Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 304 - 313

 

SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITIES OF Mg-DOPED ZnO FOR DEGRADATION OF METHYLENE BLUE DYE UNDER UV LIGHT IRRADIATION

 

(Sintesis, Pencirian dan Aktiviti Fotokatalitik Mg di Dopkan dengan ZnO untuk

Penguraian Pewarna Metilena Biru di Bawah Cahaya UV)

 

Hartini Ahmad Rafaie1,3*, Zul Adlan Mohd Hir1, Nurul Infaza Talalah Ramli1, and Muhd Firdaus Kasim2

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang Branch,

 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2Center for Nanomaterials Research,

Institute of Science, Universiti Teknologi MARA,

40450 Shah Alam, Selangor, Malaysia

3Centre of Foundation Studies,

Universiti Teknologi MARA, Selangor Branch, Dengkil Campus,

43800 Dengkil, Selangor, Malaysia

 

*Corresponding author: hartinirafaie@uitm.edu.my

 

 

Received: 27 July 2022; Accepted: 17 January 2023; Published:  19 April 2023

 

 

Abstract

Heterogeneous photocatalysis is a viable treatment approach for removing organic dye compounds from textile wastewater, and ZnO-based photocatalysts is an appealing system to investigate. In this work, Mg-doped ZnO had been synthesized using modified sol-gel technique to evaluate the effect of different Mg molar concentrations towards the photocatalytic degradation performance of methylene blue (MB) dye. It had been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray (EDS) analysis. According to XRD analysis, all samples showed a hexagonal wurtzite structure with average crystallite approximate sizes ranging between 74.82–81.64 nm. The SEM-EDS results demonstrated that the particle-like Mg-doped ZnO samples consist of elements Zn, O and Mg. The photocatalytic activity of the pure ZnO and Mg-doped ZnO was investigated through photodegradation of MB under ultraviolet radiation. The results showed that 1 mol% Mg-doped ZnO exhibited enhanced photocatalytic activity with a percentage of degradation of 89.54% and photodegradation rate constant, k of 0.0432 min-1. Extended visible absorption, inhibition of photoexcited electron and hole recombination, and higher absorptivity of MB dye on the surface of Mg-doped ZnO photocatalyst might have contributed to the increased photocatalytic activity.

 

Keywords: magnesium, methylene blue, photocatalyst, photocatalytic, ZnO

 

Abstrak

Fotokatalisis heterogen adalah pendekatan rawatan yang terbaik untuk menghilangkan sebatian pewarna organik dari sisa buangan daripada industri tekstil, dan pemangkin berasaskan ZnO adalah sistem yang menarik untuk dikaji. Dalam penyelidikan ini, ZnO yang didopkan dengan Mg telah disintesis menggunakan teknik sol-gel yang diubahsuai untuk menilai kesan kepekatan molar Mg yang berbeza terhadap prestasi penguraian pewarna metilena biru (MB) dan dicirikan dengan difraktogram (XRD), mikroskop elektron (SEM) dan sinar-X penyebaran tenaga (EDS). Dapatan dari analisis XRD, semua sampel menunjukkan struktur wurtzit heksagon dengan ukuran kristal kira-kira dalam julat 74.82-81.64 nm. Hasil SEM-EDS menunjukkan bahawa sampel ZnO yang didopkan dengan Mg terdiri daripada unsur Zn, O dan Mg. Aktiviti foto-penguraian ZnO dan Mg-doped ZnO dikaji dengan menjalankan pemerhatian penguraian larutan akues MB di bawah sinaran ultraviolet. Hasil kajian menunjukkan bahawa sampel 1 mol% ZnO yang didopkan dengan Mg menunjukkan peningkatan kecekapan fotomangkin dengan peratusan penguraian 89.54% dan kadar penguraian tetap, k 0.0432 min-1. Penyerapan yang lebih meluas di kawasan cahaya nampak, penghambatan pengumpulan semula elektron dan lubang yang terangsang dengan foto, dan foto penguraian larutan akues metilena biru yang lebih tinggi pada permukaan fotokatalis ZnO yang didopkan dengan Mg mungkin menyumbang kepada peningkatan aktiviti fotokatalitik.

