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Abstract

The feasibility of classifying soybean frogeye leaf spot (FLS) has been investigated with the advance of hyperspectral technology.
Hyperspectral reflectance data of healthy and FLS disease soybeans were used. The first step was to smooth out the data by using
a filtering technique namely Savitzky-Golay to eliminate the noise of the spectrum. In order to select the most significant
wavelengths, genetic algorithm (GA) was used as a forward feature selection technique. This analysis involved the implementation
of machine learning (ML) algorithms, including decision trees, random forests, and stacking, to classify soybean FLS severity
levels. Preprocessing ML steps including converting class numbers to strings, identifying and removing missing values,
partitioning and normalizing data were implemented prior to the development of the model. Overall accuracy and the receiver
operating characteristic curve measure were used to assess the performance of this analysis. All of these steps were carried out
through KNIME analytical platform. Based on the results of the analysis, GA-stacking and random forest algorithms achieved the
best overall accuracy of 85.9% and 84.3%, respectively. In terms of reproducibility, data flow control, data exploration, analysis
and visualization, KNIME Analytics Platform provided great convenience in connecting tools graphically and ensuring the same
results on different operating systems. The rapid implementation of workflow in KNIME Analytics Platform provided the
opportunity to process hyperspectral reflectance data to classify crop diseases.
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Abstrak
Kebolehlaksanaan mengklasifikasikan bintik daun frogeye kacang soya (FLS) telah disiasat dengan kemajuan teknologi
hiperspektral. Data reflektan hiperspektral kacang soya yang sihat dan penyakit FLS telah digunakan. Langkah pertama ialah
melicinkan data dengan menggunakan teknik penapisan iaitu Savitzky-Golay untuk menghapuskan hingar spektrum. Untuk
memilih panjang gelombang yang paling ketara, algoritma genetik (GA) digunakan sebagai teknik pemilihan ciri ke hadapan.
Analisis ini melibatkan pelaksanaan algoritma pembelajaran mesin (ML), termasuk pohon keputusan, hutan rawak, dan pemadatan,
untuk mengklasifikasikan tahap keparahan FLS kacang kedelai. Langkah-langkah pra pemprosesan ML termasuk menukar nombor
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kelas kepada rentetan, mengenal pasti dan mengeluarkan nilai yang hilang, mempartisi dan menormalisasi data telah dilaksanakan
sebelum pembangunan model. Ketepatan keseluruhan dan ukuran lengkung ciri operasi penerima digunakan untuk menilai prestasi
analisis ini. Kesemua langkah ini telah dijalankan melalui platform analisis KNIME. Berdasarkan keputusan analisis, algoritma
GA-stacking dan random forest masing-masing mencapai ketepatan keseluruhan terbaik iaitu 85.9% dan 84.3%. Dari segi
kebolehulangan, kawalan aliran data, penerokaan data, analisis dan visualisasi, Platform Analisis KNIME memberikan kemudahan
besar dalam menyambungkan alatan secara grafik dan memastikan hasil yang sama pada sistem pengendalian yang berbeza.
Pelaksanaan pantas aliran kerja dalam Platform Analisis KNIME memberi peluang untuk memproses data reflektan hiperspektral
dalam klasifikasi penyakit tanaman.

Kata kunci: reflektan hiperspektral, pemilihan ciri ke hadapan, algoritma genetik, pembelajaran mesin, platform analisis KNIME

Introduction

As a legume, soybean is an essential source of proteins
and fatty acids, the major feed sources of proteins, and
the second primary producer of editable oils. The total
production for soybean around the world was 367.76
million tons in 2021 and it is estimated that there will be
a decrease of 17.04 million tons or 4.63% in the soybean
production across the globe [1]. Apparently, the use as a
primary source in pig feed increases the consumption of
soybean worldwide. However, several diseases have
severely harmed the quality and the seed of soybean. For
example, frogeye leaf spot (FLS) is a soybean foliar
disease caused by the fungus Cercospora sojina Hara
(CSH) leads to yield losses, seed damage, and economic
losses. FLS infections may result in yield losses of up to
60% [2, 3]. FLS is a polycyclic illness which its
infection, symptom development, and reproduction may
occur several times within the span of a single season
[4]. It is crucial to assess and to detect the expanse of
disease so that its economic losses can be estimated and
proper management can be implemented.

