Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 292 - 303

 

A REVIEW ON EXTRACTION OF LIPID FROM MICROALGAE USING MICROWAVE-ASSISTED EXTRACTION

 

(Sebuah Ulasan Terhadap Pengekstrakan Lipid Daripada Mikroalga

Dengan Pengekstrakan Bantuan Gelombang Mikro)

 

Tan Yeong Hwang1*, Chai Mee Kin1, Wong Ling Shing2, and Geetha Subramaniam2

 

1Institute of Sustainable Energy,

Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

2Faculty of Health and Life Science,

INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia

 

*Corresponding author: yeonghwang113@gmail.com

 

 

Received: 23 August 2022; Accepted: 9 December 2022; Published:  19 April 2023

 

 

Abstract

Microalgae are regarded as suitable feedstock for biofuel due to their high growth rate and substantial lipid content Furthermore, the physiological functions of microalgal lipids contribute to their effectiveness as bioactive compounds with economic value particularly in pharmaceutical and health supplement industries. Extracting the stored lipid from microalgae is a major challenge for industrial applications as their tough cell wall is difficult to break down. Therefore, extraction solvents and cell disruption techniques are key procedures for high lipid extraction and recovery. Traditional methods used for cell disruption and extraction are effective but time consuming and could be detrimental to the environment. Hence, different innovative cell disruption techniques such as microwave-assisted extraction are developed to overcome these issues. This paper is a review of traditional and microwave-assisted extraction methods that are used for lipid extraction from microalgae biomass. The advantages, challenges and future trends of microwave-assisted extraction are also discussed.

 

Keywords: lipid extraction, microwave-assisted extraction, microalgae, traditional lipid extraction

 

Abstrak

Lipid yang dihasilkan oleh mikroalga dianggap sebagai bahan mentah yang sesuai untuk biofuel kerana kadar pertumbuhan dan kandungan lipid yang tinggi. Selain itu, fungsi fisiologi lipid mikroalga juga menjadikannya sebagai sebatian bioaktif yang tinggi dalam industri farmaseutikal dan suplemen kesihatan. Mengekstrakkan lipid daripada mikroalga merupakan cabaran utama untuk aplikasi perindustrian kerana dinding selnya yang kukuh dan sukar dipecahkan. Oleh hal demikian, pelarut pengekstrakan dan teknik gangguan sel adalah prosedur penting untuk pengekstrakan lipid tinggi. Kaedah tradisional yang digunakan untuk gangguan sel dan pengekstrakan adalah berkesan tetapi tidak mesra alam dan mengambil masa. Oleh hal demikian, pelbagai teknik gangguan sel inovatif seperti pengekstrakan bantuan gelombang mikro telah dibangunkan. Kertas kerja ini ialah sebuah ulasan terhadap kaedah tradisional dan pengekstrakan bantuan gelombang mikro yang telah digunakan untuk pengekstrakan lipid daripada biojisim mikroalga. Kelebihan, cabaran dan trend masa depan pengekstrakan bantuan gelombang mikro juga dibincangkan.

 

Kata kunci: pengekstrakan lipid, pengekstrakan bantuan gelombang mikro, mikroalga, kaedah pengekstrakan lipid tradisional

 

References

1.       Priya, Deora, P. S., Verma, Y., Muhal, R. A., Goswami, C. and Singh, T. (2022). Biofuels: An alternative to conventional fuel and energy source. Materials Today: Proceedings, 48: 1178-1184.

2.       Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G. and D'Odorico, P. (2016). The water-land-food nexus of first-generation biofuels.  Scientific Reports, 6: 1-10.

3.       Adamczyk, M., Lasek, J. and Skawińska, A. (2016). CO2 Biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179: 1248-1261.  

4.       Odjadjare, E.C., Mutanda, T., Chen, Y. F. and Olaniran, A. O. (2018). Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production. Water (Switzerland), 10 (8): 1- 13.

5.       Bošnjaković, M. and Sinaga, N. (2020). The perspective of large-scale production of algae biodiesel. Applied Sciences (Switzerland), 10 (22): 1-26.

6.       Rajak, U., Nashine, P. and Verma, T. N. (2019). Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy, 166: 1025-1036.

7.       Tizvir, A., Shojaeefard, M. H., Zahedi, A. and Molaeimanesh, G. R. (2022). Performance and emission characteristics of biodiesel fuel from Dunaliella tertiolecta microalgae, Renewable Energy, 182: 552-561.

8.       Sibi, G. (2015). Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment. Journal of Advanced Pharmaceutical Technology and Research, 6 (1): 7-12.

