Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 280 - 291
SYNTHESIS,
CRYSTAL STRUCTURE, SPECTROSCOPIC CHARACTERISATION, AND PHOTOPHYSICAL PROPERTIES
OF IRIDIUM(III) COMPLEX WITH PYRIDINE-FORMIMIDAMIDE ANCILLARY LIGAND
(Sintesis, Struktur Hablur, Pencirian Spekroskopi, dan Sifat
Fotofizikal Kompleks Iridium(III) dengan Ligan Ansilari Piridina-Formimidamida)
Nurul Husna As Saedah Bain1, Noorshida Mohd Ali1,*,
Yusnita Juahir1, Suzaliza Mustafar1, Mohammad Kassim2,
Saifful Kamaluddin Muzakir@Lokman3, Bohari Mohd Yamin2,
and Jean-Claude Daran4
1Chemistry Department,
Faculty of Science and Mathematics,
Universiti Pendidikan Sultan Idris,
35900, Tanjong Malim, Perak, Malaysia
2School of Chemical Sciences and Food Technology,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor, Malaysia
3Faculty of Industrial Sciences and
Technology,
Universiti Malaysia Pahang,
26300 Gambang, Pahang, Malaysia
4CNRS, LCC (Laboratoire de Chimie de Coordination),
Université de
Toulouse,
UPS, INPT,
205, Route de Narbonne, F-31077 Toulouse, France
*Corresponding author: noorshida@fsmt.upsi.edu.my
Received:
11 November 2022; Accepted: 17 January 2023; Published: 19 April 2023
Abstract
A phosphorescent Ir(III)
complex was
synthesised between 2-(1H-1,2,4-triazol-1-yl)pyridine and Ir(III) dimer, [Ir(2,4-F2ppy)2(µ-Cl)]2,
where ppy denotes 2-phenylpyridine by reflux method.
The Ir(III) complex was fully characterised by FTIR,
NMR, LC-MS, and UV-Vis absorption spectroscopic methods. The presence of a strong
band at 2220 cm−1 due to ν(C≡N)
was revealed by the IR analysis. Both pyridine and phenyl
aromatic rings have C=N stretching band at 1598 cm−1 and C=C stretching bands at 1554 and 1400 cm−1,
respectively. The
1H NMR spectrum showed signals in the aromatic range of δ
5.009.00 ppm corresponding to phenylpyridine
protons. The 13C NMR spectroscopic data were consistent with the Ir(III) complex formula, which revealed 37 carbon signals. The Ir(III) complex
displayed the ESI-MS spectrum at m/z = 823. The UV-Vis spectrum displayed
a weaker and broader band (374 nm) in the visible region due to the
spin-forbidden 3MLCT transitions. The X-ray crystallographic study
revealed that the Ir(III) ion was coordinated to the pyridine-formimidamide ancillary ligand and two
2-(2,4-difluorophenyl)pyridine cyclometalating
ligands in an octahedral geometry. Steady-state
emission spectroscopy determined that the Ir(III)
complex emitted blue-green light in
dichloromethane solution at room temperature with the vibronic
structure to the peak shape (l = 462
nm and 487 nm) due
to the admixture of 3LC and 3MLCT character excited
states.
Keywords: Ir(III) complex, formimidamide, ancillary ligand, phosphorescent,
metal-to-ligand charge transfer
Abstrak
Kompleks
Ir(III) berpendar fosfor disintesis antara 2-(1H-1,2,4-triazola-1-yl)piridina
dan dimer Ir(III), [Ir(2,4-F2ppy)2(µ- Cl)]2 di
mana ppy mewakili 2-fenilpiridina melalui kaedah refluks. Kompleks Ir(III)
dicirikan sepenuhnya melalui kaedah spektroskopi: FTIR, NMR, LC-MS, dan
penyerapan UV-Vis. Kehadiran satu jalur kuat pada 2220 cm−1
disebabkan oleh ν(C≡N) telah dikenal pasti daripada analisis IR.
Kedua-dua gelang aromatik piridina dan fenil, masing-masing mempunyai jalur
regangan C=N pada 1598 cm−1 dan
jalur regangan C=C pada 1554 dan 1400 cm−1.
Spektrum 1H NMR menunjukkan isyarat dalam julat aromatik δ
5.009.00 ppm sepadan dengan proton fenilpiridina. Data spektroskopi 13C
NMR juga konsisten dengan formula kompleks Ir(III), yang menunjukkan 37 isyarat
karbon. Kompleks Ir(III) menunjukkan spektrum ESI-MS pada m/z = 823. Spektrum
UV-Vis mempamerkan jalur yang lebih lemah dan lebar (374 nm) di rantau yang
boleh dilihat disebabkan oleh peralihan 3MLCT spin-terlarang. Kajian
kristalografi sinar-X menunjukkan ion Ir(III) dikoordinasi kepada ligan
ansilari piridina-formimidamida dan dua ligan siklometalasi
2-(2,4-diflorofenil)piridina dalam geometri oktahedral. Spektroskopi pancaran
keadaan-stabil menunjukkan kompleks Ir(III) memancarkan cahaya biru-hijau dalam
larutan diklorometana pada suhu bilik dengan struktur vibronik kepada bentuk
puncak (l = 462 nm dan 487 nm) disebabkan
oleh bauran ciri keadaan teruja 3LC dan 3MLCT.