The present method for determining the severity of
foliar disease is mostly dependent on visual assessment.
Experts physically evaluate the size of lesion area, the
leaf color patterns, the distribution and the shape of
leaves, the number of stems and branches, and also the
density of soybean [5]. However, the visual assessment
method is bias and can be altered by the experimental
observations of experts. Another assessment method is
molecular  procedures such as enzyme-linked
immunosorbent assay (ELISA) and polymerase chain
reaction (PCR), which are very sensitive and capable of
detecting disease. The drawback of this approach is
time-consuming and destructive [6]. Thus, non-
destructive highly efficient methods such as remote
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sensing tool remains warranted to assess the severity of
soybean diseases.

Hyperspectral reflectance has attracted much focus in
identifying and estimating the severity level of soybean
disease. The hyperspectral technique consists of a
narrow bandwidth and more than ten different channels
that are capable of identifying subtle changes in an
object of interest. Hyperspectral technique is frequently
used to determine biophysical properties of certain
crops, such as chlorophyll content, moisture content,
trace element content, crop cell structure and nutrient
contents [7-9]. Several studies have demonstrated the
effectiveness and the potential of hyperspectral
reflectance in identifying disease severity, such as rice
false smut disease [10], citrus disease [11], oil palm
Ganoderma disease [12], and soybean stem rot disease
[13].

Rapid development of an automation system for
classifying disease of the infected crops is an emerging
area in precision agriculture. Machine learning (ML)
method has been adopted to develop classification
models using hyperspectral reflectance data for crop
disease detection such as support vector machine,
random forest (RF) and artificial neural network [14].
[15] has successfully developed random forest
algorithms to classify wheat and rye leaves rust based on
pure spectra. The result showed that the RF model based
on the selected spectral wavelength achieved promising
accuracy with the accuracy of 96.6%. In addition,
hyperspectral data contain extra, redundant and highly
correlated information across a large number of
wavelengths, which can increase the complexity of
analysis. Therefore, data dimensionality reduction,
which cut down and optimize the whole wavelength, is
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required. Several methods have been used effectively to
reduce the dimensionality of hyperspectral data,
including generic algorithms [16], principal component
analysis (PCA) [17], and successive projection
algorithm 18], and others [19-21]. To detect
Huanglongbing disease in citrus, [11] used PCA to
reduce the number of spectral features, and the selected
PC scores were used in the classification algorithms
such as quadratic discriminant analysis (QDA) and k-
nearest neighbor (KNN). The results showed that the
selected features achieved an overall average
classification accuracy of 86% and 93% using KNN-
based and QDA-based algorithms, respectively. In
another similar study, [22] applied feature selection
technique based on successive projection algorithm
(SPA) to detect vineyard disease. The result
demonstrated that SPA technique performed better than
common VIs with the overall classification accuracy of
about more than 96% for both DA and SVM.
Nevertheless, implementing data dimensionality
reduction in analyzing hyperspectral reflectance data
can sometimes be computationally demanding.

The KNIME analytics platform is an open-source
software that aims to solve these problems by creating a
platform that can easily be extended with new tool
integrations, which features a strongly typed data
system, and permits creators to record in detail each step
of the workflow [23]. One of the KNIME’s benefits is
its multimode of nodes for performing a sequence of ML
process with its offerings of various advanced ML
algorithms. In this study, the hyperspectral analysis was
conducted to classify the FLS disease on codeless
platform. This is the first study to use such platform to
perform the hyperspectral processing including the
feature selection and the classification approaches in
KNIME analytics platform. Therefore, the main
objectives of this study are to estimate FLS disease class
using hyperspectral reflectance, to evaluate the

performance of proposed feature selection by comparing
with full dataset and to determine the feasibility of
classifying FLS through the proposed ML method.

Materials and Methods

Data acquisition

Leaf hyperspectral reflectance data were collected using
a FieldSpec® HandHeld 2 spectrometer (Analytical
Spectral Devices, Inc., Colorado, USA). The
hyperspectral region ranged from 325 to 1075 nm, with
a resolution of 3 nm. The number of hyperspectral
channels is 512. Each diseased or healthy leaf was
considered as one sample. A total of 440 samples,
comprising 340 diseased and 100 healthy leaves, were
collected and evaluated. Four severity classes such 0%—
1% (class 1), 1%—-3% (class 2), 3%—6% (class 3), 6%—
20% (class 4), and lastly the healthy leaves were
regarded as class 0. The data was obtained from [24],
which has been appropriately cited.

