Malaysian Journal of Analytical Sciences, Vol 27 No 3 (2023): 521 - 532

 

EXPLORATION OF NATURAL DEEP EUTECTIC SOLVENT AS THE ALTERNATIVE DISPERSIVE SOLVENT IN DLLME FOR THE EXTRACTION OF ANABOLIC STEROID DRUGS IN WATER

 

(Penerokaan Pelarut Eutektik Semulajadi Sebagai Alternatif Pelarut Serakan dalam DLLME untuk Pengekstrakan Ubat Steroid Anabolik dalam Air)

 

Azreen Asyikin Mhd Kamal1*, Wan Nazihah Wan Ibrahim1, Mohd Sufri Mastuli1, Noorfatimah Yahaya2, Sazlinda Kamaruzaman3, Sheela Chandren4, Nurul Auni Zainal Abidin5, and Nursyamsyila Mat Hadzir1

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia

3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

4Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

5Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch,72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: wannazihah@uitm.edu.my

 

 

Received: 13 February 2023; Accepted: 18 April 2023; Published:  23 June 2023

 

 

Abstract

By combining hydrogen bond donors such as D-sorbitol, glucose, and sucrose with hydrogen bond acceptors like L-proline and lactic acid, a successful preparation of six new types of eco-friendly solvent known as natural deep eutectic solvents (NADES) was achieved. Their capability as dispersive solvent substituting hazardous and non-biodegradability organic solvents was explored in vortex-assisted dispersive liquid-liquid microextraction (VADLLME) method for determination of anabolic steroid drugs in aqueous samples. Optimization combination of hydrogen bond donor-hydrogen bond acceptor and their molar ratio were investigated, and the result showed high viscosity of lactic acid: sorbitol at a molar ratio of 2:1, whereby recorded the highest extraction efficiency towards the determination of nandrolone and testosterone. This optimum NADES combination was then performed in three significant VADLLME procedures, including the volume of NADES as the dispersive solvent, type, and volume of extraction solvent. The VADLLME optimal conditions are as follows: NADES dispersive solvent volume of 500 µL, chloroform as an extraction solvent and extraction solvent volume at 200 µL. Under the optimum conditions, good linearity was achieved (0.5 - 10 mg/L) with the coefficient of determination (R2) of 0.9990 and 0.9996 for the nandrolone and testosterone, respectively. The LOD values were recorded in the range of 0.0020 - 0.0117 mg/L, while LOQ values were recorded in the range of 0.0067 - 0.0392 mg/L, respectively. The developed NADES-VADLLME method was applied for the determination of nandrolone and testosterone in tap water samples, with relative recovery values ranging from 88.63 - 97.23%. Based on the results obtained, the developed method demonstrated excellent sensitivity for the extraction of nandrolone and testosterone in water samples. The prepared NADES showed great potential as an alternative green dispersive solvent for the extraction of anabolic steroids active contaminants in the aquatic system.

 


Keywords: natural deep eutectic solvents, dispersive liquid-liquid microextraction, anabolic steroid drugs, dispersive solvent, green analytical chemistry

 

Abstrak

Dengan menggabungkan penderma ikatan hidrogen seperti D-sorbitol, glukosa, dan sukrosa dengan penerima ikatan hidrogen seperti L-prolin dan asid laktik, penyediaan enam jenis pelarut mesra alam baharu dikenali sebagai pelarut eutektik dalam semulajadi (NADES) telah berjaya disediakan. Keupayaan mereka sebagai pelarut serakan menggantikan pelarut organik berbahaya dan tidak boleh terbiodegradasi telah diterokai dalam kaedah pengekstrakan mikro cecair-cecair serakan dibantu vorteks (VADLLME) untuk penentuan ubat steroid anabolik di dalam sampel akueus. Pengoptimuman gabungan penderma ikatan hidrogen dan nisbah molarnya telah disiasat dan hasilnya menunjukkan kelikatan asid latik:sorbitol yang tinggi pada nisbah molar 2:1 menunjukkan kecekapan pengkestrakan tertinggi terhadap penentuan nandrolon dan testosteron. Gabungan optimum NADES ini kemudiannya dilakukan dalam tiga prosedur utama VADLLME termasuk isipadu NADES sebagai pelarut serakan, jenis dan isipadu pelarut pengekstrakan. Keadaan optimum VADLLME seperti berikut: isipadu pelarut dispersif NADES 500 µL, kloroform sebagai pelarut pengekstrakan dan isipadu pelarut pengekstrakan pada 200 µL. Pada keadaan optimum, kelinearan yang baik telah dicapai (0.5 - 10 mg/L) dengan pekali penentuan (R2) masing-masing 0.9990 dan 0.9996 untuk nandrolon dan testosteron. Nilai LOD direkodkan dalam julat 0.0020 - 0.0117 mg/L manakala nilai LOQ masing-masing direkodkan dalam julat 0.0067 - 0.0392 mg/L. Kaedah NADES-VADLLME yang dibangunkan telah digunakan untuk penentuan nandrolon dan testosteron di dalam sampel air paip, dengan nilai pemulihan antara 88.63 - 97.23%. Berdasarkan keputusan yang diperoleh, kaedah yang dibangunkan menunjukkan sensitiviti yang sangat baik untuk pengestrakan nandrolon dan testosteron dalam sampel air. NADES yang disediakan menunjukkan potensi besar sebagai pelarut dispersif hijau alternatif untuk pengestrakan bahan cemar aktif steroid anabolik dalam sistem akuatik.

