Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 314 - 328
A REVIEW OF THE SYNTHESIS AND MODIFICATION OF
PVA-ALGINATE AS BINDER OF METAL ATOM
(Ulasan Tentang Sintesis dan
Pengubahsuaian PVA-Alginat Sebagai Pengikat Atom Logam)
Norul Azilah Abdul Rahman1,2*, Mazni Musa1, Karimah Kassim3, and Nur Rahimah Said1*
1School of Chemistry and Environment,
Universiti
Teknologi MARA, Cawangan Negeri Sembilan,
Kampus Kuala
Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
2School of Chemistry and
Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
3Institute of
Science (IOS),
Level 3,
Block C, Kompleks Inspirasi,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding
author: nurra1435@uitm.edu.my
Received:
23 September 2022; Accepted: 17 January 2023; Published: 19 April 2023
Abstract
PVA-alginate hydrogel is formed by mixing PVA and
alginate with a simple method and then dropping it into a cross-linking agent
that leads to rapid gelation. The PVA-alginate hydrogel can be synthesised in
water due to the high solubility of starting material. Both compounds have
hydroxyl group (-OH) in their structure that helps in terms of solubility and is
consequently classified as an inexpensive, safe, and environmentally friendly
synthesis method. Although its starting material is soluble in water, the
PVA-alginate hydrogel is lessened. This is because the formation of hydrogen
bonding of -OH in the PVA-alginate structure reduces its ability. Meanwhile,
the presence of carboxyl ion (-COO-) in the PVA-alginate hydrogel
structure acts as an active site for the metal ion to bind. Some researchers
modified the PVA-alginate hydrogel to improve the binding effect to metal by
increasing the active sites of metal. The PVA-alginate hydrogel can act as a
metal ion binder to remove heavy metals such example from transition metal
elements in wastewater that are considered harmful to the ecosystem. This
review provides an overview of PVA-alginate hydrogel design and its
modification to improve the binding properties, and cross-linking. Finally, the
limitation of PVA-alginate and its modification were revealed with suggestions
for future research in the catalytic study.
Keywords: PVA-alginate, metal binder, metal
Abstrak
Hidrogel PVA-alginat dihasilkan
melalui percampuran PVA dan alginat dengan mengunakan kaedah yang mudah dan
kemudian dititiskan ke dalam agen penghubung silang untuk mempercepatkan
gelatin. Hidrogel PVA-alginat boleh disintesis dalam air kerana keterlarutan
bahan permulaan yang tinggi. Kedua-dua sebatian mempunyai kumpulan hidroksil
(-OH) dalam strukturnya yang membantu dari segi keterlarutan dan seterusnya
dikelaskan sebagai kaedah sintesis yang murah, selamat dan mesra alam. Walaupun
bahan permulaannya mempunyai sifat larut dalam air, PVA-algina berkurangan
disebabkan pembentukan ikatan hidrogen -OH dalam struktur hydrogel PVA-alginat
mengurangkan keupayaannya. Sementara itu, kehadiran ion karboksil (-COO-)
dalam struktur PVA-alginat bertindak sebagai tapak aktif untuk pengikat ion
logam. Sesetengah penyelidik mengubah suai hydrogel PVA-alginat untuk
meningkatkan kesan pengikatan kepada logam dengan meningkatkan tapak aktif
logam. Hidrogel PVA-alginat boleh bertindak sebagai pengikat ion logam untuk
membuang logam berat contohnya daripada unsur logam peralihan dalam air sisa
yang dianggap berbahaya kepada ekosistem. Kajian ini memberikan gambaran
keseluruhan reka bentuk hidrogel PVA-alginat dan pengubahsuaiannya untuk
meningkatkan sifat mengikat dan pautan silang. Akhirnya, batasan hidrogel
PVA-alginat dan pengubahsuaiannya telah didedahkan dengan cadangan untuk
penyelidikan dalam kajian pemangkin pada masa depan.
Kata kunci: PVA-alginat, pengikat logam, logam
References
1.
Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., and Li, M.
(2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a
review and new perspectives. International
Journal of Biological Macromolecules,
164: 4423-4434.
2.