Preprocessing

The wavelengths were cut to remove the excitation
wavelength and keep the useful wavelength that
represent the reflectance of the disease. Only useful
wavelength interval from 450 nm to 1000nm was
remained. Then, the preprocessing technique such as
Savitzky-Golay filter was used. The purpose of
Savitzky-Golay filter is to smooth the original data
while also eliminating noise from the spectrum [25]. The
length of the filtering window and the order of the
polynomial interpolation were set to 11 and 3,
respectively. In addition, the first and second derivatives
orders were generated over the course of the
investigation. The preprocessing workflow was
implemented using the installed KNIME interactive R
statistics integration to use the R package and to execute
them in KNIME analytic platform, as shown in Figure
1.
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Forward feature selection method such as genetic
algorithm was applied to select the useful wavelengths
and to eliminate the redundant wavelengths. The genetic
algorithm is a chaotic approach for optimizing functions
that is based on evolution and genetics. In genetic
algorithm, an optimal set is determined based on
evolution. The first step in selecting the features is to
generate a population based on the subsets of possible
features. The subsets from this population are then
evaluated using a predictive model to obtain the weights
of each individual on the populations. By that, N
individuals are chosen, where N is the size of the
population, given that previously calculated weights,
and two new individuals are generated from each pair of
individuals. In this way, each generation have the same
number of individuals as the previous one which can
bring it forwards when the algorithms run in many
iterations. The next step is reproduction, which entails
this numbers will be used to randomly split the parents'

Number To String

> 25 >

Node 2

Forward Feature

CSV Reader
B »

nnn-.

Selection

Node 1

Figure 2. The workflow of feature selection
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will have the first piece from parent A and the second
chunk from parent B. The second new person will be
made out of the first and the second halves of parent B.
Lastly, mutation mitigates the risk of the search falling
into a local optimum and getting stuck. At each
generation, in addition to the crossover, a random
mutation is added. The reproduction and the mutation
processes are then repeated once the new population has
been produced, with the weights of each individual being
recalculated. A workflow illustrating the forward feature
selection process is shown in Figure 2. Using the
KNIME workflow, raw data was recorded using the
'CSV Reader' node, and then combined with the
'‘Number to String' node to represent the disease severity
classes into a string, and finally a metanode that
comprised of several nodes was created to execute
genetic algorithms via a sequence of forward feature
selections.

Modelling methods

Several ML algorithms were used to classify the severity
level of FLS disease in soybean. Decision tree, random
forest and stacking were used as the ML algorithms in
this study. Each of the ML algorithms were
implemented in the KNIME workflow. In general, raw
data was recorded using a CSV Reader node, then the
preprocessing ML steps such as converting the class
numbers to strings, and identifying and removing
missing values were carried out, followed by data
partitioning (X-partitioner and X-aggregator) and
normalization (normalizer and apply normalizer). Next,
ML algorithms namely random forest, decision tree, and
stacking were implemented and evaluated using a scorer
and receiver operating characteristic (ROC) curve. The
mechanisms of each ML algorithms are stated as
followed.
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Random forest: Random forests combine multiple trees
and assemble decision trees through 'bagging' to create
a final model. In this method, bootstrapping is used to
select 'k' samples from the original dataset at random.
The output is finalized by aggregating the predictions of

each decision trees. These samples are used to build

decision trees and create output depending on its
predictions. The model parameters are adjusted
accordingly through trial and error. The split criterion is
assigned as information gain. The tree depth and the
minimum node size were tuned accordingly and set to 5
and 2, respectively. The workflow of random forest is
shown in Figure 3.

Random Forest ROC Curve
Normalizer Learner bﬂ
» »> P
L x* L~
b " X-Aggregator
» Node 378
>
X-Partitioner Node 373 Node 380 >
CSV Reader Number To String N ){ » Random Forest
B » Predictor Node 377 Scorer
4, > > s> .
, o> St
Node 371 Hormalizer (Apply) > >
Node 372 Node 370 .'4.1
» o> Node 351 Node 379

Node 374

Figure 3. The workflow of random forest algorithm

Stacking: In stacking, heterogeneous base learners
consisting different ML models are applied and trained
in parallel. Then, heterogeneous base-learners are
combined in aggregating the output of each single base-
leaners by training a meta-learner to create a prediction
based on different base learner’s predictions. The
purpose of the meta-learner is to determine how to
combine the input predictions made by the base-learners
with the output made by the training dataset to achieve

Normalizer
> L -
CSV Reader
Number To String Node 41

g »
=t X-Partitioner

P 23 >
»>

n.){.

