Malaysian Journal of Analytical
Sciences, Vol 27
No 4 (2023): 675 - 692
RECENT APPLICATIONS OF CYCLODEXTRIN-BASED
ADSORBENTS IN SOLID AND LIQUID PHASE EXTRACTION FOR THE DETERMINATION OF
ANTIBIOTICS: A MINI REVIEW
(Aplikasi
Baharu bagi Penjerap Berasaskan Siklodekstrin
dalam Pengekstrakan Fasa Pepejal dan Cecair bagi Penentuan Antibiotik: Suatu
Tinjauan Mini)
Muhammad Ariffuddin Abd Hamid1, Aduloju
Emmanuel Ibukun1,2, Ilya Natasya Muaallimin1,3, Ahmad
Husaini Mohamed4, Nadhiratul-Farihin Semail5, Dyia
Syaleyana Md Shukri5, Nur Nadhirah Mohamad Zain1,
Sazlinda Kamaruzaman6, Noorfatimah Yahaya1*
1Department of Toxicology, Advanced
Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200
Kepala Batas, Penang, Malaysia
2Department of Chemistry and
Biochemistry, The Federal Polytechnic Offa. P.M.B. 420, Offa Kwara State,
Nigeria
3Department of Chemical Science,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
4Universiti Teknologi MARA (UiTM)
Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah,
Negeri Sembilan, Malaysia
5Faculty Applied Sciences, Universiti
Teknologi MARA Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis.
6Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
*Corresponding author: noorfatimah@usm.my
Received:
2 April 2023; Accepted: 17 June 2023; Published: 22 August 2023
Abstract
Antibiotic residues are being
continuously detected in the environmental and food matrices. Though the level
of antibiotic residues is typically in minute concentration, adverse effects of
these antibiotics on the environment and human health have been observed.
Hence, there is a demand for simple, rapid, accurate, reliable, inexpensive,
and selective sample preparation with high sensitivity and throughput analysis
for antibiotic compounds. Conventional extraction techniques such as
liquid-liquid extraction (LLE) and solid phase extraction (SPE) are commonly
used for sample preparation. However, most of the LLE and SPE techniques suffer
from several major drawbacks such as consuming a large amount of toxic organic
solvents, being relatively expensive, involving multi-step, time-consuming, and
tedious operation. Thus, to overcome these shortcomings, a number of
new-generation materials have been developed for the purification and
separation of analytes. Over the past few decades, cyclodextrin-based adsorbents
have drawn worldwide attention as new-generation adsorbents for sample
preparation and extraction due to their extraordinary physicochemical
properties. Cyclodextrin is a family of cyclic oligosaccharides built by
the hydrophilic outer wall and hydrophobic cavity. These unique properties are
modified with chemical functionalization to enhance their extraction
capability. This review outlined the recent application of the
cyclodextrin-based adsorbent in the sample preparation techniques of a variety
of matrices. These methods represent fast, modern, sensitive, and efficient
approaches to detecting antibiotic compounds. In this review, several new
sample preparation techniques incorporated with cyclodextrin-based adsorbent
developed from 2015 – 2022 is discussed in terms of their analytical
performance which includes their sensitivity and efficiency
toward the extraction, preconcentration, and isolation of antibiotic compounds
from various type of matrices.
Keywords: cyclodextrin adsorbent, sample preparation,
antibiotics, microextraction
Abstrak
Sisa
antibiotik telah dikenal pasti di matriks sekitaran dan makanan. Walaupun paras
sisa antibiotik ini kebiasaannya dalam kepekatan yang sangat kecil, kesan buruk
daripada antibiotik ini terhadap sekitaran dan kesihatan manusia telah dicerap.
