Malaysian Journal of Analytical Sciences, Vol 27 No 4 (2023): 675 - 692

 

RECENT APPLICATIONS OF CYCLODEXTRIN-BASED ADSORBENTS IN SOLID AND LIQUID PHASE EXTRACTION FOR THE DETERMINATION OF ANTIBIOTICS: A MINI REVIEW

 

(Aplikasi Baharu bagi Penjerap Berasaskan Siklodekstrin dalam Pengekstrakan Fasa Pepejal dan Cecair bagi Penentuan Antibiotik: Suatu Tinjauan Mini)

 

Muhammad Ariffuddin Abd Hamid1, Aduloju Emmanuel Ibukun1,2, Ilya Natasya Muaallimin1,3, Ahmad Husaini Mohamed4, Nadhiratul-Farihin Semail5, Dyia Syaleyana Md Shukri5, Nur Nadhirah Mohamad Zain1, Sazlinda Kamaruzaman6, Noorfatimah Yahaya1*

 

1Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia

2Department of Chemistry and Biochemistry, The Federal Polytechnic Offa. P.M.B. 420, Offa Kwara State, Nigeria

3Department of Chemical Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

4Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

5Faculty Applied Sciences, Universiti Teknologi MARA Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis.

6Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: noorfatimah@usm.my

 

 

Received: 2 April 2023; Accepted: 17 June 2023; Published:  22 August 2023

 

 

Abstract

Antibiotic residues are being continuously detected in the environmental and food matrices. Though the level of antibiotic residues is typically in minute concentration, adverse effects of these antibiotics on the environment and human health have been observed. Hence, there is a demand for simple, rapid, accurate, reliable, inexpensive, and selective sample preparation with high sensitivity and throughput analysis for antibiotic compounds. Conventional extraction techniques such as liquid-liquid extraction (LLE) and solid phase extraction (SPE) are commonly used for sample preparation. However, most of the LLE and SPE techniques suffer from several major drawbacks such as consuming a large amount of toxic organic solvents, being relatively expensive, involving multi-step, time-consuming, and tedious operation. Thus, to overcome these shortcomings, a number of new-generation materials have been developed for the purification and separation of analytes. Over the past few decades, cyclodextrin-based adsorbents have drawn worldwide attention as new-generation adsorbents for sample preparation and extraction due to their extraordinary physicochemical properties. Cyclodextrin is a family of cyclic oligosaccharides built by the hydrophilic outer wall and hydrophobic cavity. These unique properties are modified with chemical functionalization to enhance their extraction capability. This review outlined the recent application of the cyclodextrin-based adsorbent in the sample preparation techniques of a variety of matrices. These methods represent fast, modern, sensitive, and efficient approaches to detecting antibiotic compounds. In this review, several new sample preparation techniques incorporated with cyclodextrin-based adsorbent developed from 2015 – 2022 is discussed in terms of their analytical performance which includes their sensitivity and efficiency toward the extraction, preconcentration, and isolation of antibiotic compounds from various type of matrices.

 

Keywords: cyclodextrin adsorbent, sample preparation, antibiotics, microextraction

 

