Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 292 - 303
A REVIEW ON EXTRACTION OF LIPID FROM MICROALGAE
USING MICROWAVE-ASSISTED EXTRACTION
(Sebuah
Ulasan Terhadap Pengekstrakan Lipid Daripada Mikroalga
Dengan
Pengekstrakan Bantuan Gelombang Mikro)
Tan Yeong Hwang1*, Chai Mee Kin1,
Wong Ling Shing2, and Geetha Subramaniam2
1Institute of Sustainable Energy,
Universiti Tenaga Nasional, 43000
Kajang, Selangor, Malaysia
2Faculty of Health and Life Science,
INTI International University, 71800
Nilai, Negeri Sembilan, Malaysia
*Corresponding author:
yeonghwang113@gmail.com
Received:
23 August 2022; Accepted: 9 December 2022; Published: 19 April 2023
Abstract
Microalgae are regarded as suitable feedstock for
biofuel due to their high growth rate and substantial lipid content
Furthermore, the physiological functions of microalgal lipids contribute to
their effectiveness as bioactive compounds with economic value particularly in
pharmaceutical and health supplement industries. Extracting the stored lipid
from microalgae is a major challenge for industrial applications as their tough
cell wall is difficult to break down. Therefore, extraction solvents and cell
disruption techniques are key procedures for high lipid extraction and
recovery. Traditional methods used for cell disruption and extraction are
effective but time consuming and could be detrimental to the environment.
Hence, different innovative cell disruption techniques such as
microwave-assisted extraction are developed to overcome these issues. This
paper is a review of traditional and microwave-assisted extraction methods that
are used for lipid extraction from microalgae biomass. The advantages,
challenges and future trends of microwave-assisted extraction are also discussed.
Keywords:
lipid extraction, microwave-assisted
extraction, microalgae, traditional lipid extraction
Abstrak
Lipid yang dihasilkan oleh mikroalga dianggap sebagai bahan
mentah yang sesuai untuk biofuel kerana kadar pertumbuhan dan kandungan lipid
yang tinggi. Selain itu, fungsi fisiologi lipid mikroalga juga menjadikannya
sebagai sebatian bioaktif yang tinggi dalam industri farmaseutikal dan suplemen
kesihatan. Mengekstrakkan lipid daripada mikroalga merupakan cabaran utama
untuk aplikasi perindustrian kerana dinding selnya yang kukuh dan sukar
dipecahkan. Oleh hal demikian, pelarut pengekstrakan dan teknik gangguan sel
adalah prosedur penting untuk pengekstrakan lipid tinggi. Kaedah tradisional
yang digunakan untuk gangguan sel dan pengekstrakan adalah berkesan tetapi
tidak mesra alam dan mengambil masa. Oleh hal demikian, pelbagai teknik
gangguan sel inovatif seperti pengekstrakan bantuan gelombang mikro telah
dibangunkan. Kertas kerja ini ialah sebuah ulasan terhadap kaedah tradisional
dan pengekstrakan bantuan gelombang mikro yang telah digunakan untuk
pengekstrakan lipid daripada biojisim mikroalga. Kelebihan, cabaran dan trend
masa depan pengekstrakan bantuan gelombang mikro juga dibincangkan.
Kata kunci: pengekstrakan
lipid, pengekstrakan bantuan gelombang mikro, mikroalga, kaedah pengekstrakan
lipid tradisional
References
1. Priya, Deora, P. S., Verma,
Y., Muhal, R. A., Goswami, C. and Singh, T. (2022).
Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings,
48: 1178-1184.
2. Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G. and
D'Odorico, P. (2016). The water-land-food nexus of first-generation biofuels. Scientific Reports, 6: 1-10.
3. Adamczyk, M., Lasek, J. and
Skawińska, A. (2016). CO2 Biofixation and growth kinetics of Chlorella
vulgaris and Nannochloropsis gaditana. Applied Biochemistry and
Biotechnology, 179: 1248-1261.
4. Odjadjare, E.C., Mutanda, T., Chen, Y. F. and Olaniran,
A. O. (2018). Evaluation of pre-chlorinated wastewater effluent for microalgal
cultivation and biodiesel production. Water (Switzerland), 10 (8): 1-
13.
5. Bošnjaković, M. and Sinaga, N. (2020). The perspective of
large-scale production of algae biodiesel. Applied Sciences (Switzerland),
10 (22): 1-26.
