
Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 488 - 498 

 

  488 

 

ANALYSIS OF HYPERSPECTRAL REFLECTANCE FOR DISEASE 

CLASSIFICATION OF SOYBEAN FROGEYE LEAF SPOT  

USING KNIME ANALYTICS 

 

(Analisis Refleksi Hiperspektra untuk Klasifikasi Penyakit Bintik Daun Frogeye  

Kacang Soya Menggunakan Analisis KNIME) 

 

Yuhao Ang, and Helmi Zulhaidi Mohd Shafri 

 

Department of Civil Engineering and Geospatial Information Science Research Centre (GISRC),  

Faculty of Engineering,  

Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia 

 

*Corresponding author:  helmi@upm.edu.my 

 

 

Received: 10 October 2022; Accepted: 13 April 2023; Published:  23 June 2023 

 

 

Abstract 

The feasibility of classifying soybean frogeye leaf spot (FLS) has been investigated with the advance of hyperspectral technology. 

Hyperspectral reflectance data of healthy and FLS disease soybeans were used. The first step was to smooth out the data by using 

a filtering technique namely Savitzky-Golay to eliminate the noise of the spectrum. In order to select the most significant 

wavelengths, genetic algorithm (GA) was used as a forward feature selection technique. This analysis involved the implementation 

of machine learning (ML) algorithms, including decision trees, random forests, and stacking, to classify soybean FLS severity 

levels. Preprocessing ML steps including converting class numbers to strings, identifying and removing missing values, 

partitioning and normalizing data were implemented prior to the development of the model. Overall accuracy and the receiver 

operating characteristic curve measure were used to assess the performance of this analysis. All of these steps were carried out 

through KNIME analytical platform. Based on the results of the analysis, GA-stacking and random forest algorithms achieved the 

best overall accuracy of 85.9% and 84.3%, respectively. In terms of reproducibility, data flow control, data exploration, analysis 

and visualization, KNIME Analytics Platform provided great convenience in connecting tools graphically and ensuring the same 

results on different operating systems. The rapid implementation of workflow in KNIME Analytics Platform provided the 

opportunity to process hyperspectral reflectance data to classify crop diseases.  
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Abstrak 

Kebolehlaksanaan mengklasifikasikan bintik daun frogeye kacang soya (FLS) telah disiasat dengan kemajuan teknologi 

hiperspektral. Data reflektan hiperspektral kacang soya yang sihat dan penyakit FLS telah digunakan. Langkah pertama ialah 

melicinkan data dengan menggunakan teknik penapisan iaitu Savitzky-Golay untuk menghapuskan hingar spektrum. Untuk 

memilih panjang gelombang yang paling ketara, algoritma genetik (GA) digunakan sebagai teknik pemilihan ciri ke hadapan. 

Analisis ini melibatkan pelaksanaan algoritma pembelajaran mesin (ML), termasuk pohon keputusan, hutan rawak, dan pemadatan, 

untuk mengklasifikasikan tahap keparahan FLS kacang kedelai. Langkah-langkah pra pemprosesan ML termasuk menukar nombor 
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kelas kepada rentetan, mengenal pasti dan mengeluarkan nilai yang hilang, mempartisi dan menormalisasi data telah dilaksanakan 

sebelum pembangunan model. Ketepatan keseluruhan dan ukuran lengkung ciri operasi penerima digunakan untuk menilai prestasi 

analisis ini. Kesemua langkah ini telah dijalankan melalui platform analisis KNIME. Berdasarkan keputusan analisis, algoritma 

GA-stacking dan random forest masing-masing mencapai ketepatan keseluruhan terbaik iaitu 85.9% dan 84.3%. Dari segi 

kebolehulangan, kawalan aliran data, penerokaan data, analisis dan visualisasi, Platform Analisis KNIME memberikan kemudahan 

besar dalam menyambungkan alatan secara grafik dan memastikan hasil yang sama pada sistem pengendalian yang berbeza. 

Pelaksanaan pantas aliran kerja dalam Platform Analisis KNIME memberi peluang untuk memproses data reflektan hiperspektral 

dalam klasifikasi penyakit tanaman. 