Justeru, terdapat permintaan terhadap penyediaan sampel yang ringkas, cepat,
tepat, boleh diguna pakai, tidak mahal, dan selektif dengan kepekaan dan hasil
yang tinggi bagi sebatian antibiotik. Setelah beberapa dekad, penjerap berasaskan siklodekstrin
telah mendapat perhatian global sebagai penjerap
generasi baharu bagi penyediaan sampel dan pengekstrakan disebabkan sifat fizikokimianya yang luar biasa. Tinjauan ini menggaris
kasar aplikasi baharu bagi penjerap berasaskan siklodekstrin dalam teknik penyediaan sampel di dalam
pelbagai jenis matriks. Teknik pengekstrakan konvensional seperti pengekstrakan
larutan (LLE) dan pengekstrakan fasa pepejal (SPE) selalunya digunakan untuk
penyediaan sampel. Walaubagaimanapun, kebanyakan teknik LLE dan SPE ini
mempunyai beberapa kelemahan seperti menggunakan jumlah pelarut organik toksik
yang banyak, agak mahal, melibatkan banyak kaedah dan mengambil masa yang
panjang dan berlarutan. Justeru, bagi mengatasi kelemahan ini, beberapa jenis
bahan generasi baharu telah dibangunkan bagi penulenan dan pemisahan analit. Setelah beberapa dekad yang yang
lalu, bahan penjerap berasaskan siklodekstrin
telah mencetuskan perhatian sebagai penjerap generasi
baharu bagi penyediaan sampel dan pengekstrakan oleh kerana sifat-sifat fizikokimia yang luar biasa. Siklodekstrin
adalah kumpulan bagi oligosakarida siklik terhasil
dengan dinding luar yang hidrofilik dan kaviti yang
hidrofobik. Sifat-sifat unik ini telah diubahsui
dengan berfungsikan kimia bagi meningkatkan keupayaan
pengekstrakan. Tinjauan ini menggaris kasar aplikasi baharu bagi penjerap berasaskan siklodekstrin
dalam teknik penyediaan sampel di dalam pelbagai jenis matriks. Teknik-teknik
ini menggunakan pendekatan yang cepat, moden, sensitif, dan efisien untuk
mengesan sebatian antibiotik. Di dalam tinjauan ini, beberapa teknik penyediaan
sampel baharu yang digabungkan bersama penjerap
berasaskan siklodekstrin yang dibangunkan dari 2015 –
2022 dibincangkan dari segi prestasi analitikal
termasuk kepekaan dan kecekapan terhadap pengekstrakan, prakepekatan,
dan pengasingan bagi sebatian antibiotik daripada pelbagai jenis matriks.
Kata kunci: penjerap siklodekstrin,
penyediaan sampel, antibiotik, pengekstrakan mikro
References
1. Davies,
J. (1996). Origins and evolution of antibiotic resistance. Microbiología
(Madrid, Spain), 12: 9-16.
2. Karageorgou, E., Christoforidou, S., Ioannidou,
M., Psomas, E., and Samouris, G. (2018). Detection of β-lactams and
chloramphenicol residues in raw milk - Development and application of an
HPLC-DAD method in comparison with microbial inhibition assays. Foods 7:
1-12.
3. Ramatla, T., Ngoma, L., Adetunji, M., and
Mwanza, M. (2017). Evaluation of antibiotic residues in raw meat using
different analytical methods. Antibiotics, 6: 1-17.
4. Karageorgou, E. G., Samanidou, V. F., and
Papadoyannis, I. N. (2012). Ultrasound-assisted matrix solid phase dispersive
extraction for the simultaneous analysis of β-lactams (four penicillins
and eight cephalosporins) in milk by high performance liquid chromatography
with photodiode array detection. Journal of Separation Science 35:
2599-2607.
5. Rodríguez, M. P., Pezza, H. R., and Pezza,
L. (2016). Simple and clean determination of tetracyclines by flow injection
analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular
Spectroscopy 153: 386-392.
6. Kasimanickam, V., Kasimanickam, M., and
Kasimanickam, R. (2021). Antibiotics use in food animal production: Escalation
of antimicrobial resistance: Where are we now in combating AMR? Medical
sciences (Basel, Switzerland) 9: 14.
7. FAO, OMS, and CODEX (2015). Maximun residue
limits (MRLs) and risk management recommendations (RMRs) for residues of
veterinary drugs in foods CAC/MRL 2-2015. 22.
