Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 314 - 328

 

A REVIEW OF THE SYNTHESIS AND MODIFICATION OF PVA-ALGINATE AS BINDER OF METAL ATOM

 

(Ulasan Tentang Sintesis dan Pengubahsuaian PVA-Alginat Sebagai Pengikat Atom Logam)

 

Norul Azilah Abdul Rahman1,2*, Mazni Musa1, Karimah Kassim3, and Nur Rahimah Said1*

 

1School of Chemistry and Environment,

Universiti Teknologi MARA, Cawangan Negeri Sembilan,

Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Institute of Science (IOS),

Level 3, Block C, Kompleks Inspirasi,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: nurra1435@uitm.edu.my

 

 

Received: 23 September 2022; Accepted: 17 January 2023; Published:  19 April 2023

 

 

Abstract

PVA-alginate hydrogel is formed by mixing PVA and alginate with a simple method and then dropping it into a cross-linking agent that leads to rapid gelation. The PVA-alginate hydrogel can be synthesised in water due to the high solubility of starting material. Both compounds have hydroxyl group (-OH) in their structure that helps in terms of solubility and is consequently classified as an inexpensive, safe, and environmentally friendly synthesis method. Although its starting material is soluble in water, the PVA-alginate hydrogel is lessened. This is because the formation of hydrogen bonding of -OH in the PVA-alginate structure reduces its ability. Meanwhile, the presence of carboxyl ion (-COO-) in the PVA-alginate hydrogel structure acts as an active site for the metal ion to bind. Some researchers modified the PVA-alginate hydrogel to improve the binding effect to metal by increasing the active sites of metal. The PVA-alginate hydrogel can act as a metal ion binder to remove heavy metals such example from transition metal elements in wastewater that are considered harmful to the ecosystem. This review provides an overview of PVA-alginate hydrogel design and its modification to improve the binding properties, and cross-linking. Finally, the limitation of PVA-alginate and its modification were revealed with suggestions for future research in the catalytic study.

 

Keywords: PVA-alginate, metal binder, metal

 

Abstrak

Hidrogel PVA-alginat dihasilkan melalui percampuran PVA dan alginat dengan mengunakan kaedah yang mudah dan kemudian dititiskan ke dalam agen penghubung silang untuk mempercepatkan gelatin. Hidrogel PVA-alginat boleh disintesis dalam air kerana keterlarutan bahan permulaan yang tinggi. Kedua-dua sebatian mempunyai kumpulan hidroksil (-OH) dalam strukturnya yang membantu dari segi keterlarutan dan seterusnya dikelaskan sebagai kaedah sintesis yang murah, selamat dan mesra alam. Walaupun bahan permulaannya mempunyai sifat larut dalam air, PVA-algina berkurangan disebabkan pembentukan ikatan hidrogen -OH dalam struktur hydrogel PVA-alginat mengurangkan keupayaannya. Sementara itu, kehadiran ion karboksil (-COO-) dalam struktur PVA-alginat bertindak sebagai tapak aktif untuk pengikat ion logam. Sesetengah penyelidik mengubah suai hydrogel PVA-alginat untuk meningkatkan kesan pengikatan kepada logam dengan meningkatkan tapak aktif logam. Hidrogel PVA-alginat boleh bertindak sebagai pengikat ion logam untuk membuang logam berat contohnya daripada unsur logam peralihan dalam air sisa yang dianggap berbahaya kepada ekosistem. Kajian ini memberikan gambaran keseluruhan reka bentuk hidrogel PVA-alginat dan pengubahsuaiannya untuk meningkatkan sifat mengikat dan pautan silang. Akhirnya, batasan hidrogel PVA-alginat dan pengubahsuaiannya telah didedahkan dengan cadangan untuk penyelidikan dalam kajian pemangkin pada masa depan.

 

Kata kunci: PVA-alginat, pengikat logam, logam

References

1.       Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., and Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164: 4423-4434.

2.       Mallakpour, S., and Azimi, F. (2021). Current development in poly (vinyl alcohol) nanocomposites for heavy metal ions removal. In Handbook of Polymer Nanocomposites for Industrial Applications (pp. 455-476). Elsevier.

3.       Zohreh Majidnia, and Fulazzaky, M. A. (2017). Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution. Journal of Environmental Management, 191: 219-227.

4.       Xiaofeng Yi, Fuliang Sun, Zhenhua Han, Fuhao Han, Jiarui He, Minrui Ou, Junjie Gu, & Xu, X. (2018). Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicology and Environmental Safety, 158: 309-218.

5.       Knijnenburg, J. T., Kasemsiri, P., Amornrantanaworn, K., Suwanree, S., Iamamornphan, W., Chindaprasirt, P., and Jetsrisuparb, K. (2021). Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. International Journal of Biological Macromolecules, 181: 349-356.

6.       Rahman, N., and Wilfred, C. D. (2018). Removal of Mn(VII) from industrial wastewater by using alginate-poly (vinyl) alcohol as absorbent. Journal of Physics: Conference Series, 1123(1).