 

Kata kunci: reflektan hiperspektral, pemilihan ciri ke hadapan, algoritma genetik, pembelajaran mesin, platform analisis KNIME 

 

Introduction 

As a legume, soybean is an essential source of proteins 

and fatty acids, the major feed sources of proteins, and 

the second primary producer of editable oils. The total 

production for soybean around the world was 367.76 

million tons in 2021 and it is estimated that there will be 

a decrease of 17.04 million tons or 4.63% in the soybean 

production across the globe [1]. Apparently, the use as a 

primary source in pig feed increases the consumption of 

soybean worldwide. However, several diseases have 

severely harmed the quality and the seed of soybean. For 

example, frogeye leaf spot (FLS) is a soybean foliar 

disease caused by the fungus Cercospora sojina Hara 

(CSH) leads to yield losses, seed damage, and economic 

losses. FLS infections may result in yield losses of up to 

60% [2, 3]. FLS is a polycyclic illness which its 

infection, symptom development, and reproduction may 

occur several times within the span of a single season 

[4]. It is crucial to assess and to detect the expanse of 

disease so that its economic losses can be estimated and 

proper management can be implemented. 

 

The present method for determining the severity of 

foliar disease is mostly dependent on visual assessment. 

Experts physically evaluate the size of lesion area, the 

leaf color patterns, the distribution and the shape of 

leaves, the number of stems and branches, and also the 

density of soybean [5]. However, the visual assessment 

method is bias and can be altered by the experimental 

observations of experts. Another assessment method is 

molecular procedures such as enzyme-linked 

immunosorbent assay (ELISA) and polymerase chain 

reaction (PCR), which are very sensitive and capable of 

detecting disease. The drawback of this approach is 

time-consuming and destructive [6]. Thus, non-

destructive highly efficient methods such as remote 

sensing tool remains warranted to assess the severity of 

soybean diseases.  

 

Hyperspectral reflectance has attracted much focus in 

identifying and estimating the severity level of soybean 

disease. The hyperspectral technique consists of a 

narrow bandwidth and more than ten different channels 

that are capable of identifying subtle changes in an 

object of interest. Hyperspectral technique is frequently 

used to determine biophysical properties of certain 

crops, such as chlorophyll content, moisture content, 

trace element content, crop cell structure and nutrient 

contents [7-9]. Several studies have demonstrated the 

effectiveness and the potential of hyperspectral 

reflectance in identifying disease severity, such as rice 

false smut disease [10], citrus disease [11], oil palm 

Ganoderma disease [12], and soybean stem rot disease 

[13].  

 

Rapid development of an automation system for 

classifying disease of the infected crops is an emerging 

area in precision agriculture. Machine learning (ML) 

method has been adopted to develop classification 

models using hyperspectral reflectance data for crop 

disease detection such as support vector machine, 

random forest (RF) and artificial neural network [14]. 

[15] has successfully developed random forest 

algorithms to classify wheat and rye leaves rust based on 

pure spectra. The result showed that the RF model based 

on the selected spectral wavelength achieved promising 

accuracy with the accuracy of 96.6%. In addition, 

hyperspectral data contain extra, redundant and highly 

correlated information across a large number of 

wavelengths, which can increase the complexity of 

analysis. Therefore, data dimensionality reduction, 

which cut down and optimize the whole wavelength, is 
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required. Several methods have been used effectively to 

reduce the dimensionality of hyperspectral data, 

including generic algorithms [16], principal component 

analysis (PCA) [17], and successive projection 

algorithm 18], and others [19-21]. To detect 

Huanglongbing disease in citrus, [11] used PCA to 

reduce the number of spectral features, and the selected 

PC scores were used in the classification algorithms 

such as quadratic discriminant analysis (QDA) and k-

nearest neighbor (KNN). The results showed that the 

selected features achieved an overall average 

classification accuracy of 86% and 93% using KNN-

based and QDA-based algorithms, respectively. In 

another similar study, [22] applied feature selection 

technique based on successive projection algorithm 

(SPA) to detect vineyard disease. The result 

demonstrated that SPA technique performed better than 

common VIs with the overall classification accuracy of 

about more than 96% for both DA and SVM. 

Nevertheless, implementing data dimensionality 

reduction in analyzing hyperspectral reflectance data 

can sometimes be computationally demanding. 

 

The KNIME analytics platform is an open-source 

software that aims to solve these problems by creating a 

platform that can easily be extended with new tool 

integrations, which features a strongly typed data 

system, and permits creators to record in detail each step 

of the workflow [23]. One of the KNIME’s benefits is 

its multimode of nodes for performing a sequence of ML 

process with its offerings of various advanced ML 

algorithms. In this study, the hyperspectral analysis was 

conducted to classify the FLS disease on codeless 

platform. This is the first study to use such platform to 

perform the hyperspectral processing including the 

feature selection and the classification approaches in 

KNIME analytics platform. Therefore, the main 

objectives of this study are to estimate FLS disease class 

using hyperspectral reflectance, to evaluate the 

performance of proposed feature selection by comparing 

with full dataset and to determine the feasibility of 

classifying FLS through the proposed ML method.  