Mallakpour, S., and Azimi, F. (2021). Current development in
poly (vinyl alcohol) nanocomposites for heavy metal ions removal. In Handbook of Polymer Nanocomposites for
Industrial Applications (pp. 455-476). Elsevier.
3.
Zohreh Majidnia, and Fulazzaky, M. A. (2017). Photocatalytic
reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate
beads from aqueous solution. Journal of
Environmental Management, 191: 219-227.
4.
Xiaofeng Yi, Fuliang Sun, Zhenhua Han, Fuhao Han, Jiarui He,
Minrui Ou, Junjie Gu, & Xu, X. (2018). Graphene oxide encapsulated
polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI)
removal. Ecotoxicology and Environmental
Safety, 158: 309-218.
5.
Knijnenburg, J. T., Kasemsiri, P., Amornrantanaworn, K.,
Suwanree, S., Iamamornphan, W., Chindaprasirt, P., and Jetsrisuparb, K. (2021).
Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different
crosslinking ions for fertilizer applications. International Journal of Biological Macromolecules, 181: 349-356.
6.
Rahman, N., and Wilfred, C. D. (2018). Removal of Mn(VII)
from industrial wastewater by using alginate-poly (vinyl) alcohol as absorbent.
Journal of Physics: Conference Series,
1123(1).
7.
Du, Z., Liu, F., Xiao, C., Dan, Y., and Jiang, L. (2021).
Fabrication of poly (vinyl alcohol)/sodium alginate hydrogel beads and its
application in photo-Fenton degradation of tetracycline. Journal of Materials Science,
56(1): 913-926.
8.
Liao, Q., Rong, H., Zhao, M., Luo, H., Chu, Z., and Wang, R.
(2022). Strong adsorption properties and mechanism of action with regard to
tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel
beads. Journal of Hazardous Materials,
422: 126863.
9.
Isawi, H. (2020). Using zeolite/polyvinyl alcohol/sodium
alginate nanocomposite beads for removal of some heavy metals from wastewater. Arabian Journal of Chemistry, 13(6):
5691-5716.
10.
Levi, S., Rac, V., Manojlovi, V., Raki, V., Bugarski, B.,
Flock, T., Krzyczmonik, K. E. and Nedovi, V. (2011). Limonene encapsulation in
alginate/poly (vinyl alcohol). Procedia
Food Science, 1:1816-1820.
11.
Nur Habibah, Aulia Ratri Hapsari, Adhitasari Suratman, and
Siswanta, D. (2020). Development of polyvinyl alcohol-sodium alginate beads as
immobilization matrices of 1,5–diphenylcarbazide for the detection of Cr(VI). Journal of Materials and Environmental
Sciences, 11(2): 176-186.
12.
Eivazzadeh-Keihan, R., Farrokhi-Hajiabad, F., Aliabadi, H. A.
M., Ziabari, E. Z., Geshani, S., Kashtiaray, A., ... and Mahdavi, M. (2023). A
novel magnetic nanocomposite based on alginate-tannic acid hydrogel embedded
with silk fibroin with biological activity and hyperthermia application. International Journal of Biological
Macromolecules, 224:1478-1486.
13.
Freitas, E. D., Freitas, V. M. S, Rosa, P. C. P, da Silva, M.
G. C. and Vieira, M. G. A. (2021). Development and evaluation of
naproxen-loaded sericin/alginate beads for delayed and extended drug release
using different covalent crosslinking agents. Materials Science & Engineering, (118): 1-13.
14.
Abhinandan, R., Adithya, S. P., Sidharthan, D. S.,
Balagangadharan, K., and Selvamurugan, N. (2021). Synthesis and
characterization of magnesium diboride nanosheets in alginate/polyvinyl alcohol
scaffolds for bone tissue engineering. Colloids
and Surfaces B: Biointerfaces, 203: 111771.
15.
Lee, T. C., Manap, N., Abdullah, H. Z., & Idris, M. I.
(2018). Polyvinyl alcohol-alginate adsorbent beads for chromium (VI) removal. International Journal of Engineering &
Technology, 7(3): 95-99.
16.
Massana Roquero, D., Bollella, P., Katz, E., and Melman, A.
(2021). Controlling porosity of calcium alginate hydrogels by interpenetrating
polyvinyl alcohol–diboronate polymer network. ACS Applied Polymer Materials, 3(3): 1499-1507.
