Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 271 - 279
DETERMINING NEREISTOXIN RESIDUE IN PALM OIL MATRIX – AN
EXTENSION TO THE METHOD FOR THIOSULTAP DISODIUM RESIDUE DETERMINATION
(Penentuan
Sisabaki Nereistoxin Dalam Matriks Minyak Sawit – Penambahan Kepada Kaedah
Penentuan Sisabaki Thiosultap Disodium)
Chee Beng
Yeoh*, Farah Khuwailah Ahmad Bustamam, Najwa Sulaiman, Mei Huey Saw,
and Nik
Sasha Khatrina Khairuddin
Malaysian Palm Oil Board,
6 Persiaran Institusi, Bandar Baru Bangi,
43000 Kajang, Selangor, Malaysia
*Corresponding author: cbyeoh@mpob.gov.my
Received:
27 July 2022; Accepted: 17 January 2023; Published: 19 April 2023
This study aimed to incorporate the nereistoxin, a compound that is the major metabolite of all
nereistoxin analogue pesticides, including thiosultap-disodium into the previously reported analytical
method developed for thiosultap-disodium residue
analysis in the palm oil matrix. All steps that have been developed previously
for the determination of thiosultap-disodium
involving liquid-liquid extraction and subsequently determination using liquid
chromatograph triple quadrupole mass spectrometer (LC-MS/MS) were followed,
except the omission of matrix-matched calibration curve preparation and this
was substituted with the use of spiked calibration curve technique due to its
better performance in overcoming the matrix effect. The performance of the
analytical method was evaluated in-house and found to be satisfactory.
Recoveries of the nereistoxin residue spiked at 12,
30, and 50 ng g-1 were at 85-95% with a relative standard deviation
of below 9%. Three months of monitoring of method intermediate precision by two
analysts gave a relative standard deviation value of 3.6% to 8.3% for the same
spiking levels. The limit of detection (LOD) and limit of quantification (LOQ)
were first estimated using the standard deviation of the calibration curve at a
95% confidence level and subsequently evaluated by actual experimental work.
The values found were 5.0 ng g-1 and 12.0 ng g-1.
Keywords: nereistoxin, palm oil, method development, dimehypo, spiked calibration
Abstrak
Kajian ini bertujuan untuk
menambahkan sebatian nereistoxin, iaitu sebatian metabolit utama bagi kesemua
racun perosak dari kelas analog nereistoxin termasuk thiosultap-disodium ke
dalam kaedah analisa sisabaki thiosultap-disodium dalam matriks minyak sawit
yang dibangunkan sebelum ini. Kesemua langkah pengolahan sampel yang telah
dibangunkan sebelum ini bagi penentuan thiosultap-disodium melibatkan
pengekstrakan fasa cecair-cecair lalu penentuan menggunakan kromatografi cecair
spektrometri jisim caturkutub ganda tiga masih diikut, kecuali langkah
persediaan keluk kalibrasi padanan-matriks telah digantikan dengan penggunaan
teknik keluk kalibrasi pemakuan memandangkan prestasinya yang lebih bagus dalam
mengatasi kesan dari matriks. Prestasi kaedah analitikal ini telah dinilai
secara dalaman di makmal sendiri dan didapati ianya memuaskan. Nilai perolehan
semula sisabaki nereistoxin yang telah dipakukan pada 12, 30 and 50 ng g-1,
masing-masing adalah dalam lingkungan 85-95 % dengan nilai piawai relatif di
bawah 9%. Pemantauan selama tiga bulan bagi menentukan kepersisan perantaraan
kaedah oleh dua orang penganalisa berbeza memberikan nilai piawai relatif 3.6%
ke 8.3% untuk kepekatan pemakuan yang sama. Had pengesanan dan had kuantitatif
telah dianggarkan pada permulaan menggunakan sisihan piawai yang diperolehi
daripada keluk kalibrasi pada tahap keyakinan 95% lalu pengesahan dilakukan
melalui kajian secara eksperimen. Nilai yang diperolehi adalah 5.0 ng g-1
dan 12.0 ng g-1, masing-masing.
Kata kunci: nereistoxin,
minyak sawit, pembangunan kaedah, dimehypo, kalibrasi pemakuan
References
1. Sunindyo, D., Simanjuntak, D.
and Susanto, A. (2012). The effectiveness of Marathon 500SL (active ingredient:dimehypo 500 g/L) against bagworm Metisa plana at immature of oil palm in Afdeling III, Block 08 Q, Dolok Sinumbah Estate of PT Nusantara Plantation IV, North
Sumatra Indonesia. Proceeding of the 4th IOPRI-MPOB International
Seminar: Existing and Emerging Pests and Diseases of Oil Palm, Advances in
Research and Management. Bandung, Indonesia, 13-14 December 2012. pp.