 

Kata kunci: pelarut eutektik dalam semulajadi, pengekstrakan mikro cecair-cecair serakan, ubat steroid anabolik, pelarut serakan, kimia analitikal hijau

 


References

1.         Kernas, H. (2019). Use steroids with caution. Retrieved from New Straits Times: https://www.nst.com.my/lifestyle/heal/2019/12/551192/use-steroids-caution. [Access online 15 Mac 2022].

2.         Ghazali, A. (2014). Steroid. Retrieved from MyHealth Kementerian Kesihatan Malaysia: http://www.myhealth.gov.my/en/steroid/. [Access online 15 March 2022].

3.         El Osta, R., Almont, T., Diligent, C., Hubert, N., Eschwège, P. and Hubert, J. (2016). Anabolic steroids abuse and male infertility. Basic and Clinical Andrology, 26(1): 2.

4.         U.S. Food and Drug Administration (FDA) (2018). Drugs of abuse home use test. Retrieved from https://www.fda.gov/medical-devices/drugs-abuse-tests/drugs-abuse-home-use-test. [Access online 16 March 2022].

5.         Sissons, B. (2018). What to know about urine drug screening. Retrieved from Medical News Today: https://www.medicalnewstoday.com/articles/323378. [Access online 20 March 2022].

6.         National Institute on Drug Abuse. (2018). Steroids and other appearance and performance enhancing drugs (APEDs). National Institute on Drug Abuse (NIDA): pp. 1-35.

7.         Buszewski, B. and Szultka, M. (2012). Past, present, and future of solid phase extraction: A review. Critical Reviews in Analytical Chemistry, 42(3): 198-213.

8.         Miličević, N., Panić, M., Valinger, D., Cvjetko Bubalo, M., Benković, M., Jurina, T., Gajdoš Kljusurić, J., Radojčić Redovniković, I. and Jurinjak Tušek, A. (2020). Development of continuously operated aqueous two-phase microextraction process using natural deep eutectic solvents. Separation and Purification Technology, 244: 116746.

9.         Cunha, S. C. and Fernandes, J. O. (2018). Extraction techniques with deep eutectic solvents. In TrAC Trends in Analytical Chemistry, (105): 225-239.

10.      Craveiro, R., Aroso, I., Flammia, V., Carvalho, T., Viciosa, M. T., Dionísio, M., Barreiros, S., Reis, R. L., Duarte, A. R. C. and Paiva, A. (2016). Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids, 215: 534-540.

11.      Santana-Mayor, Á., Socas-Rodríguez, B., Rodríguez-Ramos, R., Herrera-Herrera, A. V. and Rodríguez-Delgado, M. Á. (2021). Quality assessment of environmental water by a simple and fast non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure combined with liquid chromatography tandem mass spectrometry for the determination of plastic migrants. Analytical and Bioanalytical Chemistry, 413(7): 1967-1981.

12.      Khezeli, T., Daneshfar, A. and Sahraei, R. (2016). A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta, 150: 577-585.

13.      Liu, W., Zong, B., Wang, X., Cai, J. and Yu, J. (2019). A highly efficient vortex-assisted liquid-liquid microextraction based on natural deep eutectic solvent for the determination of Sudan I in food samples. RSC Advances, 9(30): 17432-17439.

14.      Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R. and Choi, Y. H. (2018). Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21(6): 628-638.

15.      Leong, M. I., Fuh, M. R. and Huang, S. Da. (2014). Beyond dispersive liquid-liquid microextraction. Journal of Chromatography A, 1335: 2-14.

16.      Saraji, M. and Boroujeni, M. K. (2014). Recent developments in dispersive liquid-liquid microextraction microextraction techniques. Analytical and Bioanalytical Chemistry, 406: 2027-2066.

17.      Taylor, A. E., Keevil, B. and Huhtaniemi, I. T. (2015). Mass spectrometry and immunoassay: How to measure steroid hormones today and tomorrow. European Journal of Endocrinology, 173(2): D1-D12.