8. Abraham, E. P. (1963). The antibiotics. Comprehensive
Biochemistry, 11: 181-224.
9. Kabir, A., Locatelli, M., and Ulusoy, H. I.
(2017). Recent trends in microextraction techniques employed in analytical and
bioanalytical sample preparation. Separations, 4: 1-15.
10. European Commission (2017). A european one
health action plan against antimicrobial resistance (AMR). Brussels, 24:
1-20.
11. World Health Organisation (2016). Joint
FAO/WHO food standards programme codex committee on residue of veterinary drugs
in foods. Food and Agriculture Organization of the United Nations, 1–10.
12. Smith, R. (2015). Commission Regulation (EU)
No 330/2010. Core EU Legislation, 157-163.
13. Laura, M., Silva, D., Li, C., Bertazzi, R.,
Li, L., Moreira, R., and Li, C. (2015). Ultra-processed foods and the
nutritional dietary profile in Brazil Alimentos ultraprocessados eperfil
nutricional da dieta no Brasil. Ultra-Processed Foods and Dietary Quality,
49: 1-10.
14. Rabello, R. F., Bonelli, R. R., Penna, B. A.,
Albuquerque, J. P., Souza, R. M., & Cerqueira, A. M. F. (2020).
Antimicrobial resistance in farm animals in Brazil: an update overview. Animals, 10(4): 552.
15. Lara, F. J., Olmo-iruela, M., Cruces-blanco,
C., Quesada-molina, C., and Garcı, A. M. (2012). Advances in the
determination of β -lactam antibiotics by liquid chromatography. Trends
in Analytical Chemistr, 38: 52-66.
16. Ghasemi, R., Mirzaei, H., Afshar Mogaddam, M.
R., Khandaghi, J., and Javadi, A. (2022). Application of magnetic ionic
liquid-based air–assisted liquid–liquid microextraction followed by
back-extraction optimized with centroid composite design for the extraction of
antibiotics from milk samples prior to their determination by HPLC–DAD. Microchemical
Journal, 181: 107764.
17. Wang, B., Wang, Y., Xie, X., Diao, Z., Xie,
K., Zhang, G., Zhang, T., and Dai, G. (2020). Quantitative analysis of
spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction
coupled with gas chromatography tandem mass spectrometry. Foods, 9:
1-18.
18. Chen, M., Yi, Q., Hong, J., Zhang, L., Lin,
K., and Yuan, D. (2015). Simultaneous determination of 32 antibiotics and 12
pesticides in sediment using ultrasonic-assisted extraction and high
performance liquid chromatography-tandem mass spectrometry. Analytical
Methods, 7: 1896-1905.
19. Badawy, M. E. I., El, M. A. M., Kimani, P. K.,
Lim, L. W., and Rabea, E. I. (2022). A review of the modern principles and applications
of solid ‑ phase extraction techniques in chromatographic analysis
(Springer Nature Singapore).
20. Siu, K.S., Chen, D., Zheng, X., Zhang, X.,
Johnston, N., Liu, Y., Yuan, K., Koropatnick, J., Gillies, E.R., and Min, W.P.
(2014). Non-covalently functionalized single-walled carbon nanotube for topical
siRNA delivery into melanoma. Biomaterials, 35: 3435-3442.
21. Tian, J., Xu, J., Zhu, F., Lu, T., Su, C., and
Ouyang, G. (2013). Application of nanomaterials in sample preparation. Journal
of Chromatography A, 1300: 2-16.
22. Basheer, A. A. (2018). New generation
nano-adsorbents for the removal of emerging contaminants in water. Journal
of Molecular Liquids, 261: 583–593.
23. Morin-Crini, N., Winterton, P., Fourmentin, S.,
Wilson, L. D., Fenyvesi, É., and Crini, G. (2018). Water-insoluble
β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from
aqueous solutions by sorption processes using batch studies: A review of
inclusion mechanisms. Progress in Polymer Science, 78: 1-23.
24. Wu, Z., Chen, C., Wang, L., Wan, H., and Guan,
G. (2016). Magnetic material grafted poly(phosphotungstate-based acidic ionic
liquid) as efficient and recyclable catalyst for esterification of oleic acid. Industrial
and Engineering Chemistry Research, 55: 1833-1842.
