Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 261 - 270
HYDROLYSIS OF CELLULOSE TO GLUCOSE CATALYZED BY NOBLE
METAL PALLADIUM (Pd) SUPPORTED ON SILICA-ALUMINA
(Hidrolisis
Selulosa kepada Glukosa Bermangkin Logam Adi Paladium (Pd) Disokong pada
Silika-Alumina)
Puteri
Nurain Syahirah Megat Muhammad Kamal, Muhammad Danial Hafiy Mohamad Zabidi,
and Amin
Safwan Alikasturi*
Universiti Kuala Lumpur
Branch Campus Malaysian Institute of Chemical and
Bioengineering Technology,
Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka,
Malaysia
*Corresponding author: aminsafwan@unikl.edu.my
Received:
22 September 2022; Accepted: 17 January 2023; Published: 19 April 2023
Abstract
Cellulose, a promising source of renewable energy, is
currently receiving a lot of interest due to its potential application in the
production of bioenergy. The catalytic conversion of cellulose into value-added
compounds like glucose, which is subsequently fermented into bioethanol or
dehydrated into platform chemicals, avoids the heavy reliance on fossil fuel
economy tremendously. In this study, the catalytic conversion of cellulose to
glucose was conducted using a supported noble metal catalyst. The wet
impregnation method was used to synthesize 4 wt.% palladium (Pd) supported on
silica-alumina (SiO2-AlO3), which was then calcined at
500 °C. Prior to reaction work, Fourier- transform infrared spectroscopy,
thermogravimetric analysis, Brunauer-Emmett-Teller
method, and particle size analysis were conducted to characterize the catalyst.
To investigate the effect of the catalyst on the yield of glucose from
cellulose, the catalyst loading was varied from 0.04 to 0.10 g. The results
demonstrated that up to 23.6% yield of glucose was produced at 200 °C for 3 h
with the catalyst and cellulose loading of 0.06 g and 0.3 g, respectively.
Additionally, under these conditions, cellulose conversion was at its highest
(78.7%). This study shows that the supported noble metal catalyst has the
potential to enhance the hydrolysis step for the conversion of cellulose to
glucose.
Keywords: glucose, heterogenous catalyst, hydrolysis of cellulose, palladium
supported on silica-alumina, supported noble metal catalyst
Abstrak
Selulosa, sumber tenaga berpontesi yang boleh
diperbaharui, kini menerima banyak perhatian kerana potensi aplikasinya dalam
penghasilan biotenaga. Penukaran pemangkin selulosa kepada sebatian tambah
nilai seperti glukosa, yang kemudiannya ditapai menjadi bioetanol atau
dehidrasi menjadi bahan kimia platform, dapat membantu mengurangkan
kebergantungan ekonomi kepada bahan api fosil. Di dalam kajian penyelidikan
ini, penukaran pemangkin selulosa kepada glukosa telah dijalankan menggunakan mangkin
logam adi yang disokong. Kaedah impregnasi basah digunakan untuk mensintesis 4
wt.% paladium (Pd) yang disokong pada silika-alumina (SiO2-AlO3),
yang kemudiannya dikalsinasikan pada 500 °C. Sebelum memulakan kerja tindak
balas, spektroskopi inframerah transformasi Fourier, analisis termogravimetri,
kaedah Brunauer-Emmett-Teller, dan analisis saiz zarah telah dijalankan untuk
faktor pencirian mangkin. Untuk menyiasat kesan mangkin ke atas hasil glukosa
daripada selulosa, pemuatan mangkin, berubah daripada 0.04-0.1g. Keputusan
menunjukkan bahawa sehingga 23.6% glukosa dapat dihasilkan pada 200 °C selama 3
jam dengan mangkin dan pemuatan selulosa masing-masing, 0.06 g dan 0.3 g. Di
samping itu, dalam keadaan ini ternyata penukaran selulosa berada pada tahap
tertinggi, 78.7%. Kajian ini menunjukkan bahawa mangkin logam adi yang disokong
berpotensi untuk meningkatkan langkah hidrolisis untuk penukaran selulosa
kepada glukosa.
