Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 521 - 532
EXPLORATION OF NATURAL DEEP EUTECTIC SOLVENT AS THE
ALTERNATIVE DISPERSIVE SOLVENT IN DLLME FOR THE EXTRACTION OF ANABOLIC STEROID
DRUGS IN WATER
(Penerokaan Pelarut Eutektik Semulajadi Sebagai Alternatif
Pelarut Serakan dalam DLLME untuk Pengekstrakan Ubat Steroid Anabolik dalam Air)
Azreen
Asyikin Mhd Kamal1*, Wan
Nazihah Wan Ibrahim1, Mohd Sufri Mastuli1, Noorfatimah Yahaya2, Sazlinda Kamaruzaman3, Sheela Chandren4, Nurul
Auni Zainal Abidin5, and Nursyamsyila
Mat Hadzir1
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Integrative Medicine Cluster,
Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala
Batas, Penang, Malaysia
3Department of Chemistry, Faculty
of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
4Department
of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM
Johor Bahru, Johor, Malaysia
5Faculty of Applied Sciences, Universiti
Teknologi MARA, Negeri Sembilan Branch,72000 Kuala Pilah, Negeri Sembilan,
Malaysia
*Corresponding author: wannazihah@uitm.edu.my
Received: 13 February 2023; Accepted:
18 April 2023; Published: 23 June 2023
Abstract
By combining hydrogen bond donors such as
D-sorbitol, glucose, and sucrose with hydrogen bond acceptors like L-proline
and lactic acid, a successful preparation of six new types of eco-friendly
solvent known as natural deep eutectic solvents (NADES) was achieved. Their capability as
dispersive solvent substituting hazardous and non-biodegradability organic
solvents was explored in vortex-assisted dispersive liquid-liquid
microextraction (VADLLME) method for determination of anabolic steroid drugs in
aqueous samples. Optimization combination of hydrogen bond donor-hydrogen bond
acceptor and their molar ratio were investigated, and the result showed high
viscosity of lactic acid: sorbitol at a molar ratio of 2:1, whereby recorded
the highest extraction efficiency towards the determination of nandrolone and
testosterone. This optimum NADES combination was then performed in three
significant VADLLME procedures, including the volume of NADES as the dispersive
solvent, type, and volume of extraction solvent. The VADLLME optimal conditions
are as follows: NADES dispersive solvent volume of 500 µL, chloroform as an
extraction solvent and extraction solvent volume at 200 µL. Under the optimum
conditions, good linearity was achieved (0.5 - 10 mg/L) with the coefficient of
determination (R2) of 0.9990 and 0.9996 for the nandrolone and
testosterone, respectively. The LOD values were recorded in the range of 0.0020
- 0.0117 mg/L, while LOQ values were recorded in the range of 0.0067 - 0.0392
mg/L, respectively. The developed NADES-VADLLME method was applied for the
determination of nandrolone and testosterone in tap water samples, with
relative recovery values ranging from 88.63 - 97.23%. Based on the results
obtained, the developed method demonstrated excellent sensitivity for the
extraction of nandrolone and testosterone in water samples. The prepared NADES
showed great potential as an alternative green dispersive solvent for the
extraction of anabolic steroids active contaminants in the aquatic system.
Keywords: natural
deep eutectic solvents, dispersive
liquid-liquid microextraction, anabolic steroid drugs, dispersive solvent, green analytical chemistry
Abstrak
Dengan
menggabungkan penderma ikatan hidrogen seperti D-sorbitol, glukosa, dan sukrosa
dengan penerima ikatan hidrogen seperti L-prolin dan asid laktik, penyediaan
enam jenis pelarut mesra alam baharu dikenali sebagai pelarut eutektik dalam
semulajadi (NADES) telah berjaya disediakan. Keupayaan mereka sebagai pelarut
serakan menggantikan pelarut organik berbahaya dan tidak boleh terbiodegradasi
telah diterokai dalam kaedah pengekstrakan mikro cecair-cecair serakan dibantu
vorteks (VADLLME) untuk penentuan ubat steroid anabolik di dalam sampel akueus.
