Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 304 - 313
SYNTHESIS,
CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITIES OF Mg-DOPED ZnO
FOR DEGRADATION OF METHYLENE BLUE DYE UNDER UV LIGHT IRRADIATION
(Sintesis,
Pencirian dan Aktiviti Fotokatalitik Mg di Dopkan dengan ZnO untuk
Penguraian Pewarna Metilena Biru di Bawah Cahaya UV)
Hartini Ahmad Rafaie1,3*,
Zul Adlan Mohd Hir1, Nurul Infaza Talalah Ramli1, and Muhd
Firdaus Kasim2
1Faculty of Applied Sciences,
Universiti
Teknologi MARA Pahang Branch,
26400 Bandar Tun Abdul Razak Jengka, Pahang,
Malaysia
2Center for Nanomaterials Research,
Institute of
Science, Universiti Teknologi MARA,
40450 Shah
Alam, Selangor, Malaysia
3Centre of
Foundation Studies,
Universiti
Teknologi MARA, Selangor Branch, Dengkil Campus,
43800
Dengkil, Selangor, Malaysia
*Corresponding author:
hartinirafaie@uitm.edu.my
Received:
27 July 2022; Accepted: 17 January 2023; Published: 19 April 2023
Abstract
Heterogeneous photocatalysis
is a viable treatment approach for removing organic dye compounds from textile
wastewater, and ZnO-based photocatalysts is an
appealing system to investigate. In this work, Mg-doped ZnO
had been synthesized using modified sol-gel technique to evaluate the effect of
different Mg molar concentrations towards the photocatalytic degradation
performance of methylene blue (MB) dye. It had been characterized by X-ray
diffraction (XRD), scanning electron microscope (SEM) and energy dispersive
X-ray (EDS) analysis. According to XRD analysis, all samples showed a hexagonal
wurtzite structure with average crystallite approximate sizes ranging between
74.82–81.64 nm. The SEM-EDS results demonstrated that the particle-like
Mg-doped ZnO samples consist of elements Zn, O and
Mg. The photocatalytic activity of the pure ZnO and
Mg-doped ZnO was investigated through
photodegradation of MB under ultraviolet radiation. The results showed that 1
mol% Mg-doped ZnO exhibited enhanced photocatalytic
activity with a percentage of degradation of 89.54% and photodegradation rate
constant, k of 0.0432 min-1. Extended visible absorption, inhibition
of photoexcited electron and hole recombination, and higher absorptivity of MB
dye on the surface of Mg-doped ZnO photocatalyst
might have contributed to the increased photocatalytic activity.
Keywords: magnesium, methylene blue, photocatalyst,
photocatalytic, ZnO
Abstrak
Fotokatalisis heterogen adalah pendekatan rawatan yang
terbaik untuk menghilangkan sebatian pewarna organik dari sisa buangan daripada
industri tekstil, dan pemangkin berasaskan ZnO adalah sistem yang menarik untuk
dikaji. Dalam penyelidikan ini, ZnO yang didopkan dengan Mg telah disintesis
menggunakan teknik sol-gel yang diubahsuai untuk menilai kesan kepekatan molar
Mg yang berbeza terhadap prestasi penguraian pewarna metilena biru (MB) dan
dicirikan dengan difraktogram (XRD), mikroskop elektron (SEM) dan sinar-X
penyebaran tenaga (EDS). Dapatan dari analisis XRD, semua sampel menunjukkan
struktur wurtzit heksagon dengan ukuran kristal kira-kira dalam julat
74.82-81.64 nm. Hasil SEM-EDS menunjukkan bahawa sampel ZnO yang didopkan
dengan Mg terdiri daripada unsur Zn, O dan Mg. Aktiviti foto-penguraian ZnO dan
Mg-doped ZnO dikaji dengan menjalankan pemerhatian penguraian larutan akues MB
di bawah sinaran ultraviolet. Hasil kajian menunjukkan bahawa sampel 1 mol% ZnO
yang didopkan dengan Mg menunjukkan peningkatan kecekapan fotomangkin dengan
peratusan penguraian 89.54% dan kadar penguraian tetap, k 0.0432 min-1.
Penyerapan yang lebih meluas di kawasan cahaya nampak, penghambatan pengumpulan
semula elektron dan lubang yang terangsang dengan foto, dan foto penguraian
larutan akues metilena biru yang lebih tinggi pada permukaan fotokatalis ZnO
yang didopkan dengan Mg mungkin menyumbang kepada peningkatan aktiviti
fotokatalitik.