7.       Du, Z., Liu, F., Xiao, C., Dan, Y., and Jiang, L. (2021). Fabrication of poly (vinyl alcohol)/sodium alginate hydrogel beads and its application in photo-Fenton degradation of tetracycline. Journal of Materials Science, 56(1): 913-926.

8.       Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z., and Wang, R. (2022). Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads. Journal of Hazardous Materials, 422: 126863.

9.       Isawi, H. (2020). Using zeolite/polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arabian Journal of Chemistry, 13(6): 5691-5716.

10.    Levi, S., Rac, V., Manojlovi, V., Raki, V., Bugarski, B., Flock, T., Krzyczmonik, K. E. and Nedovi, V. (2011). Limonene encapsulation in alginate/poly (vinyl alcohol). Procedia Food Science, 1:1816-1820.

11.    Nur Habibah, Aulia Ratri Hapsari, Adhitasari Suratman, and Siswanta, D. (2020). Development of polyvinyl alcohol-sodium alginate beads as immobilization matrices of 1,5–diphenylcarbazide for the detection of Cr(VI). Journal of Materials and Environmental Sciences, 11(2): 176-186.

12.    Eivazzadeh-Keihan, R., Farrokhi-Hajiabad, F., Aliabadi, H. A. M., Ziabari, E. Z., Geshani, S., Kashtiaray, A., ... and Mahdavi, M. (2023). A novel magnetic nanocomposite based on alginate-tannic acid hydrogel embedded with silk fibroin with biological activity and hyperthermia application. International Journal of Biological Macromolecules, 224:1478-1486.

13.    Freitas, E. D., Freitas, V. M. S, Rosa, P. C. P, da Silva, M. G. C. and Vieira, M. G. A. (2021). Development and evaluation of naproxen-loaded sericin/alginate beads for delayed and extended drug release using different covalent crosslinking agents. Materials Science & Engineering, (118): 1-13.

14.    Abhinandan, R., Adithya, S. P., Sidharthan, D. S., Balagangadharan, K., and Selvamurugan, N. (2021). Synthesis and characterization of magnesium diboride nanosheets in alginate/polyvinyl alcohol scaffolds for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 203: 111771.

15.    Lee, T. C., Manap, N., Abdullah, H. Z., & Idris, M. I. (2018). Polyvinyl alcohol-alginate adsorbent beads for chromium (VI) removal. International Journal of Engineering & Technology, 7(3): 95-99.

16.    Massana Roquero, D., Bollella, P., Katz, E., and Melman, A. (2021). Controlling porosity of calcium alginate hydrogels by interpenetrating polyvinyl alcohol–diboronate polymer network. ACS Applied Polymer Materials, 3(3): 1499-1507.


17.    Zain, N. A. M., Suhaimi, M. S., and Idris, A. (2011). Development and modification of PVA–alginate as a suitable immobilization matrix. Process Biochemistry, 46(11): 2122-2129.

18.    Majidnia, Z., and Fulazzaky, M. A. (2016). Photoreduction of Pb(II) ions from aqueous solution by titania polyvinylalcohol–alginate beads. Journal of the Taiwan Institute of Chemical Engineers, 66: 88-96.

19.    Harpaz, D., Axelrod, T., Yitian, A. L., Eltzov, E., Marks, R. S., and Tok, A. I. (2019). Dissolvable polyvinyl-alcohol film, a time-barrier to modulate sample flow in a 3D-printed holder for capillary flow paper diagnostics. Materials, 12(3): 343.

20.    Hassan, C. M., Trakampan, P., and Peppas, N. A. (2002). Water solubility characteristics of poly (vinyl alcohol) and gels prepared by freezing/thawing processes. In Water soluble polymers (pp. 31-40). Springer.

21.    Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Kashani, E., Fazljou, S. M. B., Torbati, M., and Akbarzadeh, A. (2020). Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering, 14(1): 1-22.

22.    Ebrahimi, F., Sadeghizadeh, A., Neysan, F., and Heydari, M. (2019). Fabrication of nanofibers using sodium alginate and Poly (vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: Adsorption mechanism, kinetics and thermodynamics. Heliyon, 5(11): e02941.

23.    Rahman, A. H. A., Teo, C. L., Idris, A., Misran, E., and Leong, S. A. N. (2016). Polyvinyl alcohol–alginate ferrophoto gels for mercury (II) removal. Journal of Industrial and Engineering Chemistry, 33: 190-196.

24.    Narayanan, K. B., and Han, S. S. (2017). Dual-crosslinked poly (vinyl alcohol)/sodium alginate/silver nanocomposite beads–A promising antimicrobial material. Food chemistry, 234: 103-110.

25.    Zohreh Majidnia, and Idris, A. (2015). Evaluation of cesium removal from radioactive waste water using maghemite PVA–alginate beads. Chemical Engineering Journal , 262: 372-382.

26.    Zhang, M.-K., Ling, X.-H., Zhang, X.-H., and Han, G.-Z. (2022). A novel alginate/PVA hydrogel-supported Fe3O4 particles for efficient heterogeneous Fenton degradation of organic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 652, 129830.