6. Rajak, U., Nashine, P. and Verma, T. N. (2019). Assessment of diesel
engine performance using spirulina microalgae biodiesel. Energy,
166: 1025-1036.
7. Tizvir, A., Shojaeefard, M. H., Zahedi, A. and Molaeimanesh,
G. R. (2022). Performance and emission characteristics of biodiesel fuel from Dunaliella tertiolecta
microalgae, Renewable Energy, 182: 552-561.
8. Sibi, G.
(2015). Inhibition of lipase and inflammatory mediators by Chlorella
lipid extracts for antiacne treatment. Journal of Advanced Pharmaceutical
Technology and Research, 6 (1): 7-12.
9. Wang, S., Said, I, H., Thorstenson,
C., Thomsen, C., Ullrich, M., Kuhnert, N. and Thomsen, L. (2018). Pilot-scale
production of antibacterial substances by the marine diatom Phaeodactylum
tricornutum Bohlin. Algal Research, 32: 113-120.
10. Byreddy, A. R., Gupta, A., Barrow, C. J. and Puri, M.
(2015). Comparison of cell disruption methods for improving lipid extraction
from thraustochytrid strains. Marine Drugs, 13(8): 5111-5127.
11. Xia, A., Sun, C., Fu, Q., Liao, Q., Huang, Y. and Zhu,
X. (2020). Biofuel production from wet microalgae biomass: Comparison of
physicochemical properties and extraction performance. Energy, 212:
118581.
12. Baudelet, P. H., Ricochon, G., Linder, M. and Muniglia, L. (2017). A new insight into cell walls of Chlorophyta.
Algal Research, 25: 333-371.
13. Alhattab, M., Kermanshahi-Pour, A. and Brooks, M. S.
L. (2019). Microalgae disruption techniques for product recovery: influence of
cell wall composition. Journal of Applied Phycology, 31: 61-88.
14. Singh, R., Kumar, A. and Sharma, Y. C. (2020).
evaluation of various lipid extraction techniques for microalgae and their
effect on biochemical components. Waste and Biomass Valorization, 11(6):
2603- 2612.
15. El-Sheekh, M. M. and Hamouda, R. A. (2016). Lipids extraction from the green
alga Ankistrodesmus falcatus
using different methods. Rendiconti Lincei, 27(3): 589-595.
16. Moretto, J. A., de Souza, A. O., Berneira, L. M., Brigagăo, L. G.
G., de Pereira, C. M. P., Converti, A. and Pinto, E. (2022). Applied Sciences (Switzerland), 12 (5): 1-9.
17. Guckert, J. B., Cooksey, K. E. and Jackson, L. L. (1988). Lipid solvent systems
are not equivalent for analysis of lipid classes in the microeukaryotic
green alga, Chlorella. Journal of Microbiological Methods, 8(3):
139-149.
18. Chen, W., Liu, Y., Song, L., Sommerfeld, M. and Hu, Q.
(2020). Automated accelerated solvent extraction method for total lipid
analysis of microalgae. Algal Research, 51: 102080.
19. Poole C. F. (2019). Liquid-Phase Extraction. Elsevier,
Amsterdam: pp. 327-354.
20. de Jesus, S. S., Ferreira, G. F., Moreira, L. S. Maciel, M. R. W and Filho, M. R. (2019). Comparison of
several methods for effective lipid extraction from wet microalgae using green
solvents. Renewable Energy, 143: 130-141.
21. Zghaibi, N., Omar, R., Kamal, S. M. M., Biak, D. R. A. and Harun, R. (2019).
Microwave-assisted brine extraction for enhancement of the quantity and quality
of lipid production from microalgae Nannochloropsis
sp. Molecules, 24(19): 1-21.
22. Castejón, N. and Seńoráns, F. J. (2019). Simultaneous
extraction and fractionation of omega-3 acylglycerols
and glycolipids from wet microalgal biomass of Nannochloropsis
gaditana using pressurized liquids. Algal
Research, 37: 74-82.
23. Li, Y., Naghdi F. G., S.
Garg, S., Adarme-Vega, T. C., Thurecht,
K. J., Ghafor, W. A., Tannock,
S. and Schenk, P. M. (2014). A comparative study: the impact of different lipid
extraction methods on current microalgal lipid research. Microbial Cell
Factories, 13(14): 1-9.