Kata kunci: magnesium, metilena biru, pemangkin, fotokatalitik, ZnO
References
1. Adam, R. E., Alnoor, H., Pozina, G., Liu, X., Willander,
M. and Nur, O. (2020). Synthesis of Mg-doped ZnO NPs via a chemical
low-temperature method and investigation of the efficient photocatalytic
activity for the degradation of dyes under solar light. Solid State Sciences,
99: 106053.
2. Ahmad, M., Ahmed, E., Zhang, Y., Khalid, N. R., Xu, J.,
Ullah, M. and Hong, Z. (2013). Preparation of highly efficient Al-doped ZnO
photocatalyst by combustion synthesis. Current Applied Physics, 13:
697-704.
3. Alam, M. S., Manzoor, U., Mujahid, M. and Bhatti, A. S.
(2016). Highly responsive UV light sensors using Mg-doped ZnO nanoparticles. Journal of Sensors, 2016: 1-5.
4. Gaurav, K.U., Jeevitesh, K. R., Trilok, K. P., Vinod. K.
and Purohit, L. P. (2019). Synthesis of ZnO:TiO2 nanocomposites for
photocatalyst application in visible light. Vaccuum, 160: 154-163.
5. Chen, C., Mei, W. and Yu, W. (2018). Enhanced
sunlight-driven photocatalytic property of Mg-doped ZnO nanocomposites with
three- dimensional graphene oxide/MoS2 nanosheet composites. RSC
Advances, 17399-17409.
6. Di Mauro, A., Farrugia, C., Abela, S., Ref Alo, P., Grech,
M., Falqui, L., Nicotra, G., Sfuncia, G., Mio, A., Buccheri, M. A., Rappazzo,
G., Brundo, M. V., Scalisi, E. M., Pecoraro, R., Iaria, C., Privitera, V. and
Impellizzeri, G. (2020). Ag/ZnO/PMMA nanocomposites for efficient water reuse. ACS
Applied Bio Materials, 3(7): 4417-4426.
7. Zhang, N. and Cu, D. (2019). Fabrication of flower-like
hierarchical ZnO nanostructures with enhanced photocatalytic activity. Surfaces
and Interfaces, 14: 251-255.
8. Ivetic, T. B., Dimitrievska, M. R. R., Fincue, N. L.,
Dacanin, L. R., Gúth, I. O. O., Abramovic, B. F. and Lukic-Petrovic, S. R.
(2014). Effect of annealing temperature on structural and optical properties of
Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam
degradation. Ceramics International, 40(1): 1545-1552.
9. Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A. and
Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic
pollutant degradation - A review. Journal of Environmental Management,
198: 78-94.
10. Li, W., Wang, G., Feng, Y. and Li, Z. (2018). Efficient
photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with
CuS nanoparticles. Applied Surface Science, 428: 154-164.
11. Mardikar, S. P., Kulkarni, S. and Adhyapak, P. V.
(2020). Sunlight driven highly efficient degradation of methylene blue by
CuO-ZnO nanoflowers. Journal of Environmental Chemical Engineering,
8(2): 105065.
12. Abdolhoseinzadeh, A. and Sheibani, A. (2020). Enhanced
photocatalytic performance of Cu2O nano-photocatalyst powder
modified by ball milling and ZnO. Advanced Powder Technology, 31: 40-50.
13. Moulahi, A. (2021). Efficient photocatalytic performance
of Mg doping ZnO for the photodegradation of the rhodamine B. Inorganic
Chemistry Communications, 133: 108906.
14. Mousavi, S. M., Mahjoub, A. R. and Abazari, R. (2017).
Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an
advanced photocatalytic material for dye degradation. Journal of Molecular
Liquids, 242: 512-519.
15. Nsib, M. F., Saafi, S., Rayes, A., Moussa, N. and Houas,
A. (2016). Enhanced photocatalytic performance of Ni–ZnO/Polyaniline composite
for the visible-light driven hydrogen generation. Journal of the Energy
Institute, 89(4): 694-703.
16. Ong, C. B., Ng, L. Y. and Mohammad, A. W. (2018). A
review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and
applications. Renewable and Sustainable Energy Reviews, 81: 536-551.
17. Pascariu, P., Tudose, I. V., Suchea, M., Koudoumas, E.,
Fifere, N. and Airinei, A. (2018). Preparation and characterization of Ni, Co
doped ZnO nanoparticles for photocatalytic applications. Applied Surface
Science, 448: 481-488.
18. Priscilla, S. J., Daniel, R., Dhakshayani, Y., Caroline,
S. C. and Sivaji, K. (2021). Effect of magnesium dopant on the structural ,
morphological and electrical properties of ZnO nanoparticles by sol – gel
method. Materials Today: Proceedings, 36: 793-796.
