., and Sambasevam, K. P.
(2022). Basic concept and application of conducting polymers for environmental
protection. Chemistry Teacher International, 4(2): 173-183.
48. Zhu, X. (2015). Exfoliation
of two-dimensional materials. Doctoral dissertation, University of Akron: pp.
16-17.