 

Materials and Methods 

Data acquisition 

Leaf hyperspectral reflectance data were collected using 

a FieldSpec® HandHeld 2 spectrometer (Analytical 

Spectral Devices, Inc., Colorado, USA). The 

hyperspectral region ranged from 325 to 1075 nm, with 

a resolution of 3 nm. The number of hyperspectral 

channels is 512. Each diseased or healthy leaf was 

considered as one sample. A total of 440 samples, 

comprising 340 diseased and 100 healthy leaves, were 

collected and evaluated. Four severity classes such 0%–

1% (class 1), 1%–3% (class 2), 3%–6% (class 3), 6%–

20% (class 4), and lastly the healthy leaves were 

regarded as class 0. The data was obtained from [24], 

which has been appropriately cited.  

 

Preprocessing 

The wavelengths were cut to remove the excitation 

wavelength and keep the useful wavelength that 

represent the reflectance of the disease. Only useful 

wavelength interval from 450 nm to 1000nm was 

remained. Then, the preprocessing technique such as 

Savitzky-Golay filter was used. The purpose of 

Savitzky-Golay filter is to smooth the original data 

while also eliminating noise from the spectrum [25]. The 

length of the filtering window and the order of the 

polynomial interpolation were set to 11 and 3, 

respectively. In addition, the first and second derivatives 

orders were generated over the course of the 

investigation. The preprocessing workflow was 

implemented using the installed KNIME interactive R 

statistics integration to use the R package and to execute 

them in KNIME analytic platform, as shown in Figure 

1. 
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Figure 1. The workflow of preprocessing 

 

Processing 

Forward feature selection method such as genetic 

algorithm was applied to select the useful wavelengths 

and to eliminate the redundant wavelengths. The genetic 

algorithm is a chaotic approach for optimizing functions 

that is based on evolution and genetics. In genetic 

algorithm, an optimal set is determined based on 

evolution. The first step in selecting the features is to 

generate a population based on the subsets of possible 

features. The subsets from this population are then 

evaluated using a predictive model to obtain the weights 

of each individual on the populations. By that, N 

individuals are chosen, where N is the size of the 

population, given that previously calculated weights, 

and two new individuals are generated from each pair of 

individuals. In this way, each generation have the same 

number of individuals as the previous one which can 

bring it forwards when the algorithms run in many 

iterations. The next step is reproduction, which entails 

this numbers will be used to randomly split the parents' 

genes into pieces of varying sizes. The first new person 

will have the first piece from parent A and the second 

chunk from parent B. The second new person will be 

made out of the first and the second halves of parent B. 

Lastly, mutation mitigates the risk of the search falling 

into a local optimum and getting stuck. At each 

generation, in addition to the crossover, a random 

mutation is added. The reproduction and the mutation 

processes are then repeated once the new population has 

been produced, with the weights of each individual being 

recalculated. A workflow illustrating the forward feature 

selection process is shown in Figure 2. Using the 

KNIME workflow, raw data was recorded using the 

'CSV Reader' node, and then combined with the 

'Number to String' node to represent the disease severity 

classes into a string, and finally a metanode that 

comprised of several nodes was created to execute 

genetic algorithms via a sequence of forward feature 

selections.  

 

 
Figure 2. The workflow of feature selection 

 

Modelling methods 

Several ML algorithms were used to classify the severity 

level of FLS disease in soybean. Decision tree, random 

forest and stacking were used as the ML algorithms in 

this study. Each of the ML algorithms were 

implemented in the KNIME workflow. In general, raw 

data was recorded using a CSV Reader node, then the 

preprocessing ML steps such as converting the class 

numbers to strings, and identifying and removing 

missing values were carried out, followed by data 

partitioning (X-partitioner and X-aggregator) and 

normalization (normalizer and apply normalizer). Next, 

ML algorithms namely random forest, decision tree, and 

stacking were implemented and evaluated using a scorer 

and receiver operating characteristic (ROC) curve. The 

mechanisms of each ML algorithms are stated as 

followed. 
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Random forest: Random forests combine multiple trees 

and assemble decision trees through 'bagging' to create 

a final model. In this method, bootstrapping is used to 

select 'k' samples from the original dataset at random. 