24. Escorsim, A. M., Rocha, G., Vargas, J. V. C., A. B. Mariano, Ramos, L. P., Corazza, M. L. and Cordeiro, C. S. (2018). Extraction of Acutodesmus obliquus lipids using a mixture
of ethanol and hexane as solvent. Biomass and Bioenergy, 108: 470-478.
25. Balasubramanian, S., Allen, J. D., Kanitkar,
A. and Boldor, Dorin.
(2011). Oil extraction from Scenedesmus obliquus using a continuous
microwave system - design, optimization, and quality characterization. Bioresource
Technology, 102(3): 3396-3403.
26. Muhammad, A. I., Richard, J. B., O’Hara, I., Kent, M.
and Heimann, K. (2014). Effect of temperature and
moisture on high pressure lipid/oil extraction from microalgae. Energy
Conversion and Management, 88: 307-316
27. Eggers, L.F., Schwudke, D.
(2016). Liquid Extraction: Folch. In: Wenk, M. (eds). Encyclopedia of Lipidomics.
Springer, Dordrecht: pp. 1-6.
28. Sündermann, A., Eggers, L.F. and Schwudke, D. (2016).
Liquid Extraction: Bligh and Dyer. In: Wenk, M.
(eds). Encyclopedia of Lipidomics. Springer,
Dordrecht: pp. 1-4.
29. Axelsson, M. and Gentili, F. (2014). A single-step
method for rapid extraction of total lipids from green microalgae. PLoS ONE, 9(2): 17-20.
30. Pérez, K., Ibarra, D. and Ballen-Segura,
M. (2020). Modelling biodiesel
production from microalgae, using industrial wastewater as a growth medium. Ingeniare, 28(4): 744-754.
31. Gorgich, M., Mata, T. M., Martins,
A. A., Branco-Vieira, M. and Caetano, N. S. (2020). Comparison of different
lipid extraction procedures applied to three microalgal species. Energy
Reports, 6: 477-482.
32. Chatsungnoen, T. and Chisti, Y. (2016). Optimization of
oil extraction from Nannochloropsis salina biomass paste. Algal Research, 15:
100-109.
33. Park, J. Y., Lee, K., Choi, S. A., Jeong,
M. J., Kim, B., Lee, J. S. and Oh, Y. K. (2015). Sonication-assisted
homogenization system for improved lipid extraction from Chlorella vulgaris.
Renewable Energy, 79(1): 3-8.
34. Garoma, T. and Janda, D. (2016). Investigation of the effects of
microalgal cell concentration and electroporation, microwave and ultrasonication
on lipid extraction efficiency. Renewable Energy, 86: 117-223.
35. Zheng, H., Yin, J., Gao, Z. Huang H., Ji. X and Dou.
C. (2011). Disruption of Chlorella vulgaris cells for the release of
biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead
milling, enzymatic lysis, and microwaves. Applied Biochemistry and
Biotechnology, 164: 1215-1224.
36. Onay, M., Sonmez, C., Oktem, H. A. and Yucel, M. (2015). Evaluation of various extraction
techniques for efficient lipid recovery from thermo-resistant microalgae, Hindakia, Scenedesmus and Micractinium
species. American Journal of Analytical Chemistry, 7: 141-150.
37. Rakesh, S., Dhar, D. W., Prasanna, R. Saxena, A. K., Saha, S., Shukla, M. and Sharma, K. (2015). Cell disruption
methods for improving lipid extraction efficiency in unicellular microalgae. Engineering
in Life Sciences, 15(4): 443-447.
38. Nomanbhay, S. and Ong, M. Y. (2017). A review of microwave-assisted reactions for
biodiesel production. Bioengineering, 4(2): 57-88.
39. Wahidin, S., Idris, A. and Shaleh,
S. R. M. (2014). Rapid biodiesel production using wet microalgae via microwave
irradiation. Energy Conversion and Management, 84: 227-233.
40. de Moura, R. R., Etges, B.
J., dos Santos, E. O., Martins, T. G., Roselet, F., Abreu, P. C. Primel, E. G. and D'Oca, Marcelo
G. M. (2018). Microwave-assisted extraction of lipids from wet
microalgae paste: A quick and efficient method. European Journal of Lipid
Science and Technology, 120(7): 1-7.
41. Mansour, E. A., El-Enin, S.
A. A., Hamouda, A. S. and Mahmoud, H. M. (2019).
Efficacy of extraction techniques and solvent polarity on lipid recovery from
domestic wastewater microalgae. Environmental Nanotechnology, Monitoring and
Management, 12: 100271.
