Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 280 - 291

 

SYNTHESIS, CRYSTAL STRUCTURE, SPECTROSCOPIC CHARACTERISATION, AND PHOTOPHYSICAL PROPERTIES OF IRIDIUM(III) COMPLEX WITH PYRIDINE-FORMIMIDAMIDE ANCILLARY LIGAND

 

(Sintesis, Struktur Hablur, Pencirian Spekroskopi, dan Sifat Fotofizikal Kompleks Iridium(III) dengan Ligan Ansilari Piridina-Formimidamida)

 

Nurul Husna As Saedah Bain1, Noorshida Mohd Ali1,*, Yusnita Juahir1, Suzaliza Mustafar1, Mohammad Kassim2, Saifful Kamaluddin Muzakir@Lokman3, Bohari Mohd Yamin2, and Jean-Claude Daran4

 

1Chemistry Department,

Faculty of Science and Mathematics,

Universiti Pendidikan Sultan Idris,

35900, Tanjong Malim, Perak, Malaysia

2School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

3Faculty of Industrial Sciences and Technology,

Universiti Malaysia Pahang,

26300 Gambang, Pahang, Malaysia

4CNRS, LCC (Laboratoire de Chimie de Coordination),

Université de Toulouse,

UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France

 

*Corresponding author: noorshida@fsmt.upsi.edu.my

 

 

Received: 11 November 2022; Accepted: 17 January 2023; Published:  19 April 2023

 

 

Abstract

A phosphorescent Ir(III) complex was synthesised between 2-(1H-1,2,4-triazol-1-yl)pyridine and Ir(III) dimer, [Ir(2,4-F2ppy)2(µ-Cl)]2, where ppy denotes 2-phenylpyridine by reflux method. The Ir(III) complex was fully characterised by FTIR, NMR, LC-MS, and UV-Vis absorption spectroscopic methods. The presence of a strong band at 2220 cm−1 due to ν(C≡N) was revealed by the IR analysis. Both pyridine and phenyl aromatic rings have C=N stretching band at 1598 cm1     and C=C stretching bands at 1554    and 1400 cm1, respectively. The 1H NMR spectrum showed signals in the aromatic range of δ 5.00–9.00 ppm corresponding to phenylpyridine protons. The 13C NMR spectroscopic data were consistent with the Ir(III) complex formula, which revealed 37 carbon signals. The Ir(III) complex displayed the ESI-MS spectrum at m/z = 823. The UV-Vis spectrum displayed a weaker and broader band (374 nm) in the visible region due to the spin-forbidden 3MLCT transitions. The X-ray crystallographic study revealed that the Ir(III) ion was coordinated to the pyridine-formimidamide ancillary ligand and two 2-(2,4-difluorophenyl)pyridine cyclometalating ligands in an octahedral geometry. Steady-state emission spectroscopy determined that the Ir(III) complex emitted blue-green light in dichloromethane solution at room temperature with the vibronic structure to the peak shape (l = 462 nm and 487 nm) due to the admixture of 3LC and 3MLCT character excited states.

 

Keywords: Ir(III) complex, formimidamide, ancillary ligand, phosphorescent, metal-to-ligand charge transfer

 

Abstrak

Kompleks Ir(III) berpendar fosfor disintesis antara 2-(1H-1,2,4-triazola-1-yl)piridina dan dimer Ir(III), [Ir(2,4-F2ppy)2(µ- Cl)]2 di mana ppy mewakili 2-fenilpiridina melalui kaedah refluks. Kompleks Ir(III) dicirikan sepenuhnya melalui kaedah spektroskopi: FTIR, NMR, LC-MS, dan penyerapan UV-Vis. Kehadiran satu jalur kuat pada 2220 cm−1 disebabkan oleh ν(C≡N) telah dikenal pasti daripada analisis IR. Kedua-dua gelang aromatik piridina dan fenil, masing-masing mempunyai jalur regangan C=N pada 1598 cm−1 dan jalur regangan C=C pada 1554 dan 1400 cm−1. Spektrum 1H NMR menunjukkan isyarat dalam julat aromatik δ 5.00–9.00 ppm sepadan dengan proton fenilpiridina. Data spektroskopi 13C NMR juga konsisten dengan formula kompleks Ir(III), yang menunjukkan 37 isyarat karbon. Kompleks Ir(III) menunjukkan spektrum ESI-MS pada m/z = 823. Spektrum UV-Vis mempamerkan jalur yang lebih lemah dan lebar (374 nm) di rantau yang boleh dilihat disebabkan oleh peralihan 3MLCT spin-terlarang. Kajian kristalografi sinar-X menunjukkan ion Ir(III) dikoordinasi kepada ligan ansilari piridina-formimidamida dan dua ligan siklometalasi 2-(2,4-diflorofenil)piridina dalam geometri oktahedral. Spektroskopi pancaran keadaan-stabil menunjukkan kompleks Ir(III) memancarkan cahaya biru-hijau dalam larutan diklorometana pada suhu bilik dengan struktur vibronik kepada bentuk puncak (l = 462 nm dan 487 nm) disebabkan oleh bauran ciri keadaan teruja 3LC dan 3MLCT.