 

Kata kunci: magnesium, metilena biru, pemangkin, fotokatalitik, ZnO

 

References

1.       Adam, R. E., Alnoor, H., Pozina, G., Liu, X., Willander, M. and Nur, O. (2020). Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light. Solid State Sciences, 99: 106053.

2.       Ahmad, M., Ahmed, E., Zhang, Y., Khalid, N. R., Xu, J., Ullah, M. and Hong, Z. (2013). Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Current Applied Physics, 13: 697-704.

3.       Alam, M. S., Manzoor, U., Mujahid, M. and Bhatti, A. S. (2016). Highly responsive UV light sensors using Mg-doped ZnO nanoparticles. Journal of Sensors, 2016: 1-5.

4.       Gaurav, K.U., Jeevitesh, K. R., Trilok, K. P., Vinod. K. and Purohit, L. P. (2019). Synthesis of ZnO:TiO2 nanocomposites for photocatalyst application in visible light. Vaccuum, 160: 154-163.

5.       Chen, C., Mei, W. and Yu, W. (2018). Enhanced sunlight-driven photocatalytic property of Mg-doped ZnO nanocomposites with three- dimensional graphene oxide/MoS2 nanosheet composites. RSC Advances, 17399-17409.

6.       Di Mauro, A., Farrugia, C., Abela, S., Ref Alo, P., Grech, M., Falqui, L., Nicotra, G., Sfuncia, G., Mio, A., Buccheri, M. A., Rappazzo, G., Brundo, M. V., Scalisi, E. M., Pecoraro, R., Iaria, C., Privitera, V. and Impellizzeri, G. (2020). Ag/ZnO/PMMA nanocomposites for efficient water reuse. ACS Applied Bio Materials, 3(7): 4417-4426.

7.       Zhang, N. and Cu, D. (2019). Fabrication of flower-like hierarchical ZnO nanostructures with enhanced photocatalytic activity. Surfaces and Interfaces, 14: 251-255.

8.       Ivetic, T. B., Dimitrievska, M. R. R., Fincue, N. L., Dacanin, L. R., Gúth, I. O. O., Abramovic, B. F. and Lukic-Petrovic, S. R. (2014). Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceramics International, 40(1): 1545-1552.

9.       Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A. and Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant degradation - A review. Journal of Environmental Management, 198: 78-94.

10.    Li, W., Wang, G., Feng, Y. and Li, Z. (2018). Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles. Applied Surface Science, 428: 154-164.

11.    Mardikar, S. P., Kulkarni, S. and Adhyapak, P. V. (2020). Sunlight driven highly efficient degradation of methylene blue by CuO-ZnO nanoflowers. Journal of Environmental Chemical Engineering, 8(2): 105065.

12.    Abdolhoseinzadeh, A. and Sheibani, A. (2020). Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Advanced Powder Technology, 31: 40-50.

13.    Moulahi, A. (2021). Efficient photocatalytic performance of Mg doping ZnO for the photodegradation of the rhodamine B. Inorganic Chemistry Communications, 133: 108906.

14.    Mousavi, S. M., Mahjoub, A. R. and Abazari, R. (2017). Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. Journal of Molecular Liquids, 242: 512-519.

15.    Nsib, M. F., Saafi, S., Rayes, A., Moussa, N. and Houas, A. (2016). Enhanced photocatalytic performance of Ni–ZnO/Polyaniline composite for the visible-light driven hydrogen generation. Journal of the Energy Institute, 89(4): 694-703.


16.    Ong, C. B., Ng, L. Y. and Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81: 536-551.

17.    Pascariu, P., Tudose, I. V., Suchea, M., Koudoumas, E., Fifere, N. and Airinei, A. (2018). Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Applied Surface Science, 448: 481-488.

18.    Priscilla, S. J., Daniel, R., Dhakshayani, Y., Caroline, S. C. and Sivaji, K. (2021). Effect of magnesium dopant on the structural , morphological and electrical properties of ZnO nanoparticles by sol – gel method. Materials Today: Proceedings, 36: 793-796.

