Malaysian Journal of Analytical
Sciences, Vol 27
No 3 (2023): 488 - 498
ANALYSIS OF HYPERSPECTRAL REFLECTANCE FOR DISEASE CLASSIFICATION OF SOYBEAN
FROGEYE LEAF SPOT
USING KNIME ANALYTICS
(Analisis Refleksi Hiperspektra untuk
Klasifikasi Penyakit Bintik Daun Frogeye
Kacang Soya Menggunakan Analisis
KNIME)
Yuhao Ang, and Helmi Zulhaidi Mohd Shafri
Department
of Civil Engineering and Geospatial Information Science Research Centre
(GISRC),
Faculty of
Engineering,
Universiti
Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
*Corresponding author:
helmi@upm.edu.my
Received: 10 October 2022; Accepted:
13 April 2023; Published: 23 June 2023
Abstract
The feasibility of classifying soybean frogeye
leaf spot (FLS) has been investigated with the advance of hyperspectral
technology. Hyperspectral reflectance data of healthy and FLS disease soybeans
were used. The first step was to smooth out the data by using a filtering
technique namely Savitzky-Golay to eliminate the
noise of the spectrum. In order to select the most significant wavelengths,
genetic algorithm (GA) was used as a forward feature selection technique. This
analysis involved the implementation of machine learning (ML) algorithms,
including decision trees, random forests, and stacking, to classify soybean FLS
severity levels. Preprocessing ML steps including converting class numbers to
strings, identifying and removing missing values, partitioning and normalizing
data were implemented prior to the development of the model. Overall accuracy
and the receiver operating characteristic curve measure were used to assess the
performance of this analysis. All of these steps were carried out through KNIME
analytical platform. Based on the results of the analysis, GA-stacking and
random forest algorithms achieved the best overall accuracy of 85.9% and 84.3%,
respectively. In terms of reproducibility, data flow control, data exploration,
analysis and visualization, KNIME Analytics Platform provided great convenience
in connecting tools graphically and ensuring the same results on different
operating systems. The rapid implementation of workflow in KNIME Analytics
Platform provided the opportunity to process hyperspectral reflectance data to
classify crop diseases.
Keywords: hyperspectral reflectance,
forward feature selection, genetic algorithms, machine learning, KNIME
analytics platform
Abstrak
Kebolehlaksanaan
mengklasifikasikan bintik daun frogeye kacang soya (FLS) telah disiasat dengan
kemajuan teknologi hiperspektral. Data reflektan hiperspektral kacang soya yang
sihat dan penyakit FLS telah digunakan. Langkah pertama ialah melicinkan data dengan
menggunakan teknik penapisan iaitu Savitzky-Golay untuk menghapuskan hingar
spektrum. Untuk memilih panjang gelombang yang paling ketara, algoritma genetik
(GA) digunakan sebagai teknik pemilihan ciri ke hadapan. Analisis ini
melibatkan pelaksanaan algoritma pembelajaran mesin (ML), termasuk pohon
keputusan, hutan rawak, dan pemadatan, untuk mengklasifikasikan tahap keparahan
FLS kacang kedelai. Langkah-langkah pra pemprosesan ML termasuk menukar nombor
kelas kepada rentetan, mengenal pasti dan mengeluarkan nilai yang hilang,
mempartisi dan menormalisasi data telah dilaksanakan sebelum pembangunan model.
Ketepatan keseluruhan dan ukuran lengkung ciri operasi penerima digunakan untuk
menilai prestasi analisis ini. Kesemua langkah ini telah dijalankan melalui
platform analisis KNIME. Berdasarkan keputusan analisis, algoritma GA-stacking
dan random forest masing-masing mencapai ketepatan keseluruhan terbaik iaitu
85.9% dan 84.3%. Dari segi kebolehulangan, kawalan aliran data, penerokaan
data, analisis dan visualisasi, Platform Analisis KNIME memberikan kemudahan
besar dalam menyambungkan alatan secara grafik dan memastikan hasil yang sama
pada sistem pengendalian yang berbeza. Pelaksanaan pantas aliran kerja dalam
Platform Analisis KNIME memberi peluang untuk memproses data reflektan
hiperspektral dalam klasifikasi penyakit tanaman.