 

Kata kunci: Kompleks Ir(III), Formimidamida, ligan ansilari, berpendar fosfor, pemindahan cas logam ke ligan

 

References

1.         Ho, C-L., Li, H. and Wong, W-Y. (2015). Red to near-infrared organometallic phosphorescent dyes for OLED applications. Journal of Organometallic Chemistry, 751: 261-285.

2.         Costa, R. D., Orti, E., Bolink, H. J., Monti, F., Accorsi, G., and Armaroli, N. (2012). Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew. Chemie - International Edition, 51(33): 8178-8211.

3.         Barbante, G. J., Doeven, E. H., Francis, P. S., Stringer, B. D., Hogan, C. F., Kheradmand, P. R., Wilson, D. J. D., and Barnard, P. J. (2015). Iridium(III) N-heterocyclic carbene complexes: An experimental and theoretical study of structural, spectroscopic, electrochemical and electrogenerated chemiluminescence properties. Dalton Transaction, 44(18): 8564-8576.

4.         Yang, C-H., Mauro, M., Polo, F., Watanabe, S., Muenster, I., Fröhlich, R. and De Cola, L. (2012). Deep-blue-emitting heteroleptic iridium(III) complexes suited for highly efficient phosphorescent OLEDs. Chemistry of Materials, 24(19): 3684-3695.

5.         Yanling, S., Shuai, Z., Godefroid, G., Jinghai, Y., and Zhijian, W. (2015). Modification of the emission colour and quantum efficiency for oxazoline and thiazoline containing iridium complexes via different NiO. The Royal Society Chemistry, 5(24): 18464-18470.

6.         Ali, N. M., Ward, M. D., Hashim, N., and Daud, N. (2017). Synthesis and photophysical properties of bis(phenylpyridine) iridium(iii) dicyanide complexes. Materials Research Innovation, 23(3): 135-140.

7.         Lee, S., and Han, W. S. (2020). Cyclometalated Ir(III) complexes towards blue-emissive dopant for organic light-emitting diodes: Fundamentals of photophysics and designing strategies. Inorganic Chemistry Frontier, 7(12): 2396-2422.

8.         Adeloye, A. O., Mphahlele, M. J., Adekunle, A. S., Rhyman, L., and Ramasami, P. (2017). Spectroscopic, electrochemical and DFT studies of phosphorescent homoleptic cyclometalated iridium(III) complexes based on substituted 4-fluorophenylvinyland 4-methoxyphenylvinylquinolines. Materials, 10(10): 1061-1082.

9.         Henwood, A. F., Pal, A. K., Cordes, D. B., Slawin, A. M. Z., Rees, T. W., Momblona, C., Babaei, A., Pertegįs, A., Ortķ, E., Bolink, H. J., Baranoff, E. and Zysman-Colman, E. (2017). Blue-emitting cationic iridium(III) complexes featuring pyridylpyrimidine ligands and their use in sky-blue electroluminescent devices. Journal of Materials Chemistry C, 5(37): 9638-9650.

10.      Omae, I. (2016) Application of the five-membered ring blue light-emitting iridium products of cyclometalation reactions as OLEDs. Coordination Chemistry Reviews, 310: 154-169.

11.      Tan, G., Wang, L., Wang, S., Liu, P., Fan, H., Ho, C-L., Ma, D. and Wong, W-Y. (2019). Synthesis, photoluminescence and electroluminescence of triphenylphosphine functionalized cyclometalated iridium(III) complexes. Dyes and Pigments, 160: 717-725.

12.      Sheldrick, G. M. SAINT V4, Software reference manual Siemens analytical X-ray systems. Madison, WI, USA; 1996

13.      Sheldrick, G. M., SADABS, Program for empirical absorption correction of area detector data. Germany: University of Göttingen, Göttingen, German, 1996

14.      Sheldrick, G. M. SHELXTL V5.1, Software reference manual, Bruker AXS, Madison, WI, USA, 1997

15.      Sajoto, T.,  Djurovich, P. I.,  Tamayo, A.,  Yousufuddin, M.,  Bau, R.,  Thompson, M. E.,  Holmes, R. J. and Forrest, S. R.  (2005). Blue and  near-UV phosphorescence from iridium complexes with cyclometalated    pyrazolyl or N-heterocyclic carbene ligands. Inorganic Chemistry, 44(22): 7992-8003.

16.      Bain, N. H. A. S., Ali, N. M., Juahir, Y., Hashim, N., Isa, M. I., Mohamed, A., Kamari, A. and Yamin, B.M. (2021). Synthesis and spectroscopic studies of phenylpyridine iridium(III) complexes with derivatives of 1h-1,2,4-triazole as ancillary ligands. Indonesian Journal of Chemistry, 21(6): 1577-1585.