Abstrak

Sisa antibiotik telah dikenal pasti di matriks sekitaran dan makanan. Walaupun paras sisa antibiotik ini kebiasaannya dalam kepekatan yang sangat kecil, kesan buruk daripada antibiotik ini terhadap sekitaran dan kesihatan manusia telah dicerap. Justeru, terdapat permintaan terhadap penyediaan sampel yang ringkas, cepat, tepat, boleh diguna pakai, tidak mahal, dan selektif dengan kepekaan dan hasil yang tinggi bagi sebatian antibiotik. Setelah beberapa dekad, penjerap berasaskan siklodekstrin telah mendapat perhatian global sebagai penjerap generasi baharu bagi penyediaan sampel dan pengekstrakan disebabkan sifat fizikokimianya yang luar biasa. Tinjauan ini menggaris kasar aplikasi baharu bagi penjerap berasaskan siklodekstrin dalam teknik penyediaan sampel di dalam pelbagai jenis matriks. Teknik pengekstrakan konvensional seperti pengekstrakan larutan (LLE) dan pengekstrakan fasa pepejal (SPE) selalunya digunakan untuk penyediaan sampel. Walaubagaimanapun, kebanyakan teknik LLE dan SPE ini mempunyai beberapa kelemahan seperti menggunakan jumlah pelarut organik toksik yang banyak, agak mahal, melibatkan banyak kaedah dan mengambil masa yang panjang dan berlarutan. Justeru, bagi mengatasi kelemahan ini, beberapa jenis bahan generasi baharu telah dibangunkan bagi penulenan dan pemisahan analit. Setelah beberapa dekad yang yang lalu, bahan penjerap berasaskan siklodekstrin telah mencetuskan perhatian sebagai penjerap generasi baharu bagi penyediaan sampel dan pengekstrakan oleh kerana sifat-sifat fizikokimia yang luar biasa. Siklodekstrin adalah kumpulan bagi oligosakarida siklik terhasil dengan dinding luar yang hidrofilik dan kaviti yang hidrofobik. Sifat-sifat unik ini telah diubahsui dengan berfungsikan kimia bagi meningkatkan keupayaan pengekstrakan. Tinjauan ini menggaris kasar aplikasi baharu bagi penjerap berasaskan siklodekstrin dalam teknik penyediaan sampel di dalam pelbagai jenis matriks. Teknik-teknik ini menggunakan pendekatan yang cepat, moden, sensitif, dan efisien untuk mengesan sebatian antibiotik. Di dalam tinjauan ini, beberapa teknik penyediaan sampel baharu yang digabungkan bersama penjerap berasaskan siklodekstrin yang dibangunkan dari 2015 – 2022 dibincangkan dari segi prestasi analitikal termasuk kepekaan dan kecekapan terhadap pengekstrakan, prakepekatan, dan pengasingan bagi sebatian antibiotik daripada pelbagai jenis matriks.

 

Kata kunci: penjerap siklodekstrin, penyediaan sampel, antibiotik, pengekstrakan mikro

 


References

1.     Davies, J. (1996). Origins and evolution of antibiotic resistance. Microbiología (Madrid, Spain), 12: 9-16.

2.     Karageorgou, E., Christoforidou, S., Ioannidou, M., Psomas, E., and Samouris, G. (2018). Detection of β-lactams and chloramphenicol residues in raw milk - Development and application of an HPLC-DAD method in comparison with microbial inhibition assays. Foods 7: 1-12.

3.     Ramatla, T., Ngoma, L., Adetunji, M., and Mwanza, M. (2017). Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics, 6: 1-17.

4.     Karageorgou, E. G., Samanidou, V. F., and Papadoyannis, I. N. (2012). Ultrasound-assisted matrix solid phase dispersive extraction for the simultaneous analysis of β-lactams (four penicillins and eight cephalosporins) in milk by high performance liquid chromatography with photodiode array detection. Journal of Separation Science 35: 2599-2607.

5.     Rodríguez, M. P., Pezza, H. R., and Pezza, L. (2016). Simple and clean determination of tetracyclines by flow injection analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 153: 386-392.

6.     Kasimanickam, V., Kasimanickam, M., and Kasimanickam, R. (2021). Antibiotics use in food animal production: Escalation of antimicrobial resistance: Where are we now in combating AMR? Medical sciences (Basel, Switzerland) 9: 14.

7.     FAO, OMS, and CODEX (2015). Maximun residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods CAC/MRL 2-2015. 22.

8.     Abraham, E. P. (1963). The antibiotics. Comprehensive Biochemistry, 11: 181-224.

9.     Kabir, A., Locatelli, M., and Ulusoy, H. I. (2017). Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations, 4: 1-15.

10.  European Commission (2017). A european one health action plan against antimicrobial resistance (AMR). Brussels, 24: 1-20.

11.  World Health Organisation (2016). Joint FAO/WHO food standards programme codex committee on residue of veterinary drugs in foods. Food and Agriculture Organization of the United Nations, 1–10.

12.  Smith, R. (2015). Commission Regulation (EU) No 330/2010. Core EU Legislation, 157-163.

13.  Laura, M., Silva, D., Li, C., Bertazzi, R., Li, L., Moreira, R., and Li, C. (2015). Ultra-processed foods and the nutritional dietary profile in Brazil Alimentos ultraprocessados eperfil nutricional da dieta no Brasil. Ultra-Processed Foods and Dietary Quality, 49: 1-10.