19.    Raji, R., Sibi, K. S. and Gopchandran, K. G. (2018). ZnO:Ag nanorods as efficient photocatalysts: Sunlight driven photocatalytic degradation of sulforhodamine B. Applied Surface Science, 427: 863-875.

20.    Rafaie, H. A., Aliyah, N., Nazam, A. M., Infaza, N., Ramli, T. and Mohamed, R. (2021). Synthesis, characterization and photocatalytic activities of Al-doped ZnO for degradation of methyl orange dye under UV light irradiation. Journal of the Australian Ceramic Society, 57(2): 479-488.

21.    Türkyılmaz, Ş. Ş., Güy, N. and Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry341: 39-50.

22.    Saleh, R. and Djaja, N. F. (2014). UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices and Microstructures, 74: 217-233.

23.    Sengupta, J., Ahmed, A. and Labar, R. (2013). Structural and optical properties of post annealed Mg doped ZnO thin films deposited by the sol–gel method. Materials Letters, 109: 265-268.

24.    Sharma, S., Vyas, R., Sharma, N., Singh, V., Singh, A., Kataria, V., Gupta, B. K. and Vijay, Y. K. (2013). Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies. Journal of Alloys and Compounds, 552: 208-212.

25.    Riffat. S.., Momina, K, Vaneeza, A., Zohra, N.K., Unza, T. and Faiza, A. (2020). Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optic, 200: 163428.

26.    Wolski, L., Whitten, J. E., Sobczak, I. and Ziolek, M. (2017). The effect of the preparation procedure on the morphology , texture and photocatalytic properties of ZnO. Materials Research Bulletin, 85: 35-46.

27.    Tan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G., Muto, H. and Matsuda, A. (2013). Photoluminescence properties of rod-like Ce-doped ZnO nanostructured films formed by hot-water treatment of sol–gel derived coating. Optical Materials, 35(11): 1902-1907.

28.    Wang, L., Wu, Y., Chen, F. and Yang, X. (2014). Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Progress in Natural Science: Materials International, 24(1): 6-12.

29.    Wang, M., Xu, J., Sun, T., Tang, Y., Jiang, G. and Shi, Y. (2018). Facile photochemical synthesis of hierarchical cake-like ZnO/Ag composites with enhanced visible-light photocatalytic activities. Materials Letters, 219: 236-239.

30.    Wang, W., Li, N., Hong, K., Guo, H., Ding, R. and Xia, Z. (2019). Z-scheme recyclable photocatalysts based on fl ower-like nickel zinc ferrite nanoparticles/ZnO nanorods: Enhanced activity under UV and visible irradiation. Journal of Alloys and Compounds, 777: 1108-1114.

31.    Wassel, A. R., El-Naggar, M. E. and Shoueir, K. (2020). Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. Journal of Environmental Chemical Engineering, 8(5): 104175.

32.    Okeke, I.S., Agwu, A.A., Ubachukwu, I.G., Madiba, I.G, Maaza, M., Whyte, G.M. and Ezema, F.I. (2021). Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process. Vaccum, 187: 110110.

33.    M´onica , A. V., Eric, M. R., Jesús, E. D., Edgar, E. M. and Jorge, E. R. (2021). Nanoparticles of ZnO and Mg-doped ZnO: Synthesis, characterization and efficient removal of methyl orange (MO) from aqueous solution. Ceramic international, 47: 15668-15681.

34.    Yun, S., Lee, J., Yang, J. and Lim, S. (2010). Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate. Physica B, 405(1): 413-419.

35.    Etacheri,V., Roshan, R. and V. Kumar. (2012). Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis.  Applied Materials Interfaces, 4: 2717-2725.

36.    Samanta, A., Goswami, M. N. and Mahapatra, P. K. (2018). Optical properties and enhanced photocatalytic activity of Mg-doped ZnO nanoparticles. Physica E: Low-dimensional System and Nanostructures, 104: 254-260.