17.      Robert, M. S., Francis, X. W. and David, J. K. (2005). Spectrometric identification of organic compounds. John Wiley & Sons, Inc., New York. Seventh Edition: pp. 72-204.

18.      Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2015). Introduction to spectroscopy. Cengage Learning 200 First Stamford Place, Stamford, USA. Fifth Edition: pp. 14-329.

19.      Gokce, H., Ozturk, N., Tasąn, M., Alpaslan, Y. B., Alpaslan, G., (2016). Spectroscopic characterization and quantum chemical computations of the 5-(4-pyridyl)-1-h-1,2,4-triazole-3-thiol molecule. Spectroscopy Letters, 49(3): 167-179.

20.      Stringer, B. D., Quan, L. M., Barnard, P. J., Wilson, D. J. D. and Hogan, C. F. (2014). Iridium complexes of n-heterocyclic carbene ligands: investigation into the energetic requirements for efficient electrogenerated chemiluminescence. Organometallics, 33(18): 4860-4872.

21.      Huynh, H. V.; Han, Y., Jothibasu, R. and Yang, J. A. (2009). 13C NMR spectroscopic determination of ligand donor strengths using n-heterocyclic carbene complexes of palladium(II). Organometallics, 28(18): 5395-5404.

22.      Sanner, R. D., Cherepy, N. J., Paul Martinez, H., Pham, H. Q. and Young Jr, V. G. (2019). Highly efficient phosphorescence from cyclometallated iridium(III) compounds: Improved syntheses of picolinate complexes and quantum chemical studies of their electronic structures. Inorganica Chimica Acta, 496: 119040-119078.

23.      Donato, L., Abel, P. and Zysman-Colman, E. (2013). Cationic iridium(III) complexes bearing a bis(triazole) ancillary ligand. Dalton Transactions, 42(23): 8402-8412.

24.      Xue, J., Xin, L. J., Hou, J. Y., Duan, L., Wang, R. J., Wei, Y. and Qiao, J. (2017). Homoleptic facial Ir(III) complexes via facile synthesis for high-efficiency and low-roll-off near-infrared organic light-emitting diodes over 750 nm. Chemistry of Materials, 29(11): 4775-4782.

25.      Bain, N. H. A. S., Ali, N. M. Juahir, Y., Hashim, N., Isa, I. M., Mohamed, A., Kamari, A., Anouar, E. H., Yamin, B. M., Tajuddin, A. M. and Baharudin, M. H. (2020). Synthesis, crystal structure, photophysical properties, DFT studies and Hirshfeld surface analysis of a phosphorescent 1,2,4-triazole-based iridium(III) complex. Polyhedron, 188: 114690-114701.

26.      Bain, N. H. A., Ali, N. M., Juahir, Y., Hashim, N., Isa, I. M., Mohamed, A., Kamari, A., and Yamin, B. M. (2018). Synthesis of phenylpyridine iridium(III) complexes with n-heterocyclic carbene as ancillary ligand. IOP Conference Series Materials Science Engineering, 440: 012010-012018.

27.      Monti, F., Kessler, F., Delgado, M., Frey, J., Bazzanini, F., Accorsi, G., Armaroli, N., Bolink, H. J., Ort, E., Scopelliti, R., Nazeeruddin, M. K. and Baranoff, E. (2013). Charged bis-cyclometalated iridium(III) complexes with carbene-based ancillary ligands. Inorganic Chemistry, 52(18): 10292-10305.

28.      Baranoff, E., Curchod, B. F. E., Monti, F., Steimer, F., Accorsi, G., Tavernelli, I., Rothlisberger, U., Scopelliti, R., Grätzel, M. and Nazeeruddin, M. K. (2012). Influence of halogen atoms on a homologous series of bis-cyclometalated iridium(III) complexes. Inorganic Chemistry, 51(2): 799-811.

29.      Ryu, C. H., Lim, J., Kim, M. B., Lee, J. H., Hwang, H., Lee, J. Y., and Lee, K. M. (2021). Tris(5-phenyl-1h-1,2,4-triazolyl)iridium(III) complex and its use in blue phosphorescent organic light-emitting diodes to provide an external quantum efficiency of up to 27.8%. Advanced Optical Materials, 9(7): 1-7.

30.      Tom, L., Diluzio, S., Hua, C. and Connell, T. U. (2022). Understanding the role of cyclometalating ligand regiochemistry on the photophysics of charged heteroleptic iridium(III) complexes. Journal of Coordination Chemistry, 75(11-14): 1722-1743.

31.      Schneidenbach, D., Ammermann, S., Debeaux, M., Freund, A., Zöllner, M., Daniliuc, C., Jones, P. G., Kowalsky, W. and Johannes, H-H. (2010). Efficient and long-time stable red iridium(III) complexes for organic light-emitting diodes based on quinoxaline ligands. Inorganic Chemistry, 49(2): 397-406.