Pengoptimuman gabungan penderma ikatan hidrogen dan nisbah molarnya telah
disiasat dan hasilnya menunjukkan kelikatan asid latik:sorbitol yang tinggi
pada nisbah molar 2:1 menunjukkan kecekapan pengkestrakan tertinggi terhadap
penentuan nandrolon dan testosteron. Gabungan optimum NADES ini kemudiannya
dilakukan dalam tiga prosedur utama VADLLME termasuk isipadu NADES sebagai
pelarut serakan, jenis dan isipadu pelarut pengekstrakan. Keadaan optimum
VADLLME seperti berikut: isipadu pelarut dispersif NADES 500 µL, kloroform sebagai pelarut pengekstrakan dan isipadu
pelarut pengekstrakan pada 200 µL. Pada
keadaan optimum, kelinearan yang baik telah dicapai (0.5 - 10 mg/L) dengan
pekali penentuan (R2) masing-masing 0.9990 dan 0.9996 untuk
nandrolon dan testosteron. Nilai LOD direkodkan dalam julat 0.0020 - 0.0117
mg/L manakala nilai LOQ masing-masing direkodkan dalam julat 0.0067 - 0.0392
mg/L. Kaedah NADES-VADLLME yang dibangunkan telah digunakan untuk penentuan
nandrolon dan testosteron di dalam sampel air paip, dengan nilai pemulihan
antara 88.63 - 97.23%. Berdasarkan keputusan yang diperoleh, kaedah yang
dibangunkan menunjukkan sensitiviti yang sangat baik untuk pengestrakan
nandrolon dan testosteron dalam sampel air. NADES yang disediakan menunjukkan
potensi besar sebagai pelarut dispersif hijau alternatif untuk pengestrakan
bahan cemar aktif steroid anabolik dalam sistem akuatik.
Kata kunci: pelarut
eutektik dalam semulajadi, pengekstrakan
mikro cecair-cecair serakan, ubat
steroid anabolik, pelarut serakan,
kimia analitikal hijau
References
1.
Kernas, H. (2019). Use
steroids with caution. Retrieved from New Straits Times: https://www.nst.com.my/lifestyle/heal/2019/12/551192/use-steroids-caution.
[Access online 15 Mac 2022].
2.
Ghazali,
A. (2014). Steroid. Retrieved from MyHealth
Kementerian Kesihatan Malaysia: http://www.myhealth.gov.my/en/steroid/. [Access
online 15 March 2022].
3.
El Osta, R., Almont, T.,
Diligent, C., Hubert, N., Eschwège, P. and Hubert, J.
(2016). Anabolic
steroids abuse and male infertility. Basic and Clinical Andrology,
26(1): 2.
4.
U.S. Food and Drug Administration (FDA) (2018).
Drugs of abuse home use test. Retrieved from https://www.fda.gov/medical-devices/drugs-abuse-tests/drugs-abuse-home-use-test. [Access online 16 March
2022].
5.
Sissons, B. (2018). What to
know about urine drug screening. Retrieved from Medical News Today:
https://www.medicalnewstoday.com/articles/323378. [Access online 20 March
2022].
6.
National Institute on Drug Abuse. (2018). Steroids
and other appearance and performance enhancing drugs (APEDs). National Institute
on Drug Abuse (NIDA): pp. 1-35.
7.
Buszewski,
B. and Szultka, M. (2012). Past, present, and future
of solid phase extraction: A review. Critical Reviews in Analytical
Chemistry, 42(3): 198-213.
8.
Miličević, N., Panić, M., Valinger, D., Cvjetko Bubalo, M., Benković, M., Jurina, T., Gajdoš Kljusurić, J., Radojčić
Redovniković, I. and Jurinjak
Tušek, A. (2020). Development of continuously
operated aqueous two-phase microextraction process using natural deep eutectic
solvents. Separation and Purification Technology, 244: 116746.
9.