14.  Rabello, R. F., Bonelli, R. R., Penna, B. A., Albuquerque, J. P., Souza, R. M., & Cerqueira, A. M. F. (2020). Antimicrobial resistance in farm animals in Brazil: an update overview. Animals, 10(4): 552.

15.  Lara, F. J., Olmo-iruela, M., Cruces-blanco, C., Quesada-molina, C., and Garcı, A. M. (2012). Advances in the determination of β -lactam antibiotics by liquid chromatography. Trends in Analytical Chemistr, 38: 52-66.

16.  Ghasemi, R., Mirzaei, H., Afshar Mogaddam, M. R., Khandaghi, J., and Javadi, A. (2022). Application of magnetic ionic liquid-based air–assisted liquid–liquid microextraction followed by back-extraction optimized with centroid composite design for the extraction of antibiotics from milk samples prior to their determination by HPLC–DAD. Microchemical Journal, 181: 107764.

17.  Wang, B., Wang, Y., Xie, X., Diao, Z., Xie, K., Zhang, G., Zhang, T., and Dai, G. (2020). Quantitative analysis of spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction coupled with gas chromatography tandem mass spectrometry. Foods, 9: 1-18.

18.  Chen, M., Yi, Q., Hong, J., Zhang, L., Lin, K., and Yuan, D. (2015). Simultaneous determination of 32 antibiotics and 12 pesticides in sediment using ultrasonic-assisted extraction and high performance liquid chromatography-tandem mass spectrometry. Analytical Methods, 7: 1896-1905.

19.  Badawy, M. E. I., El, M. A. M., Kimani, P. K., Lim, L. W., and Rabea, E. I. (2022). A review of the modern principles and applications of solid ‑ phase extraction techniques in chromatographic analysis (Springer Nature Singapore).

20.  Siu, K.S., Chen, D., Zheng, X., Zhang, X., Johnston, N., Liu, Y., Yuan, K., Koropatnick, J., Gillies, E.R., and Min, W.P. (2014). Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 35: 3435-3442.

21.  Tian, J., Xu, J., Zhu, F., Lu, T., Su, C., and Ouyang, G. (2013). Application of nanomaterials in sample preparation. Journal of Chromatography A, 1300: 2-16.

22.  Basheer, A. A. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids, 261: 583–593.

23.  Morin-Crini, N., Winterton, P., Fourmentin, S., Wilson, L. D., Fenyvesi, É., and Crini, G. (2018). Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Progress in Polymer Science, 78: 1-23.

24.  Wu, Z., Chen, C., Wang, L., Wan, H., and Guan, G. (2016). Magnetic material grafted poly(phosphotungstate-based acidic ionic liquid) as efficient and recyclable catalyst for esterification of oleic acid. Industrial and Engineering Chemistry Research, 55: 1833-1842.

25.  Yakout, A.A., Alshitari, W., and Akhdhar, A. (2021). Synergistic effect of Cu-nanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics. Carbohydrate Polymers, 273:118528.

26.  Zhao, Y., Si, H., Zhao, X., Li, H., Ren, J., Li, S., Wang, Q., and Zhang, J. (2021). Fabrication of an allyl-β-cyclodextrin based monolithic column with triallyl isocyanurate as co-crosslinker and its application in separation of lipopeptide antibiotics by HPLC. Microchemical Journal, 168: 106462.

27.  Velusamy, V., Palanisamy, S., Kokulnathan, T., Chen, S. W., Yang, T. C. K., Banks, C. E., and Pramanik, S. K. (2018). Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. Journal of Colloid and Interface Science, 530: 37-45.

28.  Zhang, Y., Cai, X., Xiong, W., Jiang, H., Zhao, H., Yang, X., Li, C., Fu, Z., and Chen, J. (2014). Molecular insights into the pH-dependent adsorption and removal of ionizable antibiotic oxytetracycline by adsorbent cyclodextrin polymers. PLoS ONE, 9(1), e86228.

29.  Zhang, Y., Jiang, F., Huang, D., Hou, S., Wang, H., Wang, M., Chi, Y., and Zhao, Z. (2018). A facile route to magnetic mesoporous core-shell structured silicas containing covalently bound cyclodextrins for the removal of the antibiotic doxycycline from water. RSC Advances, 8: 31348–31357.