42. Zhou, X., Jin, W., Tu, R.,
Guo, Q., Han, S. F., Chen, C., Wang, Q., Liu, W., Jensen, P. D. and Wang, Q.
(2019). Optimization of microwave assisted lipid extraction from microalga Scenedesmus
obliquus grown on municipal wastewater. Journal of Cleaner Production,
221: 502-508.
43. De Sousa E Silva, A., Moreira, L. M., De Magalhăes, W. T., Farias, W. R.
L., Rocha, M. V. P. and Bastos, A. K. P. (2016). Extraction of biomolecules from Spirulina platensis using
non-conventional processes and harmless solvents. Journal of Environmental
Chemical Engineering, 5(3): 2101-2106.
44. Nogueira, D. A., da Silveira, J. M., Vidal, E. M.,
Ribeiro, N. T. and Burkert, C. A. V. (2018). Cell disruption of Chaetoceros calcitrans
by microwave and ultrasound in lipid extraction. International Journal of
Chemical Engineering, 2018: 9508723.
45. Lin, C. Y and Lin, B. Y. (2015). Fatty acid
characteristics of Isochrysis galbana lipids extracted using a microwave-assisted
method. Energies, 8(2): 1154-1165.
46. Dai, Y. M., Chen, K. T. and Chen, C. C. (2014). Study
of the microwave lipid extraction from microalgae for biodiesel production. Chemical
Engineering Journal, 250: 267-273.
47. Hidalgo, H., Ciudad, G. and Navia,
R. (2016). Evaluation of different solvent mixtures in esterifiable
lipids extraction from microalgae Botryococcus
braunii for biodiesel production. Bioresource
Technology, 201: 360-364.
48. Bi, Z. and He, B. B. (2016). Phospholipid
transesterification in sub-/super-critical methanol with the presence of free
fatty acids. Fuel, 166: 461-466.
49. Iqbal, J. and Theegala, C.
(2013). Microwave assisted lipid extraction from microalgae using biodiesel as
co-solvent. Algal Research, 3 (2): 34-42.
50. Kalsum, U.,
Kusuma, H. S., Roesyadi, A. and Mahfud., M. (2019).
Lipid Extraction from Spirulina platensis using microwave for biodiesel
production. Korean Chemical Engineering Research, 57(2): 301-304.
51. Saifuddin, N., Amzar, A. B. and P. Priatharsini,
A. (2016). Improvement in oil extraction from microalgae/algae for biodiesel
production using microwave assisted oil extraction with methyl ester. Research
Journal of Applied Sciences, Engineering and Technology, 13(4): 331-340.
52. Qv, X. Y., Zhou, Q. F. and Jiang, J. G. (2014). Ultrasound-enhanced
and microwave-assisted extraction of lipid from Dunaliella
tertiolecta and fatty acid profile analysis. Journal
of Separation Science, 37(20): 2991-2999.
53. Menéndez, J. M. B., Arenillas,
A., Menéndez Díaz, J. A., Boffa, L., Mantegna, S., Binello, A. and Cravotto, G.
(2014). Optimization of microalgae oil extraction under ultrasound and
microwave irradiation. Journal of Chemical Technology and Biotechnology,
89 (11): 1779-1784.
54. Onumaegbu, C., Alaswad, A., Rodriguez, C. and Olabi, A. (2019). Modelling and optimization of wet
microalgae Scenedesmus quadricauda lipid
extraction using microwave pre-treatment method and response surface
methodology. Renewable Energy, 132: 1323-1331.
55. Rana, M. S. and Prajapati, S. K. (2021).
Microwave-assisted pretreatment of wet microalgal biomass for recovery of
biofuel precursors. Fuel, 305: 121610.
56. Ali, M. and Watson, I. A. (2016). Microwave
thermolysis and lipid recovery from dried microalgae powder for biodiesel
production. Energy Technology, 4 (2): 319-330.
57. Tanzi, C. D., Pingret, D., Vian, M. A. and Chemat, F. (2017). Combined microwave and simultaneous
distillation extraction process for recovery of lipids from fresh microalgae. Process
Engineering Journal, 1: 1-9.
58. Biller, P., Friedman, C. and Ross, A. B. (2013).
Hydrothermal microwave processing of microalgae as a pre-treatment and
extraction technique for bio-fuels and bio-products. Bioresource Technology,
136: 188-195.