Kata kunci: Kompleks Ir(III), Formimidamida, ligan ansilari,
berpendar fosfor, pemindahan cas logam ke ligan
References
1.
Ho, C-L., Li, H. and Wong, W-Y. (2015). Red to
near-infrared organometallic phosphorescent dyes for OLED applications. Journal of Organometallic Chemistry,
751: 261-285.
2.
Costa, R. D., Orti, E., Bolink, H. J., Monti, F., Accorsi, G., and Armaroli, N. (2012). Luminescent ionic transition-metal
complexes for light-emitting electrochemical cells. Angew.
Chemie - International Edition, 51(33):
8178-8211.
3.
Barbante, G. J., Doeven,
E. H., Francis, P. S., Stringer, B. D., Hogan, C. F., Kheradmand,
P. R., Wilson, D. J. D., and Barnard, P. J. (2015). Iridium(III)
N-heterocyclic carbene complexes: An experimental and theoretical study of
structural, spectroscopic, electrochemical and electrogenerated
chemiluminescence properties. Dalton Transaction, 44(18): 8564-8576.
4.
Yang, C-H., Mauro, M.,
Polo, F., Watanabe, S., Muenster, I., Fröhlich, R. and De Cola, L. (2012).
Deep-blue-emitting heteroleptic iridium(III)
complexes suited for highly efficient phosphorescent OLEDs. Chemistry of
Materials, 24(19): 3684-3695.
5.
Yanling, S., Shuai, Z., Godefroid, G., Jinghai, Y., and Zhijian, W. (2015). Modification of the emission colour and
quantum efficiency for oxazoline and thiazoline containing iridium complexes via different NiO. The Royal Society Chemistry, 5(24):
18464-18470.
6.
Ali, N. M., Ward, M. D., Hashim, N., and Daud, N. (2017). Synthesis and photophysical properties of
bis(phenylpyridine) iridium(iii) dicyanide complexes.
Materials Research Innovation, 23(3): 135-140.
7.
Lee, S., and Han, W. S. (2020). Cyclometalated
Ir(III)
complexes towards blue-emissive dopant for organic light-emitting diodes:
Fundamentals of photophysics and designing
strategies. Inorganic Chemistry Frontier, 7(12): 2396-2422.
8.
Adeloye, A. O., Mphahlele,
M. J., Adekunle, A. S., Rhyman, L., and Ramasami, P. (2017). Spectroscopic, electrochemical and DFT
studies of phosphorescent homoleptic cyclometalated iridium(III) complexes based on substituted
4-fluorophenylvinyland 4-methoxyphenylvinylquinolines. Materials,
10(10): 1061-1082.
9.
Henwood, A. F., Pal, A. K.,
Cordes, D. B., Slawin, A. M. Z., Rees, T. W., Momblona,
C., Babaei, A., Pertegįs,
A., Ortķ, E., Bolink, H.
J., Baranoff, E. and Zysman-Colman,
E. (2017). Blue-emitting cationic iridium(III)
complexes featuring pyridylpyrimidine ligands and
their use in sky-blue electroluminescent devices. Journal of Materials Chemistry C, 5(37): 9638-9650.
10. Omae, I. (2016) Application of the
five-membered ring blue light-emitting iridium products of cyclometalation
reactions as OLEDs. Coordination Chemistry Reviews, 310: 154-169.
11. Tan, G., Wang, L., Wang, S.,
Liu, P., Fan, H., Ho, C-L., Ma, D. and Wong, W-Y. (2019). Synthesis,
photoluminescence and electroluminescence of triphenylphosphine functionalized cyclometalated iridium(III)
complexes. Dyes and Pigments, 160: 717-725.
12. Sheldrick, G. M. SAINT V4, Software reference manual
Siemens analytical X-ray systems. Madison, WI, USA; 1996
13. Sheldrick, G. M., SADABS, Program for empirical
absorption correction of area detector data. Germany: University of Göttingen, Göttingen, German, 1996
14. Sheldrick, G. M. SHELXTL V5.1, Software reference manual,
Bruker AXS, Madison, WI, USA, 1997
15. Sajoto,
T., Djurovich, P. I.,
Tamayo, A., Yousufuddin,
M., Bau,
R., Thompson, M. E., Holmes, R. J. and Forrest, S. R. (2005). Blue and near-UV
phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene
ligands. Inorganic Chemistry, 44(22): 7992-8003.
16. Bain, N. H. A. S., Ali, N. M., Juahir,
Y., Hashim, N., Isa, M. I., Mohamed, A., Kamari, A. and Yamin,
B.M. (2021). Synthesis and spectroscopic studies of phenylpyridine
iridium(III) complexes with derivatives of 1h-1,2,4-triazole as ancillary ligands. Indonesian Journal of Chemistry, 21(6): 1577-1585.