25. Yakout, A.A., Alshitari, W., and Akhdhar, A.
(2021). Synergistic effect of Cu-nanoparticles and β-cyclodextrin
functionalized reduced graphene oxide nanocomposite on the adsorptive
remediation of tetracycline antibiotics. Carbohydrate Polymers,
273:118528.
26. Zhao, Y., Si, H., Zhao, X., Li, H., Ren, J.,
Li, S., Wang, Q., and Zhang, J. (2021). Fabrication of an
allyl-β-cyclodextrin based monolithic column with triallyl isocyanurate as
co-crosslinker and its application in separation of lipopeptide antibiotics by
HPLC. Microchemical Journal, 168: 106462.
27. Velusamy, V., Palanisamy, S., Kokulnathan, T.,
Chen, S. W., Yang, T. C. K., Banks, C. E., and Pramanik, S. K. (2018). Novel
electrochemical synthesis of copper oxide nanoparticles decorated
graphene-β-cyclodextrin composite for trace-level detection of antibiotic
drug metronidazole. Journal of Colloid and Interface Science, 530:
37-45.
28. Zhang, Y., Cai, X., Xiong, W., Jiang, H.,
Zhao, H., Yang, X., Li, C., Fu, Z., and Chen, J. (2014). Molecular insights
into the pH-dependent adsorption and removal of ionizable antibiotic
oxytetracycline by adsorbent cyclodextrin polymers. PLoS ONE, 9(1),
e86228.
29. Zhang, Y., Jiang, F., Huang, D., Hou, S.,
Wang, H., Wang, M., Chi, Y., and Zhao, Z. (2018). A facile route to magnetic
mesoporous core-shell structured silicas containing covalently bound
cyclodextrins for the removal of the antibiotic doxycycline from water. RSC
Advances, 8: 31348–31357.
30. Foroutan, R., Jamaleddin, S., Latifi, P., and
Ahmadi, A. (2021). Carbon nanotubes/β-cyclodextrin/ MnFe2O4 as a
magnetic nanocomposite powder for tetracycline antibiotic decontamination from
different aqueous environments. Journal of Environmental Chemical Engineering,
9: 106344.
31. Sereshti, H., Karami, F., and Nouri, N.
(2021). A green dispersive liquid-liquid microextraction based on deep eutectic
solvents doped with β-cyclodextrin: Application for determination of
tetracyclines in water samples. Microchemical Journal, 163: 105914.
32. Juengchareonpoon, K., Boonamnuayvitaya, V.,
and Wanichpongpan, P. (2019). Kinetics and isotherms of oxytetracycline
adsorption on β-cyclodextrin/carboxymethylcellulose hydrogel films. Aquaculture
Research, 50: 3412-3419.
33. Li, Q., Wang, D., Fang, X., Zong, B., Liu, Y.,
Li, Z., Mao, S., and Ostrikov, K. K. (2021). Rapid synthesis of multifunctional
β-cyclodextrin nanospheres as alkali-responsive nanocarriers and selective
antibiotic adsorbents. Chemical Communications, 57: 1161-1164.
34. Belenguer-Sapiña, C., Pellicer-Castell, E., El
Haskouri, J., Simó-Alfonso, E.F., Amorós, P., and Mauri-Aucejo, A. R. (2022). A
type UVM-7 mesoporous silica with γ-cyclodextrin for the isolation of
three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from
different fat-rate milk samples. Journal of Food Composition and Analysis,
109: 104463.
35. Ruiz-Palomero, C., Soriano, M. L., and
Valcárcel, M. (2015). β-Cyclodextrin decorated nanocellulose: A smart
approach towards the selective fluorimetric determination of danofloxacin in
milk samples. Analyst, 140: 3431–3438.
36. Cui, X., Zhang, P., Yang, X., Yang, M.,
Zhou, W., Zhang, S., Gao, H., and Lu, R. (2015). β-CD/ATP composite
materials for use in dispersive solid-phase extraction to measure
(fluoro)quinolone antibiotics in honey samples. Analytica Chimica Acta,
878: 131–139.