59. Bucy, H. B.,
Baumgardner, M. E. and Marchese, A. J. (2012). Chemical and physical properties
of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate.
Algal Research, 1: 57-69.
60. Ma, Y. A., Cheng, Y. M., Huang, J. W., Jen, J. F.,
Huang, Y. S. and Yu, C. C. (2014). Effects of ultrasonic and microwave
pretreatments on lipid extraction of microalgae. Bioprocess and Biosystems
Engineering, 37 (8): 1543-1549.
61. Cheng, J., Yu, T., Li, T., Zhou, J. and Cen, K.
(2013). Using wet microalgae for direct biodiesel production via microwave
irradiation. Bioresource Technology, 131: 531-535.
62. Teo, C. L. and Idris, A. (2014). Enhancing the various
solvent extraction method via microwave irradiation for extraction of lipids
from marine microalgae in biodiesel production. Bioresource Technology,
171: 477-481.
63. Naghdi, F. G.,
Thomas-Hall, S. R., Durairatnam, R., Pratt, S. and
Schenk, P. M. (2014). Comparative effects of biomass pre-treatments for direct
and indirect transesterification to enhance microalgal lipid recovery. Frontiers
in Energy Research, 2: 1-10.
64. Axelsson, M. and Gentili, F. (2014). A single-step
method for rapid extraction of total lipids from green microalgae. PLoS One, 9(2): 17-20.
65. Sharma, A. K. Sahoo, P. K., Singhal, S. and Joshi, G.
(2016). Exploration of upstream and downstream process for microwave assisted
sustainable biodiesel production from microalgae Chlorella vulgaris. Bioresource
Technology, 216: 798-800.
66. Pan, J., Muppaneni, T., Sun,
Y., Reddy, H. K., Fu, J., Lu, X., Deng, S. (2016). Microwave-assisted extraction
of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4].
Fuel, 178: 48-55.
67. Motlagh, S. R., Harun, R., Biak, D. R. A. and Hussain, S. A. (2019). Microwave
assisted extraction of lipid from Nannochloropsis
gaditana microalgae using [EMIM]Cl. IOP
Conference Series: Materials Science and Engineering, 778(1): 012164.
68. Xia, A., Sun, C., Fu, Q., Liao, Q., Huang, Y., Zhu, X.
and Li, Q. (2020). Biofuel production from wet microalgae biomass: Comparison
of physicochemical properties and extraction performance. Energy, 212:
118581.
69. Pôjo, V.,
Tavares T. and Malcata F.X. (2021). Processing
Methodologies of Wet Microalga Biomass Toward Oil Separation: An Overview. Molecules,
26(3): 641-664.
70. Cheng, J., Huang, R., Li, T., Zhou, J. and Cen, K.
(2014). Biodiesel from wet microalgae: Extraction with hexane after the
microwave-assisted transesterification of lipids. Bioresource Technology,
170: 69-75.
71. Teo, C. L. and Idris, A. (2014). Evaluation of direct
transesterification of microalgae using microwave irradiation. Bioresource
Technology, 174: 281-286.
72. Kober, M.,
Cohen, M., Ben-Amotz, A. and Gedanken,
A. (2011). Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound
radiation. Bioresource Technology, 102: 4265-4269.
73. The National Institute for Occupational Safety and
Health (NIOSH). (2019). Chloroform.
https://www.cdc.gov/niosh/topics/chloroform/default.html#:~:text=Chloroform%20can%20be%20toxic%20if,duration%2C%20and%20work%20being%20done.
[Accessed online 30 July 2022]
74. Wang, J., Jing, W., Tian, H., Liu, M., Yan, H. and Bi,
W. (2020). Investigation of deep eutectic solvent-based microwave-assisted
extraction and efficient recovery of natural products. ACS Sustainable
Chemistry Engineering, 8 (32): 12080-12088.
75. Doldolova, K., Bener, M., Lalikoğluc,
M., Aşçıb, Y. S., Aratd,
R. and Apak, R. (2021). Optimization and modeling of
microwave-assisted extraction of curcumin and antioxidant compounds from
turmeric by using natural deep eutectic solvents. Food Chemistry, 353:
129337.
76. Spall, J. C. (2010). Factorial design for efficient
experimentation. IEEE Control Systems Magazine, 30 (5): 38-53.
77. Najjara, Y. S. H. and Abu-Shamleh, A. (2020).
Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Research, 51: 102046.