9.       Wang, S., Said, I, H., Thorstenson, C., Thomsen, C., Ullrich, M., Kuhnert, N. and Thomsen, L. (2018). Pilot-scale production of antibacterial substances by the marine diatom Phaeodactylum tricornutum Bohlin. Algal Research, 32: 113-120.

10.    Byreddy, A. R., Gupta, A., Barrow, C. J. and Puri, M. (2015). Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Marine Drugs, 13(8): 5111-5127.

11.    Xia, A., Sun, C., Fu, Q., Liao, Q., Huang, Y. and Zhu, X. (2020). Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance. Energy, 212: 118581.

12.    Baudelet, P. H., Ricochon, G., Linder, M. and Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25: 333-371.

13.    Alhattab, M., Kermanshahi-Pour, A. and Brooks, M. S. L. (2019). Microalgae disruption techniques for product recovery: influence of cell wall composition. Journal of Applied Phycology, 31: 61-88.  

14.    Singh, R., Kumar, A. and Sharma, Y. C. (2020). evaluation of various lipid extraction techniques for microalgae and their effect on biochemical components. Waste and Biomass Valorization, 11(6): 2603- 2612.

15.    El-Sheekh, M. M. and Hamouda, R. A. (2016). Lipids extraction from the green alga Ankistrodesmus falcatus using different methods. Rendiconti Lincei, 27(3): 589-595.

16.    Moretto, J. A., de Souza, A. O., Berneira, L. M., Brigagăo, L. G. G., de Pereira, C. M. P., Converti, A. and Pinto, E. (2022). Applied Sciences (Switzerland), 12 (5): 1-9.

17.    Guckert, J. B., Cooksey, K. E. and Jackson, L. L. (1988). Lipid solvent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. Journal of Microbiological Methods, 8(3): 139-149.

18.    Chen, W., Liu, Y., Song, L., Sommerfeld, M. and Hu, Q. (2020). Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Research, 51: 102080.

19.    Poole C. F. (2019). Liquid-Phase Extraction. Elsevier, Amsterdam: pp. 327-354.

20.    de Jesus, S. S., Ferreira, G. F., Moreira, L. S. Maciel, M. R. W and Filho, M. R. (2019). Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renewable Energy, 143: 130-141.

21.    Zghaibi, N., Omar, R., Kamal, S. M. M., Biak, D. R. A. and Harun, R. (2019). Microwave-assisted brine extraction for enhancement of the quantity and quality of lipid production from microalgae Nannochloropsis sp. Molecules, 24(19): 1-21.

22.    Castejón, N. and Seńoráns, F. J. (2019). Simultaneous extraction and fractionation of omega-3 acylglycerols and glycolipids from wet microalgal biomass of Nannochloropsis gaditana using pressurized liquids. Algal Research, 37: 74-82.

23.    Li, Y., Naghdi F. G., S. Garg, S., Adarme-Vega, T. C., Thurecht, K. J., Ghafor, W. A., Tannock, S. and Schenk, P. M. (2014). A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microbial Cell Factories, 13(14): 1-9.

24.    Escorsim, A. M., Rocha, G., Vargas, J. V. C., A. B. Mariano, Ramos, L. P., Corazza, M. L. and Cordeiro, C. S. (2018). Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass and Bioenergy, 108: 470-478.

25.    Balasubramanian, S., Allen, J. D., Kanitkar, A. and Boldor, Dorin. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system - design, optimization, and quality characterization. Bioresource Technology, 102(3): 3396-3403.

26.    Muhammad, A. I., Richard, J. B., O’Hara, I., Kent, M. and Heimann, K. (2014). Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae. Energy Conversion and Management, 88: 307-316

27.    Eggers, L.F., Schwudke, D. (2016). Liquid Extraction: Folch. In: Wenk, M. (eds). Encyclopedia of Lipidomics. Springer, Dordrecht: pp. 1-6.

28.    Sündermann, A., Eggers, L.F. and Schwudke, D. (2016). Liquid Extraction: Bligh and Dyer. In: Wenk, M. (eds). Encyclopedia of Lipidomics. Springer, Dordrecht: pp. 1-4.

29.    Axelsson, M. and Gentili, F. (2014). A single-step method for rapid extraction of total lipids from green microalgae. PLoS ONE, 9(2): 17-20.

30.    Pérez, K., Ibarra, D. and Ballen-Segura, M. (2020). Modelling biodiesel production from microalgae, using industrial wastewater as a growth medium. Ingeniare, 28(4): 744-754.

31.    Gorgich, M., Mata, T. M., Martins, A. A., Branco-Vieira, M. and Caetano, N. S. (2020). Comparison of different lipid extraction procedures applied to three microalgal species. Energy Reports, 6: 477-482.