37. Li, Y., Zhu, N., Chen, T., Ma, Y., and Li,
Q. (2018). A green cyclodextrin metal-organic framework as solid-phase extraction
medium for enrichment of sulfonamides before their HPLC determination. Microchemical
Journal, 138: 401-407.
38. Liu, Q., Zhou, Y., Lu, J., and Zhou, Y.
(2020). Novel cyclodextrin-based adsorbents for removing pollutants from
wastewater: A critical review. Chemosphere, 241: 125043.
39. Roy, A., Manna, K., Dey, S., and Pal, S.
(2023). Chemical modification of β-cyclodextrin towards hydrogel
formation. Carbohydrate Polymers, 306: 120576.
40. Szejtli, J. (2004). Past, present, and
future of cyclodextrin research. Pure and Applied Chemistry, 76:
1825-1845.
41. Li, N., Mei, Z., and Ding, S. (2010).
2,4-Dichlorophenol sorption on cyclodextrin polymers. Journal of Inclusion
Phenomena and Macrocyclic Chemistry, 68: 123-129.
42. Guo, Y., Guo, S., Ren, J., Zhai, Y., Dong,
S., and Wang, E. (2010). Cyclodextrin functionalized graphene nanosheets with
high supramolecular recognition capability: Synthesis and host-guest inclusion
for enhanced electrochemical performance. ACS Nano 4, 5512.
43. Kashapov, R. R., Mamedov, V. A., Zhukova, N.
A., Kadirov, M. K., Nizameev, I. R., Zakharova, L. Y., and Sinyashin, O.G.
(2017). Controlling the binding of hydrophobic drugs with supramolecular
assemblies of β-cyclodextrin. Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 527: 55-62.
44. Peng, L.Q., Ye, L.H., Cao, J., Chang, Y. Xu,
Li, Q., An, M., Tan, Z., and Xu, J. J. (2017). Cyclodextrin-based miniaturized
solid phase extraction for biopesticides analysis in water and vegetable juices
samples analyzed by ultra-high-performance liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry. Food Chemistry, 226:
141-148.
45. Peng, L. Q., Dong, X., Zhen, X. T., Yang,
J., Chen, Y., Wang, S. L., Xie, T., and Cao, J. (2020). Simultaneous separation
and concentration of neutral analytes by cyclodextrin assisted
sweeping-micellar electrokinetic chromatography. Analytica Chimica Acta,
1105: 224-230.
46. Belenguer-Sapiña, C., Pellicer-Castell, E.,
Pottanam Chali, S., Ravoo, B. J., Amorós, P., Simó-Alfonso, E. F., and
Mauri-Aucejo, A. R. (2021). Host-guest interactions for extracting antibiotics
with a γ-cyclodextrin poly(glycidyl-co-ethylene dimethacrylate) hybrid
sorbent. Talanta, 232: 122478.
47. Liu, Y., Liu, Y., Liu, Z., Du, F., Qin, G.,
Li, G., Hu, X., Xu, Z., and Cai, Z. (2019). Supramolecularly imprinted
polymeric solid phase microextraction coatings for synergetic recognition
nitrophenols and bisphenol A. Journal of Hazardous Materials, 368:
358-364.
48. Yang, Y., Li, G., Wu, D., Wen, A., Wu, Y.,
and Zhou, X. (2020). β-cyclodextrin-/AuNPs-functionalized covalent organic
framework-based magnetic sorbent for solid phase extraction and determination
of sulfonamides. Microchimica Acta, 187: 1-10.
49. Al-Afy, N., Sereshti, H., Hijazi, A., and
Rashidi Nodeh, H. (2018). Determination of three tetracyclines in bovine milk
using magnetic solid phase extraction in tandem with dispersive liquid-liquid
microextraction coupled with HPLC. Journal of Chromatography B: Analytical
Technologies in the Biomedical and Life Sciences 1092: 480-488.