98-105.
2. Ero, M. (2016). Dimehypo (Thiosultap disodium); An alternative to methamidophos
for the control of oil palm foliage pests in Papua New Guinea. Access from https://www.pngopra.org/wp-content/uploads/2018/02/OPRAtive-Word-Sci-Note-5-Dimehypo-versus-Methamidophos.pdf. [Access online 20 October 2021].
3. Wood,
B. J. and Norman, K. (2019). A review of developments in integrated pest
management (IPM) of bagworm (lepidoptera: psychidae)
infestation in oil palms in Malaysia. Journal of Oil Palm Research, 31:
529-539.
4. Yeoh, C. B., Farah Khuwailah, A. B., Najwa,
S., Nik Sasha Khatrina, K., Tay, M. G. and Saw, M. H. (2019). Development of
analytical method for determination of thiosultap-disodium residue in palm oil
matrix. Journal of Oil Palm Research,
31: 634-640.
5. Sakai, M. and Sato, Y. (1972). Metabolic
conversion of the nereistoxin related compounds into nereistoxin as a factor of
their insecticidal action. In: Tahori,
A S, ed. The Second International IUPAC Congress of Pesticide Chemistry, 1971
Tel-Aviv, Israel. London, UK.: Gordon and Breach Science Publishers.
6. Copping, L. G. and Hewitt, H. G. (1998)
Insecticides. Chemistry and mode of
action of crop protection agents, pp.46-73.
7 Yang, S. H. and Choi, H. (2022).
Simultaneous determination of nereistoxin insecticides in foods of animal
origins by combining pH-dependent reversible partitioning with hydrophilic
interaction chromatography-mass spectrometry. Scientific Reports,
12:10208.
8. MPOB (2005). MPOB test methods: A
compendium of test on palm oil products, palm kernel products, fatty acids,
food-related products and others. MPOB
test methods: a compendium of test on palm oil products, palm kernel products,
fatty acids, food-related products and others. Kuala Lumpur: Malaysian Palm
Oil Board.
9. European Commission (2022). Analytical
quality control and method validation procedures for pesticide residues
analysis in food and feed. Document Nº SANTE/11312/2021.
10. Cortese, M., Gigliobianco, M. R., Magnoni, F.,
Censi, R. and Di Martino, P. (2020). Compensate for or minimize matrix effects? Strategies
for overcoming matrix effects in liquid chromatography-mass spectrometry
technique: A tutorial review. Molecules,
25: 3047-3078.
11. Shoeibi, S., Goudarzi, I., Rastegar, H., Janat,
B., Sadeghi, N., Hajimahmoodi, M. and Amirahmadi, M. (2014). Spiked Calibration
Curve: A valid method for simultaneous analysis of pesticides in melon using
gas chromatography mass spectrometry (GC/MS). Iranian Journal of Chemistry and Chemical Engineering, 33: 21-27.
12. Almeida, A. M., Castel-Branco, M. M. and
Falcão, A. C. (2002). Linear regression for calibration lines revisited:
weighting schemes for bioanalytical methods. Journal of Chromatography B, 774: 215-222.
13. Astivia, O. L. O.
and Zumbo, B. D. (2019). Heteroskedasticity in
multiple regression analysis: What it is, how to detect it and how to solve it
with applications in R and SPSS. Practical
Assessment, Research, and Evaluation, 24(1): 1.
14. Sonawane, S. S., Chhajed, S. S., Attar, S. S.
and Kshirsagar, S. J. (2019). An approach to select linear regression model in
bioanalytical method validation. Journal
of Analytical Science and Technology, 10: 7.
15. Gomes, H. D. O., Cardoso, R. D. S., Da Costa,
J. G. M., Andrade Da Silva, V. P., Nobre, C. D. A., Pereira Teixeira, R. N. and
Do Nascimento, R. F. (2021). Statistical evaluation of analytical curves for
quantification of pesticides in bananas. Food
Chemistry, 345: 128768.
16. ICH (2005). Validation of analytical
procedures: Text and methodology. International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use. Q2(R1).
17. Shrivastava, A. and Gupta, V. (2011). Methods
for the determination of limit of detection and limit of quantitation of the
analytical methods. Chronicles of Young
Scientists, 2: 21-25.
18. Şengül, Ü.
(2016). Comparing determination methods of detection and quantification limits
for aflatoxin analysis in hazelnut. Journal Food Drug Analysis, 24(1):
56-62.