Cunha,
S. C. and Fernandes, J. O. (2018). Extraction
techniques with deep eutectic solvents. In TrAC
Trends in Analytical Chemistry, (105): 225-239.
10. Craveiro, R., Aroso, I., Flammia, V., Carvalho, T., Viciosa,
M. T., Dionísio, M., Barreiros,
S., Reis, R. L., Duarte, A. R. C. and Paiva, A. (2016). Properties and thermal
behavior of natural deep eutectic solvents. Journal of Molecular Liquids,
215: 534-540.
11. Santana-Mayor, Á., Socas-Rodríguez,
B., Rodríguez-Ramos, R., Herrera-Herrera, A. V. and Rodríguez-Delgado, M. Á.
(2021). Quality assessment of environmental water by a simple and fast
non-ionic hydrophobic natural deep eutectic solvent-based extraction procedure
combined with liquid chromatography tandem mass spectrometry for the
determination of plastic migrants. Analytical and Bioanalytical Chemistry,
413(7): 1967-1981.
12. Khezeli, T., Daneshfar, A. and Sahraei, R. (2016). A green ultrasonic-assisted
liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV
determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame
and cinnamon oil. Talanta, 150: 577-585.
13. Liu, W., Zong, B., Wang,
X., Cai, J. and Yu, J. (2019). A highly efficient vortex-assisted liquid-liquid
microextraction based on natural deep eutectic solvent for the determination of
Sudan I in food samples. RSC Advances, 9(30): 17432-17439.
14. Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R. and Choi, Y. H. (2018). Green solvents from ionic
liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21(6): 628-638.
15. Leong, M. I., Fuh, M. R.
and Huang, S. Da. (2014). Beyond dispersive liquid-liquid microextraction. Journal
of Chromatography A, 1335: 2-14.
16. Saraji, M. and Boroujeni, M. K. (2014). Recent developments in dispersive liquid-liquid
microextraction microextraction techniques. Analytical
and Bioanalytical Chemistry, 406: 2027-2066.
17. Taylor, A. E., Keevil,
B. and Huhtaniemi, I. T. (2015). Mass spectrometry
and immunoassay: How to measure steroid hormones today and tomorrow. European
Journal of Endocrinology, 173(2): D1-D12.
18. Koal, T., Schmiederer, D., Pham-Tuan, H., Röhring,
C. and Rauh, M. (2012). Standardized LC-MS/MS based
steroid hormone profile-analysis. Journal of Steroid Biochemistry and
Molecular Biology, 129(3-5): 129-138.
19. Dmitrieva, E., Temerdashev,
A., Azaryan, A. and Gashimova,
E. (2020). Quantification of steroid hormones in human urine by DLLME and
UHPLC-HRMS detection. Journal of Chromatography B, 1159: 122390.
20. Elik, A., Demirbas, A. and Altunay, N.
(2019). Developing a new and simple natural deep eutectic solvent based
ultrasonic-assisted microextraction procedure for determination and
preconcentration of As and Se from rice samples. Analytical Methods,
11(27): 3429-3438.
21. Carbonell-Rozas, L., Canales, R., Lara, F.
J., García-Campaña, A. M. and Silva, M. F. (2021). A natural deep eutectic solvent as a novel
dispersive solvent in dispersive liquid-liquid microextraction based on
solidification of floating organic droplet for the determination of pesticide
residues. Analytical and Bioanalytical Chemistry, 413(25): 6413-6424.
22. Shafie,
M. H., Yusof, R. and Gan, C. Y. (2019). Synthesis of citric acid
monohydrate-choline chloride based deep eutectic solvents (DES) and
characterization of their physicochemical properties. Journal of
Molecular Liquids, 288: 111081.
23. Ortega-Zamora,
C., González-Sálamo, J., Hernández-Sánchez, C. and Hernández-Borges,
J. (2020). Menthol-based deep eutectic solvent dispersive liquid–liquid
microextraction: a simple and quick approach for the analysis of phthalic acid
esters from water and beverage samples. ACS Sustainable Chemistry &
Engineering, 8(23): 8783-8794.