Node 22
Node 23
Node 72

better predictions [26]. Stacking algorithm was
implemented by utilizing KNIME Weka Data Mining
Integration, which provide Knime plugins that include
the Weka data mining framework's functionality [27]. In
this study, Naive Bayes, J48 and Kstar algorithms were
selected as base learners, and logistic regression was
used as meta-learner. The workflow of stacking
algorithm is shown in Figure 4.

Stacking (3.7) ROC Curve
o R
Node 26 Weka Predictor Node 71
Normalizer (Apply) (3.7 X-Aggregator
Dn. Ieb '}X : Scorer
] >
Node 42 Node 27 Node 73 ™ I} >

Node 28

Figure 4. The workflow of stacking algorithm

Decision trees: A decision tree is a tree-representation
classifier in which each leaf node corresponds to a class
label and each inside node represents a feature. Branches
represent conjunctions of features that lead to those class
labels. Pruning is applied as it is the important part in
decision trees, used to decrease the size of the decision

tree. Several parameters were set such as quality
measures (Gini index), minimum number records per
node (8) and pruning method (Minimum Description
Length). The workflow of decision tree is shown in
Figure 5.
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Figure 5. The workflow of decision tree algorithm

Performance evaluation

Cross-validation was used as a resampling strategy in
the evaluation process to assess the ML models. The
number of groups into which a particular data sample to
be divided is denoted by K-fold, which is used to
separate each observation from the original dataset into
an equal probability of occurring in the training and the
test sets. In this investigation, K was set to 10, training
the (K-1) folds and testing the model with the K™ fold
remaining. The procedure is repeated K times until the
final average score is determined. Cross-validation is
applied for the evaluation metrics in the accuracy
assessment. In order to analyze the efficacy of the ML
algorithms, accuracy assessment is important in the
classification of FLS diseases. The accuracy of each ML
algorithms was evaluated using ground truth data for the
five severity classes of soybean FLS. The confusion
matrix approach was used to assess the performance of
a classification model by comparing the actual classes to
the predictions of the ML model. The overall accuracy
was computed by summing the number of correctly
classified classes and dividing it by the total number of
classes. This overall accuracy is the outcome of ML
algorithms classifying the severity levels of soybean
FLS using leaf hyperspectral data. The ROC measure is
also used to quantify the prediction accuracy of a
predictive model. It is based on the trade-off between the
true positive rate and the false positive rate when
probability threshold is used.

Results and Discussion
Spectral reflectance for raw, first and second
derivatives of FLS disease
Spectral reflectance profile taken from sample spectra is
shown graphically for each severity stages of soybean
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FLS (class 0, 1, 2, 3 and 4) in Figure 6. Basically, the
spectral profile showed a low reflectance in the visible
region with small peak in the green region indicating a
sudden increase beginning at 690 nm reaching a peak in
the NIR region. These are regular for green plant
reflectance spectra. A comparison of profile showed
larger difference in the reflectance between each
severity classes of soybean FLS at some wavelengths
compared to other wavelengths.

In the visible spectrum (607— 690 nm), soybean FLS
with different severity stages were very similar and
many overlapped each other, while in the infrared region
(702 — 966 nm), the spectra of soybean FLS with
different severity classes separated from each other.
Healthy soybean had the highest NIR reflectance
compared to others in 774 nm till 806 nm (Figure 6). The
second highest were soybeans with class 1 and 2.
Soybean FLS with class 4 had the lowest reflectance.

