Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 802 - 815

 

REVIEW OF MOLYBDENUM DISULFIDE PREPARATION AND ITS ROLE AS A PHOTOCATALYST TO DEGRADE ORGANIC CONTAMINANTS

 

(Ulasan Penyediaan Molibdenum Disulfida dan Peranannya Sebagai Pemangkin Fotodegradasi Pencemaran Organik)

 

Izyan Najwa Mohd Norsham 1, Nur Zatulhusna Zulkifli1, Kavirajaa Pandian Sambasevam1,2

Siti Nor Atika Baharin1,3*

 

1Advanced Material for Environmental Remediation (AMER) Research Group, Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia.

2Electrochemical Material and Sensor (EMas) Group, Universiti Teknologi MARA, 40450 Shah Alam Selangor, Malaysia

3Advanced Biomaterials & Carbon Development (ABCD), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: atikabaharin@uitm.edu.my

 

 

Received: 22 September 2022; Accepted: 23 July 2023; Published:  22 August 2023

 

 

Abstract

Photocatalytic degradation appeared as a future alternative for the removal of many organic contaminants with high efficiency and energy-saving technology. As a photocatalyst, molybdenum disulphide (MoS2) exhibits good photocatalytic properties due to great potential for organic contaminant degradation. It is ascribed that various approaches for MoS2 preparation serve a diverse number of exposed active sites that facilitate MoS2 efficiency for photocatalytic reaction. Several methods have been extensively applied to improve MoS2 photocatalytic efficiency, including synthesized different surface morphology and heterojunction formation with other semiconductors. Therefore, it will increase the photocatalytic activities of the composites by combining MoS2 with other semiconductor photocatalyst materials. Integration of MoS2 as a binary or ternary photocatalyst will produce a synergic effect that hinders the recombination process and enhancement of the surface areas. On the other hand, it improved on conductivity of the nanosheets, whereby it is believed to be able to deal with photocatalytic material challenges and provide efficient solutions to deal with degradation of organic contaminants.

 

Keywords: conducting polymer, metal disulphide, organic pollutants, photocatalytic degradation, sustainable water management

 

Abstrak

Degradasi fotokatalitik muncul sebagai alternatif masa depan untuk penyingkiran banyak bahan cemar organik dengan kecekapan tinggi dan teknologi penjimatan tenaga. Molibdenum disulfida (MoS2) sebagai fotomangkin mempamerkan sifat fotokatalitik yang baik kerana potensi besar untuk degradasi bahan cemar organik. Disifatkan bahawa pelbagai pendekatan penyediaan MoS2 menyediakan bilangan tapak aktif terdedah yang berbeza yang memudahkan kecekapan MoS2 untuk tindak balas fotokatalitik. Beberapa kaedah telah digunakan secara meluas untuk meningkatkan kecekapan fotokatalitik MoS2, termasuk morfologi permukaan yang berbeza yang disintesis dan pembentukan heterojunction dengan semikonduktor lain. Oleh itu, dengan menggabungkan MoS2 dengan bahan semikonduktor fotomangkin lain, ia akan meningkatkan aktiviti fotomangkin komposit. Penyepaduan MoS2 sebagai fotomangkin binari atau ternari akan menghasilkan kesan sinergik yang menghalang proses penggabungan semula dan peningkatan kawasan permukaan. Sebaliknya, ia bertambah baik dalam kekonduksian helaian nano di mana ia dipercayai mampu menangani cabaran bahan fotokatalitik dan menyediakan penyelesaian yang cekap untuk menangani degradasi bahan cemar organik

 

Kata kunci: pengalir polimer, logam disulfida, bahan pencemar organik, degradasi fotokatalitik, pengurusan air yang mampan


 

References

1.       Wu, M. Hong, Li, L., Liu, N., Wang, D. Jin, Xue, Y. Cheng, and Tang, L. (2018). Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Process Safety and Environmental Protection, 118: 40-58.

2.       Wang, Z. M. (Ed.). (2013). MoS2: Materials, physics, and devices (Vol. 21).  Springer Science and Business Media.

3.       Vattikuti, S. V. P., and Byon, C. (2017). Molybdenum disulfide-based photocatalysis: bulk-to-single layer structure and related photomechansim for environmental applications. Nanoscaled Films and Layers, 2: 239.

4.       Saha, S., Chaudhary, N., Mittal, H., Gupta, G., and Khanuja, M. (2019). Inorganic–organic nanohybrid of MoS2-PANI for advanced photocatalytic application. International Nano Letters, 9(2):127-139.