27.    Shivakumara, L. R., and Demappa, T. (2019). Synthesis and swelling behavior of sodium alginate/poly(vinyl alcohol) hydrogels. Turkish Journal Pharmaceutical Sciences, 16(3): 252-260.

28.    Wang, Y., Su, J., Ali, A., Chang, Q., Bai, Y., and Gao, Z. (2022). Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. Bioresource Technology, 348: 126818.

29.    Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., and Nazir, A. (2020). Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150: 861-870.

30.    Li, Y., Wen, J., Xue, Z., Yin, X., Yuan, L., and Yang, C. (2022). Removal of Cr (VI) by polyaniline embedded polyvinyl alcohol/sodium alginate beads− extension from water treatment to soil remediation. Journal of Hazardous Materials, 426: 127809.

31.    Nie, L., Chang, P., Liang, S., Hu, K., Hua, D., Liu, S., Sun, J., Sun, M., Wang, T., and Okoro, O. V. (2021). Polyphenol rich green tea waste hydrogel for removal of copper and chromium ions from aqueous solution. Cleaner Engineering and Technology, 4: 100167.

32.    Bustamante-Torres, M., Romero-Fierro, D., Estrella-Nuñez, J., Arcentales-Vera, B., Chichande-Proaño, E., and Bucio, E. (2022). Polymeric composite of magnetite iron oxide nanoparticles and their application in biomedicine: a review. Polymers, 14(4): 752.

33.    Kołodyńska, D., Gęca, M., Skwarek, E., and Goncharuk, O. (2018). Titania-coated silica alone and modified by sodium alginate as sorbents for heavy metal ions. Nanoscale Research Letters, 13(1): 1-12.

34.    Tabatabaeefar, A., Keshtkar, A. R., Talebi, M., and Abolghasemi, H. (2020). Polyvinyl alcohol/alginate/zeolite nanohybrid for removal of metals. Chemical Engineering & Technology, 43(2): 343-354.

35.    Fazel Zahakifar, Ali Reza Keshtkar, and Talebi, M. (2021). Synthesis of sodium alginate (SA)/ polyvinyl alcohol (PVA)/ polyethylene oxide (PEO)/ ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Progress in Nuclear Energ, 134(103642): 1-8.

36.    Zahakifar, F., Keshtkar, A. R., and Talebi, M. (2021). Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a case study of thorium (IV). Journal of Radioanalytical and Nuclear Chemistry, 327(1): 65-72.

37.    Chen, J., Garcia, E. S., and Zimmerman, S. C. (2020). Intramolecularly cross-linked polymers: from structure to function with applications as artificial antibodies and artificial enzymes. Accounts of Chemical Research, 53(6): 1244-1256.

38.    Yumin, A., Liguo, D., Yi, Y., and Yongna, J. (2022). Mechanical properties of an interpenetrating network poly (vinyl alcohol)/alginate hydrogel with hierarchical fibrous structures. RSC Advances, 12(19): 11632-11639.

39.    Wang, X. H. (2012). Research and option in the preparation of PVA-alginate-Ca. Applied Mechanics and Materials, 189: 176-180.

40.    Xia, M., Kang, S. M., Lee, G. W., Huh, Y. S., and Park, B. J. (2019). The recyclability of alginate hydrogel particles used as a palladium catalyst support. Journal of Industrial and Engineering Chemistry, 73: 306-315.

41.    Nunes, M. A., Vila-Real, H., Fernandes, P. C., and Ribeiro, M. H. (2010). Immobilization of naringinase in PVA–alginate matrix using an innovative technique. Applied Biochemistry and Biotechnology, 160(7): 2129-2147.

42.    Nataraj, D., and Reddy, N. (2020). Chemical modifications of alginate and its derivatives. International Journal of Chemistry Research, 2020: 1-17.

43.    Pakolpakçil, A. (2022). Effect of glutaraldehyde crosslinking parameters on mechanical and wetting. Sakarya University Journal of Science, 26(5): 1990-1999.

44.    Choi, D., Khan, M. H., and Jung, J. (2019). Crosslinking of PVA/alginate carriers by glutaraldehyde with improved mechanical strength and enhanced inhibition of deammonification sludge. International Biodeterioration & Biodegradation, 145: 104788.

45.    Lim, D.-J. (2022). Cross-linking agents for electrospinning-based bone tissue engineering. International Journal of Molecular Sciences, 23(10): 5444.

46.    Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A., and Eldin, M. S. M. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian Journal of Chemistry, 8(1): 38-47.

47.    Zhang, H., Zhang, F., and Wu, J. (2013). Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. Reactive and Functional Polymers, 73(7): 923-928.

48.    Akter, M., Bhattacharjee, M., Dhar, A. K., Rahman, F. B. A., Haque, S., Rashid, T. U., and Kabir, S. F. (2021). Cellulose-based hydrogels for wastewater treatment: A concise review. Gels, 7(1): 30.

49.    Tsou, Y.-H., Khoneisser, J., Huang, P.-C., and Xu, X. (2016). Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 1(1): 39-55.