18.      Koal, T., Schmiederer, D., Pham-Tuan, H., Röhring, C. and Rauh, M. (2012). Standardized LC-MS/MS based steroid hormone profile-analysis. Journal of Steroid Biochemistry and Molecular Biology, 129(3-5): 129-138.

19.      Dmitrieva, E., Temerdashev, A., Azaryan, A. and Gashimova, E. (2020). Quantification of steroid hormones in human urine by DLLME and UHPLC-HRMS detection. Journal of Chromatography B, 1159: 122390.

20.      Elik, A., Demirbas, A. and Altunay, N. (2019). Developing a new and simple natural deep eutectic solvent based ultrasonic-assisted microextraction procedure for determination and preconcentration of As and Se from rice samples. Analytical Methods, 11(27): 3429-3438.

21.      Carbonell-Rozas, L., Canales, R., Lara, F. J., García-Campaña, A. M. and Silva, M. F. (2021). A natural deep eutectic solvent as a novel dispersive solvent in dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of pesticide residues. Analytical and Bioanalytical Chemistry, 413(25): 6413-6424.

22.      Shafie, M. H., Yusof, R. and Gan, C. Y. (2019). Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. Journal of Molecular Liquids, 288: 111081.

23.      Ortega-Zamora, C., González-Sálamo, J., Hernández-Sánchez, C. and Hernández-Borges, J. (2020). Menthol-based deep eutectic solvent dispersive liquid–liquid microextraction: a simple and quick approach for the analysis of phthalic acid esters from water and beverage samples. ACS Sustainable Chemistry & Engineering, 8(23): 8783-8794.

24.      Mogaddam, M. R. A., Nemati, M., Farajzadeh, M. A., Lotfipour, F., Nabil, A. A. A., Mohebbi, A. and Ghorbanpour, H. (2022). Application of natural deep eutectic solvents-based in-syringe dispersive liquid-liquid microextraction for the extraction of five acaricides in egg samples. International Journal of Environmental Analytical Chemistry, 102(16): 3806-3821

25.      Santana-Mayor, A., Herrera-Herrera, A. V., Rodriguez-Ramos, R., Socas-Rodriguez, B. and Rodriguez-Delgado, M. A. (2021). Development of a green alternative vortex-assisted dispersive liquid–liquid microextraction based on natural hydrophobic deep eutectic solvents for the analysis of phthalate esters in soft drinks. ACS Sustainable Chemistry & Engineering, 9(5): 2161-2170.

26.      Liu, X., (2021). IR spectrum and characteristics absorption bands. Retrieved from Kwantlen Polytechnic University: https://kpu.pressbooks.pub/organicchemistry/chapter/6-3-ir-spectrum-and-characteristic-absorpt

         ion-bands/. [Access online 08 February 2023].

27.      Grau, J., Azorín, C., Benedé, J. L., Chisvert, A. and Salvador, A. (2022). Use of green alternative solvents in dispersive liquid‐liquid microextraction: A review. Journal of Separation Science, 45(1): 210-222.

28.      Santana, A. P. R., Mora-Vargas, J. A., Guimarães, T. G. S., Amaral, C. D. B., Oliveira, A. and Gonzalez, M. H. (2019). Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. Journal of Molecular Liquids, 293: 111452.

29.      Elencovan, V., Yahaya, N., Raoov, M., Nadhirah, N. and Zain, M. (2022). Exploring a novel silicone surfactant-based deep eutectic solvent functionalized magnetic iron particles for the extraction of organophosphorus pesticides in vegetable samples. Food Chemistry, 396: 133670.

30.      Matong, J., Mpupa, A. and Nomngongo, P. N. (2018). Ultrasound assisted-homogeneous liquid-liquid phase microextraction based on deep eutectic solvents and ethyl acetate for preconcentration of selected organochlorine pesticides in water samples. Eurasian Journal of Analytical Chemistry, 13(5): 59.

31.      Barfi, B., Asghari, A., Rajabi, M., Goochani Moghadam, A., Mirkhani, N. and Ahmadi, F. (2015). Comparison of ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. Journal of Pharmaceutical and Biomedical Analysis, 111: 297-305.

32.      Kintz, P., Gheddar, L. and Raul, J. S. (2021). Simultaneous testing for anabolic steroids in human hair specimens collected from various anatomic locations has several advantages when compared with the standard head hair analysis. Drug Testing and Analysis, 13(7): 1445-1451.

33.      Elencovan, V., Joseph, J., Yahaya, N., Abdul Samad, N., Raoov, M., Lim, V. and Zain, N. N. M. (2022). Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid–liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples. Food Chemistry, 368: 130835.

34.      Chang, C. C. and Huang, S. Da. (2010). Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography. Analytica Chimica Acta, 662(1): 39-43.

35.      American Society of Health-System Pharmacists (2019). Testosterone injection. Retrieved from https://tinyurl.com/5ycvs3py. [Access online 27 March 2023].