30.  Foroutan, R., Jamaleddin, S., Latifi, P., and Ahmadi, A. (2021). Carbon nanotubes/β-cyclodextrin/          MnFe2O4 as a magnetic nanocomposite powder for tetracycline antibiotic decontamination from different aqueous environments. Journal of Environmental Chemical Engineering, 9: 106344.

31.  Sereshti, H., Karami, F., and Nouri, N. (2021). A green dispersive liquid-liquid microextraction based on deep eutectic solvents doped with β-cyclodextrin: Application for determination of tetracyclines in water samples. Microchemical Journal, 163: 105914.

32.  Juengchareonpoon, K., Boonamnuayvitaya, V., and Wanichpongpan, P. (2019). Kinetics and isotherms of oxytetracycline adsorption on β-cyclodextrin/carboxymethylcellulose hydrogel films. Aquaculture Research, 50: 3412-3419.

33.  Li, Q., Wang, D., Fang, X., Zong, B., Liu, Y., Li, Z., Mao, S., and Ostrikov, K. K. (2021). Rapid synthesis of multifunctional β-cyclodextrin nanospheres as alkali-responsive nanocarriers and selective antibiotic adsorbents. Chemical Communications, 57: 1161-1164.

34.  Belenguer-Sapiña, C., Pellicer-Castell, E., El Haskouri, J., Simó-Alfonso, E.F., Amorós, P., and Mauri-Aucejo, A. R. (2022). A type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. Journal of Food Composition and Analysis, 109: 104463.

35.  Ruiz-Palomero, C., Soriano, M. L., and Valcárcel, M. (2015). β-Cyclodextrin decorated nanocellulose: A smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst, 140: 3431–3438.

36.    Cui, X., Zhang, P., Yang, X., Yang, M., Zhou, W., Zhang, S., Gao, H., and Lu, R. (2015). β-CD/ATP composite materials for use in dispersive solid-phase extraction to measure (fluoro)quinolone antibiotics in honey samples. Analytica Chimica Acta, 878: 131–139.

37.    Li, Y., Zhu, N., Chen, T., Ma, Y., and Li, Q. (2018). A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination. Microchemical Journal, 138: 401-407.

38.    Liu, Q., Zhou, Y., Lu, J., and Zhou, Y. (2020). Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere, 241: 125043.

39.    Roy, A., Manna, K., Dey, S., and Pal, S. (2023). Chemical modification of β-cyclodextrin towards hydrogel formation. Carbohydrate Polymers, 306: 120576.

40.    Szejtli, J. (2004). Past, present, and future of cyclodextrin research. Pure and Applied Chemistry, 76: 1825-1845.

41.    Li, N., Mei, Z., and Ding, S. (2010). 2,4-Dichlorophenol sorption on cyclodextrin polymers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 68: 123-129.

42.    Guo, Y., Guo, S., Ren, J., Zhai, Y., Dong, S., and Wang, E. (2010). Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4, 5512.

43.    Kashapov, R. R., Mamedov, V. A., Zhukova, N. A., Kadirov, M. K., Nizameev, I. R., Zakharova, L. Y., and Sinyashin, O.G. (2017). Controlling the binding of hydrophobic drugs with supramolecular assemblies of β-cyclodextrin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527: 55-62.

44.    Peng, L.Q., Ye, L.H., Cao, J., Chang, Y. Xu, Li, Q., An, M., Tan, Z., and Xu, J. J. (2017). Cyclodextrin-based miniaturized solid phase extraction for biopesticides analysis in water and vegetable juices samples analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Food Chemistry, 226: 141-148.

45.    Peng, L. Q., Dong, X., Zhen, X. T., Yang, J., Chen, Y., Wang, S. L., Xie, T., and Cao, J. (2020). Simultaneous separation and concentration of neutral analytes by cyclodextrin assisted sweeping-micellar electrokinetic chromatography. Analytica Chimica Acta, 1105: 224-230.

46.    Belenguer-Sapiña, C., Pellicer-Castell, E., Pottanam Chali, S., Ravoo, B. J., Amorós, P., Simó-Alfonso, E. F., and Mauri-Aucejo, A. R. (2021). Host-guest interactions for extracting antibiotics with a γ-cyclodextrin poly(glycidyl-co-ethylene dimethacrylate) hybrid sorbent. Talanta, 232: 122478.