Kata
kunci: glukosa, mangkin heterogen, selulosa hidrolisis,
paladium disokong pada silika-alumina, mangkin logam adi disokong
References
1. Robertson, G.
P., Hamilton, S. K., Barham, B. L., Dale, B. E., Izaurralde,
R. C., Jackson, R. D., Landis, D. A., Swinton, S. M., Thelen,
K. D., and Tiedje, J. M. (2017). Cellulosic biofuel
contributions to a sustainable energy future: Choices and outcomes. Science,
356(6345): 1-9.
2. Li, L., Zhou,
W., Wu, H., Yu, Y., Liu, F., and Zhu, D. (2014). Relationship between
crystallinity index and enzymatic hydrolysis performance of celluloses
separated from aquatic and terrestrial plant materials. BioResources,
9(3): 3993-4005.
3. Kamal, P.N., Mohamad,
N., Serit, M.E., Rahim, N., Jimat,
N.I., and Alikasturi, A.S. (2020). Study on the
effect of reaction and calcination temperature towards glucose hydrolysis using
solid acid catalyst. Materials Today: Proceedings, 31: 282-286.
4. Pasquale, G., Vázquez, P., Romanelli, G., and Baronetti,
G. (2012). Catalytic upgrading of levulinic
acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catalysis Communications,
18: 115-120.
5. Ganji, P., and Roy, S. (2020).
Conversion of levulinic acid to ethyl levulinate
using tin modified silicotungstic acid supported on
Ta2O5. Catalysis Communications, 134: 105864.
6. Mahdaly, M. A., Zhu,
J. S., Nguyen, V., and Shon, Y.-S. (2019). Colloidal palladium nanoparticles
for selective hydrogenation of styrene derivatives with reactive functional
groups. ASC Omega, 4: 20819-20828.
7. Parks, M.
(2014). γ-alumina makes catalysis more accessible. Access from https://www.cpms.byu.edu/project/γ-alumina-makes-catalysis-more-accessible/. [Access
online 1 September 2022].
8. Zhang, B., Li,
X., Wu, Q., Zhang, C., Yu, Y., Lan, M., Wei, X., Ying, Z., Liu, T., Liang, G.,
and Zhao, F. (2016). Synthesis of Ni/mesoporous ZSM-5 for direct catalytic
conversion of cellulose to hexitols: Modulating the pore structure and acidic
sites: Via a nanocrystalline cellulose template. Green Chemistry,
18(11): 3315-3323.
9. Xu, S., Yan,
X., Bu, Q., and Xia, H. (2017). Catalytic conversion of cellulose into polyols
using carbon-nanotube-supported monometallic Pd and bimetallic Pd–Fe catalysts.
Cellulose, 24(6): 2403-2413.
10. Kobayashi, H., Matsuhashi, H., Komanoya, T.,
Hara, K., and Fukuoka, A. (2011). Transfer hydrogenation of cellulose to sugar
alcohols over supported ruthenium catalysts. Chemical Communications,
47(8): 2366-2368.
11. Kamal, P. N. S.
M. M., Sapawe, N., and Alikasturi,
A. S. (2022). Catalytic conversion of cellulose to levulinic
acid using supported noble metal palladium catalyst. Malaysian Journal of
Analytical Sciences, 26(1): 119-129.
12. Boonyakarn, T., Wataniyakul, P., Boonnoun, P., Quitain, A. T., Kida, T., Sasaki, M., Laosiripojana,
N., Jongsomjit, B., and Shotipruk,
A. (2019). Enhanced levulinic acid production from
cellulose by combined Brønsted hydrothermal carbon
and Lewis’s acid catalysts. Industrial and Engineering Chemistry Research,
58(8): 2697-2703.
13. Joshi, S. S., Zodge, A. D., Pandare, K. V., and
Kulkarni, B. D. (2014). Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium
dioxide as a recyclable solid acid catalyst. Industrial and Engineering
Chemistry Research, 53(49): 18796-18805.
14. Alayat, A., Echeverria, E., Sotoudehniakarani, F., Mcllroy,
D. N., and McDonald, A. G. (2019). Alumina Coated Silica Nanosprings
(NS) Support Based Cobalt Catalysts for Liquid Hydrocarbon Fuel Production from
Syngas. Materials, 12(11): 1810.
15. Shaker Ardakani, L., Alimardani, V., Tamaddon, A.M., Amani, A.M., and Taghizadeh,
S. (2021). Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf
extract: Methyl orange dye degradation and antimicrobial properties. Heliyon, 7: e06159.