5.       Feng, H., Zhou, W., Zhang, X., Zhang, S., Liu, B., and Zhen, D. (2019). Synthesis of Z-scheme Mn-CdS/MoS2/TiO2 ternary photocatalysts for high-efficiency sunlight-driven photocatalysis. Advanced Composites Letters, 28: 1-10.

6.       Rauf, M. A., and Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1-3): 10-18.

7.       Rajamanickam, D., Dhatshanamurthi, P., and Shanthi, M. (2015). Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 138: 489-498.

8.       Li, T., Hu, X., Liu, C., Tang, C., Wang, X., and Luo, S. (2016). Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 425:124-135.

9.       Aliaga, J., Cifuentes, N., González, G., Sotomayor-Torres, C., and Benavente, E. (2018). Enhancement of photocatalytic activity of the heterojunction of two-dimensional hybrid semiconductors ZnO/V2O5. Catalysts, 8(9):374-377.

10.    Mirza Hedayat, B., Noorisepehr, M., Dehghanifard, E., Esrafili, A., and Norozi, R. (2018). Evaluation of photocatalytic degradation of 2, 4-dinitrophenol from synthetic wastewater using Fe3O4, SiO2, TiO2/rGO magnetic nanoparticles. Journal of Molecular Liquids, 264: 571-578.

11.    Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., and Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: comparative overview. RSC Advances, 4(70): 37003-37026.

12.    Chang, L., Yang, H., Fu, W., Zhang, J., Yu, Q., Zhu, H., and Zou, G. (2008). Simple synthesis of MoS2 inorganic fullerene-like nanomaterials from MoS2 amorphous nanoparticles. Materials Research Bulletin, 43(8-9): 2427-2433.

13.    Hou, S. X., Wu, C., and Huo, Y. J. (2017). Controllable preparation of nano molybdenum disulfide by hydrothermal method. Ceramics-Silikaty, 61:158-162.

14.    Kaur, K., Badru, R., Singh, P. P., and Kaushal, S. (2020). Photodegradation of organic pollutants using heterojunctions: A review. Journal of Environmental Chemical Engineering, 8(2):103666.

15.    Zhang, X., Ma, G., and Wang, J. (2019). Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten, 1(1):59-79.

16.    Li, Y., Xiang, F., Lou, W., and Zhang, X. (2019). MoS2 with structure tuned photocatalytic ability for degradation of methylene blue. In IOP Conference Series: Earth and Environmental Science, 300(5): 0502021.

17.    Sun, Y., Wang, S., and Wang, Q. (2009). Flowerlike MoS2 nanoparticles: solvothermal synthesis and characterization. Frontiers of Chemistry in China, 4(2):173-176.

18.    Gupta, A., Arunachalam, V., and Vasudevan, S. (2016). Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water. Journal Physic Chemistry Letters, 7: 4884-4890.

19.    Bai, S., Wang, L., Chen, X., Du, J., and Xiong, Y. (2014). Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Research, 8:175-183

20.    Chang, K., Hai, X., Pang, H., Zhang, H., Shi, L., Liu, G., Liu, H., Zhao, G., Li, M., and Ye, J., (2016). Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Advance Materials, 28:10033-10041.

21.    Quinn, M. D. J., Ho, N. H., and Notley, S. M. (2013). Aqueous dispersions of exfoliated molybdenum disulfide for use in visible-light photocatalysis. ACS Applied Materials and Interfaces, 5(23):12751-12756.

22.    Khan, R., Riaz, A., Javed, S., Jan, R., Akram, M. A., and Mujahid, M. (2018). Synthesis and characterization of MoS2/TiO2 nanocomposites for enhanced photocatalytic degradation of methylene blue under sunlight irradiation. In Key Engineering Materials, 778: 137-143.

23.    Yue, J., Jian, J., Dong, P., Luo, L., and Chang, F. (2019). Growth of single-layer MoS2 by chemical vapor deposition on sapphire substrate. In IOP Conference Series: Materials Science and Engineering 592(1): 012044.

24.    Kwack, Y. J., and Choi, W. S. (2019). Chemical vapor deposition-free solution-processed synthesis method for two-dimensional MoS2 atomic layer films. Nanotechnology, 30(38): 385201.

25.    Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., and Lou, J. (2013). Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 12(8): 754-759.

26.    Liu, H., Ting, Lv, Chunkui, Z., Xing, S., and Zhenfeng, Z. (2015). Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. Journal of Molecular Catalysis A: Chemical 396: 136-142.

27.    Alomar, M., Yueli, L., Wen, C., and Hussain, F. (2019). Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light. Applied Surface Science, 480: 1078-1088.