The output is finalized by aggregating the predictions of 

each decision trees. These samples are used to build 

decision trees and create output depending on its 

predictions. The model parameters are adjusted 

accordingly through trial and error. The split criterion is 

assigned as information gain. The tree depth and the 

minimum node size were tuned accordingly and set to 5 

and 2, respectively. The workflow of random forest is 

shown in Figure 3. 

 

 
Figure 3. The workflow of random forest algorithm 

 

Stacking: In stacking, heterogeneous base learners 

consisting different ML models are applied and trained 

in parallel. Then, heterogeneous base-learners are 

combined in aggregating the output of each single base-

leaners by training a meta-learner to create a prediction 

based on different base learner’s predictions. The 

purpose of the meta-learner is to determine how to 

combine the input predictions made by the base-learners 

with the output made by the training dataset to achieve 

better predictions [26]. Stacking algorithm was 

implemented by utilizing KNIME Weka Data Mining 

Integration, which provide Knime plugins that include 

the Weka data mining framework's functionality [27]. In 

this study, Naïve Bayes, J48 and Kstar algorithms were 

selected as base learners, and logistic regression was 

used as meta-learner. The workflow of stacking 

algorithm is shown in Figure 4. 

 

 

Figure 4. The workflow of stacking algorithm 

 

Decision trees: A decision tree is a tree-representation 

classifier in which each leaf node corresponds to a class 

label and each inside node represents a feature. Branches 

represent conjunctions of features that lead to those class 

labels. Pruning is applied as it is the important part in 

decision trees, used to decrease the size of the decision 

tree. Several parameters were set such as quality 

measures (Gini index), minimum number records per 

node (8) and pruning method (Minimum Description 

Length). The workflow of decision tree is shown in 

Figure 5. 
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Figure 5. The workflow of decision tree algorithm 

 

Performance evaluation 

Cross-validation was used as a resampling strategy in 

the evaluation process to assess the ML models. The 

number of groups into which a particular data sample to 

be divided is denoted by K-fold, which is used to 

separate each observation from the original dataset into 

an equal probability of occurring in the training and the 

test sets. In this investigation, K was set to 10, training 

the (K-1) folds and testing the model with the Kth fold 

remaining. The procedure is repeated K times until the 

final average score is determined. Cross-validation is 

applied for the evaluation metrics in the accuracy 

assessment. In order to analyze the efficacy of the ML 

algorithms, accuracy assessment is important in the 

classification of FLS diseases. The accuracy of each ML 

algorithms was evaluated using ground truth data for the 

five severity classes of soybean FLS. The confusion 

matrix approach was used to assess the performance of 

a classification model by comparing the actual classes to 

the predictions of the ML model. The overall accuracy 

was computed by summing the number of correctly 

classified classes and dividing it by the total number of 

classes. This overall accuracy is the outcome of ML 

algorithms classifying the severity levels of soybean 

FLS using leaf hyperspectral data. The ROC measure is 

also used to quantify the prediction accuracy of a 

predictive model. It is based on the trade-off between the 

true positive rate and the false positive rate when 

probability threshold is used. 

 

Results and Discussion 

Spectral reflectance for raw, first and second 

derivatives of FLS disease 

Spectral reflectance profile taken from sample spectra is 

shown graphically for each severity stages of soybean 

FLS (class 0, 1, 2, 3 and 4) in Figure 6. Basically, the 

spectral profile showed a low reflectance in the visible 

region with small peak in the green region indicating a 

sudden increase beginning at 690 nm reaching a peak in 

the NIR region. These are regular for green plant 

reflectance spectra. A comparison of profile showed 

larger difference in the reflectance between each 

severity classes of soybean FLS at some wavelengths 

compared to other wavelengths. 

 

In the visible spectrum (607– 690 nm), soybean FLS 

with different severity stages were very similar and 

many overlapped each other, while in the infrared region 

(702 – 966 nm), the spectra of soybean FLS with 

different severity classes separated from each other. 

Healthy soybean had the highest NIR reflectance 

compared to others in 774 nm till 806 nm (Figure 6). The 

second highest were soybeans with class 1 and 2. 

Soybean FLS with class 4 had the lowest reflectance.  

 

The first derivative of spectral reflectance is shown in 

Figure 7(a). Overall, the first derivative of spectral 

reflectance of FLS soybean disease exhibited a tiny 

reflectance peak about 515 nm and a substantial first 

derivative reflectance peak in the red-edge area (679 – 

714 nm). Healthy soybean with class 0 indicates the 

highest peak at 717.87nm in the red edge region, which 

is more prone to shifting to the right as compared to FLS 

soybean disease. The second derivative of spectral 

reflectance of FLS soybean disease is shown in Figure 

7(b). Second derivative reflectance spectra with FLS 

soybean disease showed distinct peaks at 685 nm and 

732 nm. 
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Figure 6. Original spectral reflectance of FLS disease 

 

The first derivative equation is crucial in plant disease 

detection with space of the lesion density function at a 

fixed position [28]. The spectrum will become 

complicated and complex as the number of disease 

symptoms increases. Different stages of disease severity 

attributed to the collected spectrum variation when 

plants in the particular area facing disease spreads. 