Kata kunci: reflektan hiperspektral, pemilihan ciri ke hadapan, algoritma
genetik, pembelajaran mesin, platform analisis KNIME
References
1. USDA Foreign
Agricultural Service (2022). World Agricultural Production. Access from
https://www.fas.usda.gov/data/world-agricultural-production.
2. Dashiell, K. E. and Akem, C. N. (1991). Yield losses in soybeans from frogeye
leaf spot caused by Cercospora sojina. Crop
Protection, 10(6): 465-468.
3. Mwase, W. F. and Kapooria, R. G. (2001). Incidence and severity of frogeye
leaf spot and associated yield losses in soybeans in agroecological zone II of
Zambia. Mycopathologia, 149(2): 73-78.
4. Mian, M. A. R., Missaoui, A. M., Walker, D. R., Phillips, D. V. and Boerma, H. R. (2008). Frogeye leaf spot of soybean: A
review and proposed race designations for isolates of Cercospora sojina Hara. Crop Science, 48(1): 14-24.
5. George, A. P.,
Broadley, R. H., Nissen, R. J. and Ward, G. (2002). Effects of new
rest-breaking chemicals on flowering, shoot production and yield of subtropical
tree crops. Acta Horticulturae, 575(4): 835-840.
6. Bukhari, K. A. I. M.,
Nithya, K., Valluvaparidasan, V., Paranidharan,
V. and Velazhahan, R. (2012). Detection of Colletotrichum falcatum
causing red rot of sugarcane by enzyme-linked immunosorbent assay. Archives
of Phytopathology and Plant Protection, 45(7): 823-830.
7. Clevers, J. G. P. W., Kooistra, L. and Schaepman, M. E.
(2010). Estimating canopy water content using hyperspectral remote sensing
data. International Journal of Applied Earth Observation and Geoinformation,
12(2): 119-125.
8. Peng, Y., Zhang, M.,
Xu, Z., Yang, T., Su, Y., Zhou, T., Wang, H., Wang,
Y. and Lin, Y., 2020. Estimation of leaf nutrition status in degraded
vegetation based on field survey and hyperspectral data. Scientific Reports,
10(1): 1-12.
9. Sonobe, R., Yamashita, H., Nofrizal, A. Y., Seki, H., Morita, A. and Ikka, T. (2021). Use of spectral reflectance from a compact
spectrometer to assess chlorophyll content in Zizania latifolia. Geocarto
International, 2021: 1-13.
10. Liu, Z. Y., Shi, J. J.,
Zhang, L. W. and Huang, J. F. (2010). Discrimination of rice panicles by
hyperspectral reflectance data based on principal component analysis and
support vector classification. Journal of Zhejiang University: Science B,
11(1): 71-78.
11. Sankaran, S. and Ehsani, R. (2010). Spectral evaluations for developing
optical methods of Huanglongbing (HLB) detection in citrus
orchards. Biosystems, 2021: 121-123.
12. Izzuddin, M. A., Seman Idris, A., Nisfariza, M.
N., Nordiana, A. A., Shafri, H. Z. M. and Ezzati, B. (2017). The development of spectral indices for
early detection of Ganoderma disease in oil palm seedlings. International
Journal of Remote Sensing, 38(23):
6505-6527.
13. Vigier, B. J., Pattey, E. and Strachan, I. B. (2004). Narrowband
vegetation indexes and detection of disease damage in soybeans. IEEE
Geoscience and Remote Sensing Letters, 1(4): 255-259.
14. Zhang, N., Yang, G.,
Pan, Y., Yang, X., Chen, L. and Zhao, C. (2020). A review of advanced
technologies and development for hyperspectral-based plant disease detection in
the past three decades. Remote Sensing, 12(19): 1-34.
15. Wójtowicz, A., Piekarczyk, J., Czernecki, B. and
Ratajkiewicz, H. (2021). A random forest model for
the classification of wheat and rye leaf rust symptoms based on pure spectra at
leaf scale. Journal of Photochemistry and Photobiology B: Biology, 223: 112278.
16. Chen, X., Dong, Z.,
Liu, J., Wang, H., Zhang, Y., Chen, T., Du, Y., Shao, L. and Xie, J. (2020). Hyperspectral characteristics and
quantitative analysis of leaf chlorophyll by reflectance spectroscopy based on
a genetic algorithm in combination with partial least squares regression. Spectrochimica Acta - Part A: Molecular and
Biomolecular Spectroscopy, 243:
118786.