50. Mashile, G. P., Mpupa, A., and Nomngongo, P.
N. (2021). Magnetic Mesoporous carbon / β -cyclodextrin – chitosan
nanocomposite for extraction and preconcentration of multi-class emerging
contaminant residues in environmental samples. Nanomaterials, 11: 1-15.
51. Li, F., Wang, M., Zhou, J., Yang, M., and
Wang, T. (2021). Cyclodextrin-derivatized hybrid nanocomposites as novel
magnetic solid-phase extraction adsorbent for preconcentration of trace
fluoroquinolones from water samples coupled with HPLC-MS/MS determination. Microchemical
Journal, 164: 105955.
52. Zhang, J., Liu, D., Shi, Y., Sun, C., Niu,
M., Wang, R., and Hu, F. (2017). Determination of quinolones in wastewater by
porous β -cyclodextrin polymer based solid-phase extraction coupled with
HPLC. Journal of Chromatography B, 1068-1069: 24-32.
53. Buszewski, B., and Szultka, M. (2012). Past,
present, and future of solid phase extraction: A review. Critical Reviews in
Analytical Chemistry, 42: 198-213.
54. Hou, X. L., Wu, Y. L., Yang, T., and Du, X.
D. (2013). Multi-walled carbon nanotubes-dispersive solid-phase extraction
combined with liquid chromatography-tandem mass spectrometry for the analysis
of 18 sulfonamides in pork. Journal of Chromatography B: Analytical
Technologies in the Biomedical and Life Sciences, 929: 107-115.
55. Xu, Y., Ding, J., Chen, H., Zhao, Q., Hou,
J., Yan, J., Wang, H., Ding, L., and Ren, N. (2013). Fast determination of
sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as
adsorbents followed by liquid chromatography-tandem mass spectrometry. Food
Chemistry, 140: 83-90.
56. Luo, Y. B., Shi, Z. G., Gao, Q., and Feng,
Y. Q. (2011). Magnetic retrieval of graphene: Extraction of sulfonamide
antibiotics from environmental water samples. Journal of Chromatography A,
1218: 1353-1358.
57. Gao, Q., Luo, D., Ding, J., and Feng, Y.-Q.
(2010). Rapid magnetic solid-phase extraction based on
magnetite/silica/poly(methacrylic acid–co–ethylene glycol dimethacrylate) composite
microspheres for the determination of sulfonamide in milk samples. Journal
of Chromatography A, 1217: 5602-5609.
58. Lee, H-B., Peart, T. E., and Svoboda, M. L.
(2007). Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by
selective solid-phase extraction, liquid chromatography with fluorescence
detection, and liquid chromatography–tandem mass spectrometry. Journal of
Chromatography A, 1139: 45-52.
59. Barahona, F., Albero, B., Tadeo, J. L., and
Martín-Esteban, A. (2019). Molecularly imprinted polymer-hollow fiber
microextraction of hydrophilic fluoroquinolone antibiotics in environmental
waters and urine samples. Journal of Chromatography A, 1587: 42-49.
60. Zhang, M., Chen, J., Zhao, F., and Zeng, B.
(2020). Determination of fluoroquinolones in foods using ionic liquid modified
Fe3O4/MWCNTs as the adsorbent for magnetic solid phase
extraction coupled with HPLC. Analytical Methods, 12: 4457-4465.
61. Belenguer-Sapiña, C., Pellicer-Castell, E.,
Vila, C., Simó-Alfonso, E. F., Amorós, P., and Mauri-Aucejo, A. R. (2019). A
poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with
β-cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds.
Microchimica Acta, 186: 1-11.
62. Mohamed, A. H., Noorhisham, N. A., Bakar, K.,
Yahaya, N., Mohamad, S., Kamaruzaman, S., and Osman, H. (2022). Synthesis of
imidazolium-based poly(ionic liquids) with diverse substituents and their
applications in dispersive solid-phase extraction. Microchemical Journal,
178: 107363.
63. Faraji, M., and Yamini, Y. (2021). Application
of magnetic nanomaterials in food analysis. Magnetic Nanomaterials in
Analytical Chemistry, 2021: 87-120.