32.    Chatsungnoen, T. and Chisti, Y. (2016). Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Research, 15: 100-109.

33.    Park, J. Y., Lee, K., Choi, S. A., Jeong, M. J., Kim, B., Lee, J. S. and Oh, Y. K. (2015). Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renewable Energy, 79(1):  3-8.

34.    Garoma, T. and Janda, D. (2016). Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency. Renewable Energy, 86: 117-223.

35.    Zheng, H., Yin, J., Gao, Z. Huang H., Ji. X and Dou. C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Applied Biochemistry and Biotechnology, 164: 1215-1224.

36.    Onay, M., Sonmez, C., Oktem, H. A. and Yucel, M. (2015). Evaluation of various extraction techniques for efficient lipid recovery from thermo-resistant microalgae, Hindakia, Scenedesmus and Micractinium species. American Journal of Analytical Chemistry, 7: 141-150.

37.    Rakesh, S., Dhar, D. W., Prasanna, R. Saxena, A. K., Saha, S., Shukla, M. and Sharma, K. (2015). Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae. Engineering in Life Sciences, 15(4): 443-447.

38.    Nomanbhay, S. and Ong, M. Y. (2017). A review of microwave-assisted reactions for biodiesel production. Bioengineering, 4(2): 57-88.

39.    Wahidin, S., Idris, A. and Shaleh, S. R. M. (2014). Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Conversion and Management, 84: 227-233.

40.    de Moura, R. R., Etges, B. J., dos Santos, E. O., Martins, T. G., Roselet, F., Abreu, P. C. Primel, E. G. and D'Oca, Marcelo G. M. (2018). Microwave-assisted extraction of lipids from wet microalgae paste: A quick and efficient method. European Journal of Lipid Science and Technology, 120(7): 1-7.

41.    Mansour, E. A., El-Enin, S. A. A., Hamouda, A. S. and Mahmoud, H. M. (2019). Efficacy of extraction techniques and solvent polarity on lipid recovery from domestic wastewater microalgae. Environmental Nanotechnology, Monitoring and Management, 12: 100271.

42.    Zhou, X., Jin, W., Tu, R., Guo, Q., Han, S. F., Chen, C., Wang, Q., Liu, W., Jensen, P. D. and Wang, Q. (2019). Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. Journal of Cleaner Production, 221: 502-508.

43.    De Sousa E Silva, A., Moreira, L. M., De Magalhăes, W. T., Farias, W. R. L., Rocha, M. V. P. and Bastos, A. K. P. (2016). Extraction of biomolecules from Spirulina platensis using non-conventional processes and harmless solvents. Journal of Environmental Chemical Engineering, 5(3): 2101-2106.

44.    Nogueira, D. A., da Silveira, J. M., Vidal, E. M., Ribeiro, N. T. and Burkert, C. A. V. (2018). Cell disruption of Chaetoceros calcitrans by microwave and ultrasound in lipid extraction. International Journal of Chemical Engineering, 2018: 9508723.

45.    Lin, C. Y and Lin, B. Y. (2015). Fatty acid characteristics of Isochrysis galbana lipids extracted using a microwave-assisted method. Energies, 8(2): 1154-1165.

46.    Dai, Y. M., Chen, K. T. and Chen, C. C. (2014). Study of the microwave lipid extraction from microalgae for biodiesel production. Chemical Engineering Journal, 250: 267-273.

47.    Hidalgo, H., Ciudad, G. and Navia, R. (2016). Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresource Technology, 201: 360-364.

48.    Bi, Z. and He, B. B. (2016). Phospholipid transesterification in sub-/super-critical methanol with the presence of free fatty acids. Fuel, 166: 461-466.

49.    Iqbal, J. and Theegala, C. (2013). Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Research, 3 (2): 34-42.

50.    Kalsum, U., Kusuma, H. S., Roesyadi, A. and Mahfud., M. (2019). Lipid Extraction from Spirulina platensis using microwave for biodiesel production. Korean Chemical Engineering Research, 57(2): 301-304.

51.    Saifuddin, N., Amzar, A. B. and P. Priatharsini, A. (2016). Improvement in oil extraction from microalgae/algae for biodiesel production using microwave assisted oil extraction with methyl ester. Research Journal of Applied Sciences, Engineering and Technology, 13(4): 331-340.

52.    Qv, X. Y., Zhou, Q. F. and Jiang, J. G. (2014). Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. Journal of Separation Science, 37(20): 2991-2999.

53.    Menéndez, J. M. B., Arenillas, A., Menéndez Díaz, J. A., Boffa, L., Mantegna, S., Binello, A. and Cravotto, G. (2014). Optimization of microalgae oil extraction under ultrasound and microwave irradiation. Journal of Chemical Technology and Biotechnology, 89 (11): 1779-1784.