17. Liu, Z. Y., Wu, H. F.
and Huang, J. F. (2010). Application of neural networks to discriminate fungal
infection levels in rice panicles using hyperspectral reflectance and principal
components analysis. Computers and Electronics in Agriculture, 72(2): 99-106.
18. Zhu, H., Chu, B.,
Zhang, C., Liu, F., Jiang, L. and He, Y. (2017). Hyperspectral imaging for presymptomatic detection of tobacco disease with successive
projections algorithm and machine-learning classifiers. Scientific Reports,
7(1): 1-12.
19. Wei, X., Johnson, M.
A., Langston, D. B., Mehl, H. L. and Li, S. (2021).
Identifying optimal wavelengths as disease signatures using hyperspectral
sensor and machine learning. Remote Sensing, 13(14): 1314283.
20. Tian, L., Xue, B., Wang, Z., Li, D., Yao, X., Cao, Q., Zhu, Y., Cao,
W. and Cheng, T. (2021). Spectroscopic detection of rice leaf blast infection
from asymptomatic to mild stages with integrated machine learning and feature
selection. Remote Sensing of Environment, 257(8): 112350.
21. Zhang, J., Cheng, T.,
Guo, W., Xu, X., Qiao, H., Xie,
Y. and Ma, X. (2021). Leaf area index estimation model for UAV image
hyperspectral data based on wavelength variable selection and machine learning
methods. Plant Methods, 17(1):
1-14.
22. Al-Saddik,
H., Simon, J. C. and Cointault, F. (2019). Assessment
of the optimal spectral bands for designing a sensor for vineyard disease
detection: The case of ‘Flavescence dorée.’ Precision
Agriculture, 20(2):
398-422.
23. Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum,
G. A. and Berthold, M. R. (2017). KNIME for reproducible cross-domain analysis
of life science data. Journal of Biotechnology, 261(July): 149-156.
24. Liu, S., Yu, H., Sui,
Y., Zhou, H., Zhang, J., Kong, L., Dang, J. and Zhang, L. (2021).
Classification of soybean frogeye leaf spot disease using leaf hyperspectral
reflectance. PLoS ONE, 16(9): 1-23.
25. Ruffin, C. and King, R.
L. (1999). The analysis of hyperspectral data using Savitzky-Golay
filtering-theoretical basis (part 1). In IGARSS’99 Proceedings: Remote
Sensing of the System Earth—A Challenge for the 21st Century: IEEE 1999
International Geoscience and Remote Sensing Symposium, 28 June–2 July 1999,
Congress Centrum Hamburg: pp. 756-758.
26. Džeroski, S. and Ženko, B. (2004). Is combining classifiers with stacking
better than selecting the best one? Machine Learning, 54(3): 255-273.
27. Hall, M., Frank, E.,
Holmes, G., Pfahringer, B., Reutemann,
P. and Witten, I. H. (2009). The WEKA data mining software: An update. ACM
SIGKDD Explorations Newsletter, 11(1):
10-18.
28. Gregory, P. H. (1968).
Interpreting plant disease dispersal gradients. Annual review of Phytopathology, 6(1): 189-212.
29. Tsai, F. and Philpot,
W. (1998). Derivative analysis of hyperspectral data. Remote Sensing of Environment, 66(1): 41-51.
30. Lu, J., Zhou, M., Gao,
Y. and Jiang, H. (2018). Using hyperspectral imaging to discriminate yellow
leaf curl disease in tomato leaves. Precision
Agriculture, 19(3): 379-394.
31. Li, Y., Demetriades-Shah, T. H., Kanemasu,
E. T., Shultis, J. K. and Kirkham, M. B. (1993). Use
of second derivatives of canopy reflectance for monitoring prairie vegetation
over different soil backgrounds. Remote Sensing of Environment, 44(1): 81-87.
32. Muhammed, H. H. (2005).
Hyperspectral crop reflectance data for characterising
and estimating fungal disease severity in wheat. Biosystems Engineering,
91(1): 9-20.
33. Cen, Y., Huang, Y., Hu,
S., Zhang, L. and Zhang, J. (2022). Early detection of bacterial wilt in tomato
with portable. Remote Sensing, 14(12):
2882.