24. Mogaddam, M. R. A., Nemati, M., Farajzadeh,
M. A., Lotfipour, F., Nabil, A. A. A., Mohebbi, A. and Ghorbanpour, H.
(2022). Application of natural deep eutectic solvents-based in-syringe
dispersive liquid-liquid microextraction for the extraction of five acaricides
in egg samples. International Journal of Environmental Analytical
Chemistry, 102(16): 3806-3821
25. Santana-Mayor,
A., Herrera-Herrera, A. V., Rodriguez-Ramos, R., Socas-Rodriguez,
B. and Rodriguez-Delgado, M. A. (2021). Development of a green alternative
vortex-assisted dispersive liquid–liquid microextraction based on natural
hydrophobic deep eutectic solvents for the analysis of phthalate esters in soft
drinks. ACS Sustainable Chemistry & Engineering, 9(5):
2161-2170.
26. Liu, X., (2021). IR spectrum and characteristics absorption
bands. Retrieved from Kwantlen Polytechnic University: https://kpu.pressbooks.pub/organicchemistry/chapter/6-3-ir-spectrum-and-characteristic-absorpt
ion-bands/. [Access online 08 February
2023].
27. Grau, J., Azorín, C., Benedé, J. L., Chisvert, A. and Salvador, A. (2022). Use of green
alternative solvents in dispersive liquid‐liquid microextraction: A
review. Journal of Separation Science, 45(1): 210-222.
28. Santana, A. P. R., Mora-Vargas, J. A., Guimarães, T. G. S., Amaral, C. D. B., Oliveira, A. and
Gonzalez, M. H. (2019). Sustainable synthesis of natural deep eutectic solvents
(NADES) by different methods. Journal of Molecular Liquids, 293: 111452.
29. Elencovan, V., Yahaya, N., Raoov,
M., Nadhirah, N. and Zain, M. (2022). Exploring a
novel silicone surfactant-based deep eutectic solvent functionalized magnetic
iron particles for the extraction of organophosphorus pesticides in vegetable
samples. Food Chemistry, 396: 133670.
30. Matong, J., Mpupa, A. and Nomngongo, P. N. (2018). Ultrasound assisted-homogeneous
liquid-liquid phase microextraction based on deep eutectic solvents and ethyl
acetate for preconcentration of selected organochlorine pesticides in water
samples. Eurasian Journal of Analytical Chemistry, 13(5): 59.
31. Barfi, B., Asghari, A., Rajabi, M., Goochani Moghadam,
A., Mirkhani, N. and Ahmadi, F. (2015). Comparison of
ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density
solvent-based dispersive liquid-liquid microextraction methods for
determination of nonsteroidal anti-inflammatory drugs in human urine samples. Journal
of Pharmaceutical and Biomedical Analysis, 111: 297-305.
32. Kintz, P., Gheddar, L. and
Raul, J. S. (2021). Simultaneous testing for anabolic steroids in human hair
specimens collected from various anatomic locations has several advantages when
compared with the standard head hair analysis. Drug Testing and Analysis,
13(7): 1445-1451.
33. Elencovan, V., Joseph, J., Yahaya, N., Abdul Samad, N., Raoov, M., Lim, V. and Zain, N. N. M. (2022). Exploring a
novel deep eutectic solvents combined with vortex assisted dispersive
liquid–liquid microextraction and its toxicity for organophosphorus pesticides
analysis from honey and fruit samples. Food Chemistry, 368: 130835.
34. Chang, C. C. and Huang, S. Da. (2010).
Determination of the steroid hormone levels in water samples by dispersive
liquid-liquid microextraction with solidification of a floating organic drop
followed by high-performance liquid chromatography. Analytica Chimica Acta, 662(1): 39-43.
35.
American Society of Health-System Pharmacists
(2019). Testosterone injection. Retrieved from https://tinyurl.com/5ycvs3py. [Access online 27 March 2023].