54.    Onumaegbu, C., Alaswad, A., Rodriguez, C. and Olabi, A. (2019). Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology. Renewable Energy, 132: 1323-1331.

55.    Rana, M. S. and Prajapati, S. K. (2021). Microwave-assisted pretreatment of wet microalgal biomass for recovery of biofuel precursors. Fuel, 305: 121610.

56.    Ali, M. and Watson, I. A. (2016). Microwave thermolysis and lipid recovery from dried microalgae powder for biodiesel production. Energy Technology, 4 (2): 319-330.

57.    Tanzi, C. D., Pingret, D., Vian, M. A. and Chemat, F. (2017). Combined microwave and simultaneous distillation extraction process for recovery of lipids from fresh microalgae. Process Engineering Journal, 1: 1-9.

58.    Biller, P., Friedman, C. and Ross, A. B. (2013). Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresource Technology, 136: 188-195.

59.    Bucy, H. B., Baumgardner, M. E. and Marchese, A. J. (2012). Chemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate. Algal Research, 1: 57-69.

60.    Ma, Y. A., Cheng, Y. M., Huang, J. W., Jen, J. F., Huang, Y. S. and Yu, C. C. (2014). Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess and Biosystems Engineering, 37 (8): 1543-1549.

61.    Cheng, J., Yu, T., Li, T., Zhou, J. and Cen, K. (2013). Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresource Technology, 131: 531-535.

62.    Teo, C. L. and Idris, A. (2014). Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Bioresource Technology, 171: 477-481.

63.    Naghdi, F. G., Thomas-Hall, S. R., Durairatnam, R., Pratt, S. and Schenk, P. M. (2014). Comparative effects of biomass pre-treatments for direct and indirect transesterification to enhance microalgal lipid recovery. Frontiers in Energy Research, 2: 1-10.

64.    Axelsson, M. and Gentili, F. (2014). A single-step method for rapid extraction of total lipids from green microalgae. PLoS One, 9(2): 17-20.

65.    Sharma, A. K. Sahoo, P. K., Singhal, S. and Joshi, G. (2016). Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris. Bioresource Technology, 216: 798-800.

66.    Pan, J., Muppaneni, T., Sun, Y., Reddy, H. K., Fu, J., Lu, X., Deng, S. (2016). Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel, 178: 48-55.

67.    Motlagh, S. R., Harun, R., Biak, D. R. A. and Hussain, S. A. (2019). Microwave assisted extraction of lipid from Nannochloropsis gaditana microalgae using [EMIM]Cl. IOP Conference Series: Materials Science and Engineering, 778(1): 012164.

68.    Xia, A., Sun, C., Fu, Q., Liao, Q., Huang, Y., Zhu, X. and Li, Q. (2020). Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance. Energy, 212: 118581.

69.    Pôjo, V., Tavares T. and Malcata F.X. (2021). Processing Methodologies of Wet Microalga Biomass Toward Oil Separation: An Overview. Molecules, 26(3): 641-664.

70.    Cheng, J., Huang, R., Li, T., Zhou, J. and Cen, K. (2014). Biodiesel from wet microalgae: Extraction with hexane after the microwave-assisted transesterification of lipids. Bioresource Technology, 170: 69-75.

71.    Teo, C. L. and Idris, A. (2014). Evaluation of direct transesterification of microalgae using microwave irradiation. Bioresource Technology, 174: 281-286.

72.    Kober, M., Cohen, M., Ben-Amotz, A. and Gedanken, A. (2011). Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresource Technology, 102: 4265-4269.

73.    The National Institute for Occupational Safety and Health (NIOSH). (2019). Chloroform. https://www.cdc.gov/niosh/topics/chloroform/default.html#:~:text=Chloroform%20can%20be%20toxic%20if,duration%2C%20and%20work%20being%20done. [Accessed online 30 July 2022]

74.    Wang, J., Jing, W., Tian, H., Liu, M., Yan, H. and Bi, W. (2020). Investigation of deep eutectic solvent-based microwave-assisted extraction and efficient recovery of natural products. ACS Sustainable Chemistry Engineering, 8 (32): 12080-12088.

75.    Doldolova, K., Bener, M., Lalikoğluc, M., Aşçıb, Y. S., Aratd, R. and Apak, R. (2021). Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry, 353: 129337.

76.    Spall, J. C. (2010). Factorial design for efficient experimentation. IEEE Control Systems Magazine, 30 (5): 38-53.

77.    Najjara, Y. S. H. and Abu-Shamleh, A. (2020). Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Research, 51: 102046.