28.    Guan, Y., Wu, J., Liu, Q., Gu, M., Lin, Y., Qi, Y., ... and Li, Q. (2019). Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light. Materials Research Bulletin, 120: 110579.

29.    Luo, S., Dong, S., Lu, C., Yu, C., Ou, Y., Luo, L., ... and Sun, J. (2018). Rational and green synthesis of novel two-dimensional WS2/MoS2 heterojunction via direct exfoliation in ethanol-water targeting advanced visible-light-responsive photocatalytic performance. Journal of Colloid and Interface Science, 513: 389-399.

30.    Krishnan, U., Kaur, M., Kaur, G., Singh, K., Dogra, A. R., Kumar, M., and Kumar, A. (2019). MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants. Materials Research Bulletin, 111: 212-221.

31.    Zhao, W., Liu, Y., Wei, Z., Yang, S., He, H., and Sun, C. (2016). Fabrication of a novel P–N heterojunction photocatalyst n-BiVO4@p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental, 185: 242-252.

32.    Khan, M. M., Adil, S. F., and Al-Mayouf, A. (2015). Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 19(5): 462-464.

33.    Vattikuti, S. V., Prabhakar, and Byon, C. (2017). Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g-C3N4 photocatalyst. Materials Research Bulletin, 96: 233-245.

34.    Vattikuti, S. P., Byon, C., Reddy, C. V., Venkatesh, B., and Shim, J. (2015). Synthesis and structural characterization of MoS2 nanospheres and nanosheets using solvothermal method. Journal of Materials Science, 50(14): 5024-5038.

35.    Li, Y., Li, Y. L., Araujo, C. M., Luo, W., and Ahuja, R. (2013). Single-layer MoS2 as an efficient photocatalyst. Catalysis Science and Technology, 3(9): 2214-2220.

36.    Norsham, I. N. M., Sambasevam, K. P., Shahabuddin, S., Jawad, A. H., and Baharin, S. N. A. (2022). Photocatalytic degradation of perfluoroctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent irradiation. Journal of Environmental Chemical Engineering, 10(5): 108466.

37.    Kasim, M. S., S. N. A. Baharin, F. Yunus, S. Shahabuddin, and N. R. A. M. Noor. (2022) Molybdenum disulphide/polypyrrole hybrid composite for photocatalytic degradation of 2-chlorophenol from aqueous solution. Akademi Sains Malaysia 136(6) (2020): 66-72.

38.    Ren, B., Shen, W., Li, L., Wu, S., and Wang, W. (2018). 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Applied Surface Science, 447: 711-723.

39.    Zhang, J., Huang, Y., Dan, Y., and Jiang, L. (2019). P3HT/Ag/TiO2 ternary photocatalyst with significantly enhanced activity under both visible light and ultraviolet irradiation. Applied Surface Science, 488: 228-236.

40.    Lu, D., Wang, H., Zhao, X., Kondamareddy, K. K., Ding, J., Li, C., and Fang, P. (2017). Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustainable Chemistry and Engineering, 5(2): 1436-1445.

41.    Zhang, Y., He, S., He, Z., Zhang, Y., Feng, Y., Wang, Y., and Zhang, M. (2022). Preparation of MoS2 and MoO3 modified TiO2 composites with enhanced visible-light photocatalytic activity for dye degradation. International Journal of Electrochemical Science, 17(2): 220210.

42.    Pant, B., Park, M., & Park, S. J. (2019). MoS2/CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water. Inorganic Chemistry Communications, 102: 113-119.

43.    Huang, S., Chen, C., Tsai, H., Shaya, J., and Lu, C. (2018). Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Separation and Purification Technology, 197: 147-155.

44.    Zou, L., Qu, R., Gao, H., Guan, X., Qi, X., Liu, C., ... and Lei, X. (2019). MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results in Physics, 14, 102458.

45.    Li, Y., Lai, Z., Huang, Z., Wang, H., Zhao, C., Ruan, G., and Du, F. (2021). Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics. Applied Surface Science, 550: 149342.

46.    Karpuraranjith, M., Chen, Y., Rajaboopathi, S., Ramadoss, M., Srinivas, K., Yang, D., and Wang, B. (2022). Three-dimensional porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. Journal of Colloid and Interface Science, 605: 613-623.

47.    Baharin, S. N. A., Rusmin, R., and Sambasevam, K. P. (2022). Basic concept and application of conducting polymers for environmental protection. Chemistry Teacher International, 4(2): 173-183.

48.     Zhu, X. (2015). Exfoliation of two-dimensional materials. Doctoral dissertation, University of Akron: pp. 16-17.