19. Raji, R., Sibi, K. S. and Gopchandran, K. G. (2018).
ZnO:Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic
degradation of sulforhodamine B. Applied Surface Science, 427: 863-875.
20. Rafaie, H. A., Aliyah, N., Nazam, A. M., Infaza, N.,
Ramli, T. and Mohamed, R. (2021). Synthesis, characterization and
photocatalytic activities of Al-doped ZnO for degradation of methyl orange dye
under UV light irradiation. Journal of the Australian
Ceramic Society, 57(2): 479-488.
21. Türkyılmaz, Ş.
Ş., Güy, N. and Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn,
Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic
effect between ZnO and metals. Journal of Photochemistry and
Photobiology A: Chemistry, 341:
39-50.
22. Saleh, R. and Djaja, N. F. (2014). UV light
photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices
and Microstructures, 74: 217-233.
23. Sengupta, J., Ahmed, A. and Labar, R. (2013). Structural
and optical properties of post annealed Mg doped ZnO thin films deposited by
the sol–gel method. Materials Letters, 109: 265-268.
24. Sharma, S., Vyas, R., Sharma, N., Singh, V., Singh, A.,
Kataria, V., Gupta, B. K. and Vijay, Y. K. (2013). Highly efficient green light
harvesting from Mg doped ZnO nanoparticles: Structural and optical studies. Journal
of Alloys and Compounds, 552: 208-212.
25. Riffat. S.., Momina, K, Vaneeza, A., Zohra, N.K., Unza,
T. and Faiza, A. (2020). Effect of Mg doping on structural, morphological,
optical and thermal properties of ZnO nanoparticles. Optic, 200: 163428.
26. Wolski, L., Whitten, J. E., Sobczak, I. and Ziolek, M.
(2017). The effect of the preparation procedure on the morphology , texture and
photocatalytic properties of ZnO. Materials Research Bulletin, 85:
35-46.
27. Tan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G.,
Muto, H. and Matsuda, A. (2013). Photoluminescence properties of rod-like
Ce-doped ZnO nanostructured films formed by hot-water treatment of sol–gel
derived coating. Optical Materials, 35(11): 1902-1907.
28. Wang, L., Wu, Y., Chen, F. and Yang, X. (2014).
Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced
graphene oxide sheets. Progress in Natural Science: Materials International,
24(1): 6-12.
29. Wang, M., Xu, J., Sun, T., Tang, Y., Jiang, G. and Shi,
Y. (2018). Facile photochemical synthesis of hierarchical cake-like ZnO/Ag
composites with enhanced visible-light photocatalytic activities. Materials
Letters, 219: 236-239.
30. Wang, W., Li, N., Hong, K., Guo, H., Ding, R. and Xia,
Z. (2019). Z-scheme recyclable photocatalysts based on fl ower-like nickel zinc
ferrite nanoparticles/ZnO nanorods: Enhanced activity under UV and visible
irradiation. Journal of Alloys and Compounds, 777: 1108-1114.
31. Wassel, A. R., El-Naggar, M. E. and Shoueir, K. (2020).
Recent advances in polymer/metal/metal oxide hybrid nanostructures for
catalytic applications: A review. Journal of Environmental Chemical
Engineering, 8(5): 104175.
32. Okeke, I.S., Agwu, A.A., Ubachukwu, I.G., Madiba, I.G,
Maaza, M., Whyte, G.M. and Ezema, F.I. (2021). Impact of particle size and
surface defects on antibacterial and photocatalytic activities of undoped and
Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process. Vaccum,
187: 110110.
33. M´onica , A. V., Eric, M. R., Jesús, E. D., Edgar, E. M.
and Jorge, E. R. (2021). Nanoparticles of ZnO and Mg-doped ZnO: Synthesis,
characterization and efficient removal of methyl orange (MO) from aqueous
solution. Ceramic international, 47: 15668-15681.
34. Yun, S., Lee, J., Yang, J. and Lim, S. (2010).
Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate. Physica
B, 405(1): 413-419.
35. Etacheri,V.,
Roshan, R. and V. Kumar. (2012). Mg-doped ZnO nanoparticles for efficient
sunlight-driven photocatalysis. Applied
Materials Interfaces, 4: 2717-2725.
36.
Samanta, A., Goswami, M. N. and
Mahapatra, P. K. (2018). Optical properties and enhanced photocatalytic
activity of Mg-doped ZnO nanoparticles. Physica E: Low-dimensional System
and Nanostructures, 104: 254-260.