16. Ashok, A.,
Kumar, A., Bhosale, R. R., Saleh, M. A. H., and Van Den Broeke,
L. J. P. (2015). Cellulose assisted combustion synthesis of porous Cu-Ni nanopowders. RSC Advances, 5(36): 28703-28712.
17. Mohammed, A.-H.
A. K., Hussein, H. Q., and Mohammed, M. S. (2017). The effect of temperature on
the synthesis of nano-gamma alumina using hydrothermal method. Iraqi Journal
of Chemical and Petroleum Engineering, 18(1): 1-16.
18. Machingauta, C. (2013).
Synthesis, characterization and application of two-dimensional layered metal
hydroxides for environmental remediation purposes, Dissertation, Marquette
University.
19. He, S., Zhang,
L., He, S., Mo, L., Zheng, X., Wang, H., and Luo, Y. (2015). Ni/SiO2
catalyst prepared with nickel nitrate precursor for combination of CO2
reforming and partial oxidation of methane: Characterization and deactivation
mechanism investigation. Journal of Nanomaterials, 2015: 48.
20. Latypova, A. R.,
Lebedev, M. D., Rumyantsev, E. V., Filippov, D. V., Lefedova, O. V., Bykov, A. V., and Doluda,
V. Y. (2020). Amino-modified silica as effective support of the palladium
catalyst for 4-nitroaniline hydrogenation. Catalysts, 10(4): 22-25.
21. Inmanee, T., Pinthong, P., and Jongsomjit, B.
(2017). Effect of calcination temperatures and MO modification on
nanocrystalline (γ-χ)-Al2O3 catalysts for
catalytic ethanol dehydration. Journal of Nanomaterials, 2017: 10.
22. Al-Fatesh, A. S. A., and Fakeeha, A.
H. (2012). Effects of calcination and activation temperature on dry reforming
catalysts. Journal of Saudi Chemical Society, 16(1): 55-61.
23. Wang, Z., Pokhrel, S., Chen, M., Hunger, M., Mädler,
L., and Huang, J. (2013). Palladium-doped silica-alumina catalysts obtained
from double-flame FSP for chemoselective
hydrogenation of the model aromatic ketone acetophenone. Journal of
Catalysis, 302: 10-19.
24. Sari, W. K., Supriatna, A., and Hendayana, S.
(2019). Analysis of students difficulties based on
respondents ability test on the topic of factors affecting reaction rate. Journal
of Physics: Conference Series, 1157(4): 042032.
25. Xie, W., Liang, D., Li, L.,
Qu, S., and Tao, W. (2019). Surface chemical properties and pore structure
of the activated coke and their effects on the denitrification activity of
selective catalytic reduction. International Journal of Coal Science and
Technology, 6(4): 595-602.
26. Klinghoffer, N.
B., Castaldi, M. J., and Nzihou,
A., (2012). Catalyst properties and catalytic performance of char from biomass gasification.
Industrial and Engineering Chemistry Research, 51(40): 13113-13122.
27. Suttiponparnit, K., Jiang,
J., Sahu, M., Suvachittanont,
S., Charinpanitkul, T., and Biswas, P. (2011). Role
of Surface Area, Primary Particle Size, and Crystal Phase on titanium Dioxide
Nanoparticle Dispersion Properties. Nanoscale Research Letters, 6: 1-8.
28. Yan, S., Wang,
C., Hu, H., Gu, W., Wang, Q., Jiang, L., and Zhang, Q. (2020). Mechanochemical
preparation of a H3PO4-based solid catalyst for
heterogeneous hydrolysis of cellulose. ACS Omega, 5(46): 29971-29977.
29. Zarin, M. A. A., Zainol, M. M., and Amin, N. A. S. (2020). Optimizing levulinic acid from cellulose catalyzed by HY-zeolite
immobilized ionic liquid (HY-IL) using response surface methodology. Malaysian
Journal of Fundamental and Applied Sciences, 16(6): 625-629.
30. Weckhuysen, B. M., and Wachs, I. E. (2001). Catalysis by supported metal oxides.
In Handbook of Surfaces and Interfaces of Materials, 1: pp. 613–648.