17. Robert, M. S., Francis, X. W. and David, J. K. (2005).
Spectrometric identification of
organic compounds. John Wiley & Sons, Inc., New York. Seventh
Edition: pp. 72-204.
18. Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2015). Introduction to spectroscopy. Cengage
Learning 200 First Stamford Place, Stamford, USA. Fifth Edition: pp. 14-329.
19. Gokce, H., Ozturk, N., Tasąn, M., Alpaslan, Y. B., Alpaslan, G., (2016).
Spectroscopic characterization and quantum chemical computations of the
5-(4-pyridyl)-1-h-1,2,4-triazole-3-thiol molecule. Spectroscopy Letters, 49(3): 167-179.
20. Stringer, B. D., Quan, L. M.,
Barnard, P. J., Wilson, D. J. D. and Hogan, C. F. (2014). Iridium complexes of
n-heterocyclic carbene ligands: investigation into the energetic requirements
for efficient electrogenerated chemiluminescence. Organometallics, 33(18): 4860-4872.
21. Huynh, H. V.; Han, Y., Jothibasu, R. and Yang, J. A. (2009). 13C NMR
spectroscopic determination of ligand donor strengths using n-heterocyclic
carbene complexes of palladium(II). Organometallics,
28(18): 5395-5404.
22. Sanner, R.
D., Cherepy, N. J., Paul Martinez, H., Pham, H. Q.
and Young Jr, V. G. (2019). Highly efficient phosphorescence from cyclometallated iridium(III)
compounds: Improved syntheses of picolinate complexes and quantum chemical
studies of their electronic structures. Inorganica Chimica Acta, 496: 119040-119078.
23. Donato,
L., Abel, P. and Zysman-Colman, E. (2013). Cationic iridium(III) complexes bearing a bis(triazole)
ancillary ligand. Dalton
Transactions, 42(23): 8402-8412.
24. Xue, J., Xin, L. J., Hou, J. Y., Duan, L., Wang, R. J., Wei, Y. and Qiao,
J. (2017). Homoleptic
facial Ir(III)
complexes via facile synthesis for high-efficiency and low-roll-off
near-infrared organic light-emitting diodes over 750 nm. Chemistry of Materials,
29(11): 4775-4782.
25. Bain, N. H. A. S., Ali, N. M. Juahir, Y., Hashim, N., Isa, I. M., Mohamed, A., Kamari,
A., Anouar, E. H., Yamin,
B. M., Tajuddin, A. M. and Baharudin,
M. H. (2020). Synthesis, crystal
structure, photophysical properties, DFT studies and Hirshfeld
surface analysis of a phosphorescent 1,2,4-triazole-based iridium(III)
complex. Polyhedron, 188: 114690-114701.
26. Bain, N. H. A., Ali, N. M., Juahir,
Y., Hashim, N., Isa, I. M., Mohamed, A., Kamari, A., and Yamin,
B. M. (2018). Synthesis of phenylpyridine iridium(III) complexes with n-heterocyclic carbene as
ancillary ligand. IOP Conference Series
Materials Science Engineering, 440: 012010-012018.
27. Monti,
F., Kessler, F., Delgado, M., Frey, J., Bazzanini,
F., Accorsi, G., Armaroli, N., Bolink,
H. J., Ort, E., Scopelliti, R., Nazeeruddin,
M. K. and Baranoff, E. (2013). Charged bis-cyclometalated iridium(III)
complexes with carbene-based ancillary ligands. Inorganic Chemistry, 52(18): 10292-10305.
28. Baranoff,
E., Curchod, B. F. E., Monti, F., Steimer,
F., Accorsi, G., Tavernelli, I., Rothlisberger,
U., Scopelliti, R., Grätzel,
M. and Nazeeruddin, M. K. (2012). Influence of
halogen atoms on a homologous series of bis-cyclometalated
iridium(III) complexes. Inorganic Chemistry, 51(2): 799-811.
29. Ryu, C. H., Lim, J., Kim, M.
B., Lee, J. H., Hwang, H., Lee, J. Y., and Lee, K. M. (2021).
Tris(5-phenyl-1h-1,2,4-triazolyl)iridium(III) complex
and its use in blue phosphorescent organic light-emitting diodes to provide an
external quantum efficiency of up to 27.8%. Advanced Optical Materials, 9(7):
1-7.
30. Tom, L., Diluzio,
S., Hua, C. and Connell, T. U. (2022). Understanding the role of cyclometalating ligand regiochemistry
on the photophysics of charged heteroleptic
iridium(III) complexes. Journal of Coordination Chemistry, 75(11-14): 1722-1743.
31. Schneidenbach, D., Ammermann, S., Debeaux, M., Freund, A., Zöllner,
M., Daniliuc, C., Jones, P. G., Kowalsky,
W. and Johannes, H-H. (2010). Efficient
and long-time stable red iridium(III) complexes for
organic light-emitting diodes based on quinoxaline ligands. Inorganic Chemistry, 49(2):
397-406.