The first derivative of spectral reflectance is shown in
Figure 7(a). Overall, the first derivative of spectral
reflectance of FLS soybean disease exhibited a tiny
reflectance peak about 515 nm and a substantial first
derivative reflectance peak in the red-edge area (679 —
714 nm). Healthy soybean with class O indicates the
highest peak at 717.87nm in the red edge region, which
is more prone to shifting to the right as compared to FLS
soybean disease. The second derivative of spectral
reflectance of FLS soybean disease is shown in Figure
7(b). Second derivative reflectance spectra with FLS
soybean disease showed distinct peaks at 685 nm and
732 nm.
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Figure 6. Original spectral reflectance of FLS disease

The first derivative equation is crucial in plant disease
detection with space of the lesion density function at a
fixed position [28]. The spectrum will become
complicated and complex as the number of disease
symptoms increases. Different stages of disease severity
attributed to the collected spectrum variation when
plants in the particular area facing disease spreads.
Therefore, the first derivative can remove both additive
and multiplicative effects in spectrum [29]. Lu et al. [30]
showed that the first derivative between 500 — 1000 nm
was better in discriminating leaf curl on tomatoes than
the original reflectance spectrum. In general, the first
and the second derivatives indicated the potential for
estimating crop disease because of their insensitivity to
the soil background [31, 32].

Classification of soybean FLS disease using ML
models

Table 1 shows the overall accuracy of ML algorithms
used in the classification of soybean FLS disease.
Random forest and stacking achieved the best overall
accuracy using the selected first and second derivatives
of spectral reflectance. Random forests achieved an
overall accuracy of 84.3% and 77.7% for both selected
first and second derivatives of spectral reflectance,
respectively. The stacking algorithms have improved to
85.9% and 79.1% from 70% and 56.1% on both selected
first and second derivatives of spectral reflectance,
respectively.
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Figure 7. (a) First derivative of spectral reflectance of FLS disease and (b) Second derivative of spectral reflectance
of FLS disease

Table 1. Overall accuracy of ML models

Data Raw First derivative Second First derivative+ Second derivative+
(full) derivative Savitzky- Savitzky-
(full) Golay+feature Golay+feature
selection (genetic selection (genetic
algorithms) algorithms)
Decision tree 55.4 64.7 55.9 65.0 62.7
Random forest 68.4 75.9 69.5 84.3 77.7
Stacking 69.7 70.0 56.1 85.9 79.1
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Decision tree had the lowest and the poorest accuracy
performance even after the feature selection algorithm
was implemented. For example, only small increases
with 0.2% for implementing the feature selection using
the first derivative data. Noticeably, there was not much
difference between the accuracy of decision tree
algorithms using raw data and second derivative.

Based on the above results, incorporating genetic
algorithms (GA) as feature selections has improved the
overall accuracy for most of the ML algorithms since
GA can effectively screen the useful characteristic bands
for soybean FLS disease detection, thereby reducing the
number of variables in the model, and thus producing
high classification accuracy. Our result agrees with the

studies of Chen et al. [33], who proved that genetic
algorithms and following support vector machine is the
best performance model with overall accuracy of 90.7%
for leaves and 92.6% for stems.

Adding to performance analysis, Figure 8 illustrates the
ROC curve for stacking algorithm, which is the best
among the other algorithms. This analysis contributes an
insight into how well the model classify the different
severity classes (classes 0, 1, 2, 3 and 4) of soybean FLS.
Overall, the curve reached a high value for the metric
area under curve, in this case, 95% area of the graph was
under the curve, showing the model is good in
separating the soybean FLS classes.

Figure 8. Stacking model ROC curve for class 0-4: (a) Class 0, (b) Class 1, (¢) Class 2, (d) Class 3 and (e)

Class 4

Conclusions
Based on the results, it was concluded that stacking
algorithm achieved the highest accuracy after genetic
algorithm implementation. Future studies will assess
different feature selection techniques to analyze
hyperspectral reflectance in the classification of crop
disease. Different preprocessing techniques will also be
adopted to ensure the proper removal of noise in
spectrum. Besides, several ML algorithms will be

proposed and applied on the analysis of hyperspectral
reflectance. KNIME integrations provide additional
functionality ~ such  as processing of complex
hyperspectral preprocessing (e.g. Savitzky-Golay), as
well as the use of advanced ML algorithms. Therefore,
the functionality of KNIME as a codeless tool for
analyzing hyperspectral reflectance should be further
investigated in order to confirm its practicality and
usefulness. The results obtained make it possible to
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provide fast implementation of workflow, including
model development for evaluating the degree of crop
disease using hyperspectral reflectance data. Future
studies will utilize other advanced machine learning
algorithms to improve the accuracy of the model.
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