47.    Liu, Y., Liu, Y., Liu, Z., Du, F., Qin, G., Li, G., Hu, X., Xu, Z., and Cai, Z. (2019). Supramolecularly imprinted polymeric solid phase microextraction coatings for synergetic recognition nitrophenols and bisphenol A. Journal of Hazardous Materials, 368: 358-364.

48.    Yang, Y., Li, G., Wu, D., Wen, A., Wu, Y., and Zhou, X. (2020). β-cyclodextrin-/AuNPs-functionalized covalent organic framework-based magnetic sorbent for solid phase extraction and determination of sulfonamides. Microchimica Acta, 187: 1-10.

49.    Al-Afy, N., Sereshti, H., Hijazi, A., and Rashidi Nodeh, H. (2018). Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1092: 480-488.

50.    Mashile, G. P., Mpupa, A., and Nomngongo, P. N. (2021). Magnetic Mesoporous carbon / β -cyclodextrin – chitosan nanocomposite for extraction and preconcentration of multi-class emerging contaminant residues in environmental samples. Nanomaterials, 11: 1-15.

51.    Li, F., Wang, M., Zhou, J., Yang, M., and Wang, T. (2021). Cyclodextrin-derivatized hybrid nanocomposites as novel magnetic solid-phase extraction adsorbent for preconcentration of trace fluoroquinolones from water samples coupled with HPLC-MS/MS determination. Microchemical Journal, 164: 105955.

52.    Zhang, J., Liu, D., Shi, Y., Sun, C., Niu, M., Wang, R., and Hu, F. (2017). Determination of quinolones in wastewater by porous β -cyclodextrin polymer based solid-phase extraction coupled with HPLC. Journal of Chromatography B, 1068-1069: 24-32.

53.    Buszewski, B., and Szultka, M. (2012). Past, present, and future of solid phase extraction: A review. Critical Reviews in Analytical Chemistry, 42: 198-213.

54.    Hou, X. L., Wu, Y. L., Yang, T., and Du, X. D. (2013). Multi-walled carbon nanotubes-dispersive solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the analysis of 18 sulfonamides in pork. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 929: 107-115.

55.    Xu, Y., Ding, J., Chen, H., Zhao, Q., Hou, J., Yan, J., Wang, H., Ding, L., and Ren, N. (2013). Fast determination of sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chemistry, 140: 83-90.

56.    Luo, Y. B., Shi, Z. G., Gao, Q., and Feng, Y. Q. (2011). Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples. Journal of Chromatography A, 1218: 1353-1358.

57.    Gao, Q., Luo, D., Ding, J., and Feng, Y.-Q. (2010). Rapid magnetic solid-phase extraction based on magnetite/silica/poly(methacrylic acid–co–ethylene glycol dimethacrylate) composite microspheres for the determination of sulfonamide in milk samples. Journal of Chromatography A, 1217: 5602-5609.

58.    Lee, H-B., Peart, T. E., and Svoboda, M. L. (2007). Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1139: 45-52.

59.  Barahona, F., Albero, B., Tadeo, J. L., and Martín-Esteban, A. (2019). Molecularly imprinted polymer-hollow fiber microextraction of hydrophilic fluoroquinolone antibiotics in environmental waters and urine samples. Journal of Chromatography A, 1587: 42-49.

60.  Zhang, M., Chen, J., Zhao, F., and Zeng, B. (2020). Determination of fluoroquinolones in foods using ionic liquid modified Fe3O4/MWCNTs as the adsorbent for magnetic solid phase extraction coupled with HPLC. Analytical Methods, 12: 4457-4465.

61.  Belenguer-Sapiña, C., Pellicer-Castell, E., Vila, C., Simó-Alfonso, E. F., Amorós, P., and Mauri-Aucejo, A. R. (2019). A poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with β-cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds. Microchimica Acta, 186: 1-11.

62.  Mohamed, A. H., Noorhisham, N. A., Bakar, K., Yahaya, N., Mohamad, S., Kamaruzaman, S., and Osman, H. (2022). Synthesis of imidazolium-based poly(ionic liquids) with diverse substituents and their applications in dispersive solid-phase extraction. Microchemical Journal, 178: 107363.

63.  Faraji, M., and Yamini, Y. (2021). Application of magnetic nanomaterials in food analysis. Magnetic Nanomaterials in Analytical Chemistry, 2021: 87-120.