17.
Zain, N. A. M., Suhaimi, M. S., and Idris, A. (2011).
Development and modification of PVA–alginate as a suitable immobilization
matrix. Process Biochemistry, 46(11):
2122-2129.
18.
Majidnia, Z., and Fulazzaky, M. A. (2016). Photoreduction of
Pb(II) ions from aqueous solution by titania polyvinylalcohol–alginate beads. Journal of the Taiwan Institute of Chemical
Engineers, 66: 88-96.
19.
Harpaz, D., Axelrod, T., Yitian, A. L., Eltzov, E., Marks, R.
S., and Tok, A. I. (2019). Dissolvable polyvinyl-alcohol film, a time-barrier
to modulate sample flow in a 3D-printed holder for capillary flow paper
diagnostics. Materials, 12(3): 343.
20.
Hassan, C. M., Trakampan, P., and Peppas, N. A. (2002). Water
solubility characteristics of poly (vinyl alcohol) and gels prepared by
freezing/thawing processes. In Water
soluble polymers (pp. 31-40). Springer.
21.
Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Kashani,
E., Fazljou, S. M. B., Torbati, M., and Akbarzadeh, A. (2020). Alginate-based
hydrogels as drug delivery vehicles in cancer treatment and their applications
in wound dressing and 3D bioprinting. Journal
of Biological Engineering, 14(1):
1-22.
22.
Ebrahimi, F., Sadeghizadeh, A., Neysan, F., and Heydari, M.
(2019). Fabrication of nanofibers using sodium alginate and Poly (vinyl
alcohol) for the removal of Cd2+ ions from aqueous solutions:
Adsorption mechanism, kinetics and thermodynamics. Heliyon, 5(11): e02941.
23.
Rahman, A. H. A., Teo, C. L., Idris, A., Misran, E., and
Leong, S. A. N. (2016). Polyvinyl alcohol–alginate ferrophoto gels for mercury
(II) removal. Journal of Industrial and
Engineering Chemistry, 33:
190-196.
24.
Narayanan, K. B., and Han, S. S. (2017). Dual-crosslinked
poly (vinyl alcohol)/sodium alginate/silver nanocomposite beads–A promising
antimicrobial material. Food chemistry, 234: 103-110.
25.
Zohreh Majidnia, and Idris, A. (2015). Evaluation of cesium
removal from radioactive waste water using maghemite PVA–alginate beads. Chemical Engineering Journal , 262:
372-382.
26.
Zhang, M.-K., Ling, X.-H., Zhang, X.-H., and Han, G.-Z.
(2022). A novel alginate/PVA hydrogel-supported Fe3O4
particles for efficient heterogeneous Fenton degradation of organic dyes. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 652, 129830.
27.
Shivakumara, L. R., and Demappa, T. (2019). Synthesis and
swelling behavior of sodium alginate/poly(vinyl alcohol) hydrogels. Turkish Journal Pharmaceutical Sciences, 16(3):
252-260.
28.
Wang, Y., Su, J., Ali, A., Chang, Q., Bai, Y., and Gao, Z.
(2022). Enhanced nitrate, manganese, and phenol removal by polyvinyl
alcohol/sodium alginate with biochar gel beads immobilized bioreactor:
Performance, mechanism, and bacterial diversity. Bioresource Technology, 348:
126818.
29.
Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal,
M., and Nazir, A. (2020). Efficient removal of dyes using carboxymethyl
cellulose/alginate/polyvinyl alcohol/rice husk composite:
adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150: 861-870.
30.
Li, Y., Wen, J., Xue, Z., Yin, X., Yuan, L., and Yang, C.
(2022). Removal of Cr (VI) by polyaniline embedded polyvinyl alcohol/sodium
alginate beads− extension from water treatment to soil remediation. Journal of Hazardous Materials, 426: 127809.
31.
Nie, L., Chang, P., Liang, S., Hu, K., Hua, D., Liu, S., Sun,
J., Sun, M., Wang, T., and Okoro, O. V. (2021). Polyphenol rich green tea waste
hydrogel for removal of copper and chromium ions from aqueous solution. Cleaner Engineering and Technology, 4: 100167.
32.