Therefore, the first derivative can remove both additive 

and multiplicative effects in spectrum [29]. Lu et al. [30] 

showed that the first derivative between 500 – 1000 nm 

was better in discriminating leaf curl on tomatoes than 

the original reflectance spectrum. In general, the first 

and the second derivatives indicated the potential for 

estimating crop disease because of their insensitivity to 

the soil background [31, 32]. 

 

Classification of soybean FLS disease using ML 

models 

Table 1 shows the overall accuracy of ML algorithms 

used in the classification of soybean FLS disease. 

Random forest and stacking achieved the best overall 

accuracy using the selected first and second derivatives 

of spectral reflectance. Random forests achieved an 

overall accuracy of 84.3% and 77.7% for both selected 

first and second derivatives of spectral reflectance, 

respectively. The stacking algorithms have improved to 

85.9% and 79.1% from 70% and 56.1% on both selected 

first and second derivatives of spectral reflectance, 

respectively.
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Figure 7. (a) First derivative of spectral reflectance of FLS disease and (b) Second derivative of spectral reflectance 

of FLS disease 

 

Table 1. Overall accuracy of ML models 

Data Raw First derivative 

(full) 

Second 

derivative 

(full) 

First derivative+ 

Savitzky-

Golay+feature 

selection (genetic 

algorithms) 

Second derivative+ 

Savitzky-

Golay+feature 

selection (genetic 

algorithms) 

Decision tree 55.4 64.7 55.9 65.0 62.7 

Random forest 68.4 75.9 69.5 84.3 77.7 

Stacking  69.7 70.0 56.1 85.9 79.1 
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Decision tree had the lowest and the poorest accuracy 

performance even after the feature selection algorithm 

was implemented. For example, only small increases 

with 0.2% for implementing the feature selection using 

the first derivative data. Noticeably, there was not much 

difference between the accuracy of decision tree 

algorithms using raw data and second derivative.  

 

Based on the above results, incorporating genetic 

algorithms (GA) as feature selections has improved the 

overall accuracy for most of the ML algorithms since 

GA can effectively screen the useful characteristic bands 

for soybean FLS disease detection, thereby reducing the 

number of variables in the model, and thus producing 

high classification accuracy. Our result agrees with the 

studies of Chen et al. [33], who proved that genetic 

algorithms and following support vector machine is the 

best performance model with overall accuracy of 90.7% 

for leaves and 92.6% for stems.  

 

Adding to performance analysis, Figure 8 illustrates the 

ROC curve for stacking algorithm, which is the best 

among the other algorithms. This analysis contributes an 

insight into how well the model classify the different 

severity classes (classes 0, 1, 2, 3 and 4) of soybean FLS. 

Overall, the curve reached a high value for the metric 

area under curve, in this case, 95% area of the graph was 

under the curve, showing the model is good in 

separating the soybean FLS classes.   

 

 
 

Figure 8. Stacking model ROC curve for class 0-4: (a) Class 0, (b) Class 1, (c) Class 2, (d) Class 3 and                        (e) 

Class 4 

 

Conclusions 

Based on the results, it was concluded that stacking 

algorithm achieved the highest accuracy after genetic 

algorithm implementation. Future studies will assess 

different feature selection techniques to analyze 

hyperspectral reflectance in the classification of crop 

disease. Different preprocessing techniques will also be 

adopted to ensure the proper removal of noise in 

spectrum. Besides, several ML algorithms will be 

proposed and applied on the analysis of hyperspectral 

reflectance. KNIME integrations provide additional 

functionality such as processing of complex 

hyperspectral preprocessing (e.g. Savitzky-Golay), as 

well as the use of advanced ML algorithms. Therefore, 

the functionality of KNIME as a codeless tool for 

analyzing hyperspectral reflectance should be further 

investigated in order to confirm its practicality and 

usefulness. The results obtained make it possible to 
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provide fast implementation of workflow, including 

model development for evaluating the degree of crop 

disease using hyperspectral reflectance data. Future 

studies will utilize other advanced machine learning 

algorithms to improve the accuracy of the model. 
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