Bustamante-Torres, M., Romero-Fierro, D., Estrella-Nuñez, J.,
Arcentales-Vera, B., Chichande-Proaño, E., and Bucio, E. (2022). Polymeric
composite of magnetite iron oxide nanoparticles and their application in
biomedicine: a review. Polymers, 14(4): 752.
33.
Kołodyńska, D., Gęca, M., Skwarek, E., and
Goncharuk, O. (2018). Titania-coated silica alone and modified by sodium
alginate as sorbents for heavy metal ions. Nanoscale
Research Letters, 13(1): 1-12.
34.
Tabatabaeefar, A., Keshtkar, A. R., Talebi, M., and
Abolghasemi, H. (2020). Polyvinyl alcohol/alginate/zeolite nanohybrid for
removal of metals. Chemical Engineering
& Technology, 43(2): 343-354.
35.
Fazel Zahakifar, Ali Reza Keshtkar, and Talebi, M. (2021). Synthesis
of sodium alginate (SA)/ polyvinyl alcohol (PVA)/ polyethylene oxide (PEO)/
ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI)
adsorption from aqueous solutions. Progress
in Nuclear Energ, 134(103642): 1-8.
36.
Zahakifar, F., Keshtkar, A. R., and Talebi, M. (2021).
Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene
oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a
case study of thorium (IV). Journal of
Radioanalytical and Nuclear Chemistry,
327(1): 65-72.
37.
Chen, J., Garcia, E. S., and Zimmerman, S. C. (2020).
Intramolecularly cross-linked polymers: from structure to function with
applications as artificial antibodies and artificial enzymes. Accounts of Chemical Research, 53(6): 1244-1256.
38.
Yumin, A., Liguo, D., Yi, Y., and Yongna, J. (2022).
Mechanical properties of an interpenetrating network poly (vinyl
alcohol)/alginate hydrogel with hierarchical fibrous structures. RSC Advances, 12(19): 11632-11639.
39.
Wang, X. H. (2012). Research and option in the preparation of
PVA-alginate-Ca. Applied Mechanics and
Materials, 189: 176-180.
40.
Xia, M., Kang, S. M., Lee, G. W., Huh, Y. S., and Park, B. J.
(2019). The recyclability of alginate hydrogel particles used as a palladium
catalyst support. Journal of Industrial
and Engineering Chemistry, 73: 306-315.
41.
Nunes, M. A., Vila-Real, H., Fernandes, P. C., and Ribeiro,
M. H. (2010). Immobilization of naringinase in PVA–alginate matrix using an
innovative technique. Applied
Biochemistry and Biotechnology, 160(7):
2129-2147.
42.
Nataraj, D., and Reddy, N. (2020). Chemical modifications of
alginate and its derivatives. International
Journal of Chemistry Research, 2020: 1-17.
43.
Pakolpakçil, A. (2022). Effect of glutaraldehyde crosslinking
parameters on mechanical and wetting. Sakarya University Journal of Science, 26(5): 1990-1999.
44.
Choi, D., Khan, M. H., and Jung, J. (2019). Crosslinking of
PVA/alginate carriers by glutaraldehyde with improved mechanical strength and
enhanced inhibition of deammonification sludge. International Biodeterioration & Biodegradation, 145: 104788.
45.
Lim, D.-J. (2022). Cross-linking agents for
electrospinning-based bone tissue engineering. International Journal of Molecular Sciences, 23(10): 5444.
46.
Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M.
A., and Eldin, M. S. M. (2015). Poly (vinyl alcohol)-alginate physically
crosslinked hydrogel membranes for wound dressing applications:
characterization and bio-evaluation. Arabian
Journal of Chemistry, 8(1):
38-47.
47.
Zhang, H., Zhang, F., and Wu, J. (2013). Physically
crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. Reactive and Functional Polymers, 73(7): 923-928.
48.
Akter, M., Bhattacharjee, M., Dhar, A. K., Rahman, F. B. A.,
Haque, S., Rashid, T. U., and Kabir, S. F. (2021). Cellulose-based hydrogels
for wastewater treatment: A concise review. Gels, 7(1): 30.
49.
Tsou, Y.-H., Khoneisser, J., Huang, P.-C., and Xu, X. (2016).
Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 1(1): 39-55.