Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 261 - 270

 

HYDROLYSIS OF CELLULOSE TO GLUCOSE CATALYZED BY NOBLE METAL PALLADIUM (Pd) SUPPORTED ON SILICA-ALUMINA

 

(Hidrolisis Selulosa kepada Glukosa Bermangkin Logam Adi Paladium (Pd) Disokong pada Silika-Alumina)

 

Puteri Nurain Syahirah Megat Muhammad Kamal, Muhammad Danial Hafiy Mohamad Zabidi,

and Amin Safwan Alikasturi*

 

Universiti Kuala Lumpur

Branch Campus Malaysian Institute of Chemical and Bioengineering Technology,

Lot 1988 Vendor City, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author: aminsafwan@unikl.edu.my

 

 

Received: 22 September 2022; Accepted: 17 January 2023; Published:  19 April 2023

 

Abstract

Cellulose, a promising source of renewable energy, is currently receiving a lot of interest due to its potential application in the production of bioenergy. The catalytic conversion of cellulose into value-added compounds like glucose, which is subsequently fermented into bioethanol or dehydrated into platform chemicals, avoids the heavy reliance on fossil fuel economy tremendously. In this study, the catalytic conversion of cellulose to glucose was conducted using a supported noble metal catalyst. The wet impregnation method was used to synthesize 4 wt.% palladium (Pd) supported on silica-alumina (SiO2-AlO3), which was then calcined at 500 °C. Prior to reaction work, Fourier- transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller method, and particle size analysis were conducted to characterize the catalyst. To investigate the effect of the catalyst on the yield of glucose from cellulose, the catalyst loading was varied from 0.04 to 0.10 g. The results demonstrated that up to 23.6% yield of glucose was produced at 200 °C for 3 h with the catalyst and cellulose loading of 0.06 g and 0.3 g, respectively. Additionally, under these conditions, cellulose conversion was at its highest (78.7%). This study shows that the supported noble metal catalyst has the potential to enhance the hydrolysis step for the conversion of cellulose to glucose.

 

Keywords: glucose, heterogenous catalyst, hydrolysis of cellulose, palladium supported on silica-alumina, supported noble metal catalyst

 

Abstrak

Selulosa, sumber tenaga berpontesi yang boleh diperbaharui, kini menerima banyak perhatian kerana potensi aplikasinya dalam penghasilan biotenaga. Penukaran pemangkin selulosa kepada sebatian tambah nilai seperti glukosa, yang kemudiannya ditapai menjadi bioetanol atau dehidrasi menjadi bahan kimia platform, dapat membantu mengurangkan kebergantungan ekonomi kepada bahan api fosil. Di dalam kajian penyelidikan ini, penukaran pemangkin selulosa kepada glukosa telah dijalankan menggunakan mangkin logam adi yang disokong. Kaedah impregnasi basah digunakan untuk mensintesis 4 wt.% paladium (Pd) yang disokong pada silika-alumina (SiO2-AlO3), yang kemudiannya dikalsinasikan pada 500 °C. Sebelum memulakan kerja tindak balas, spektroskopi inframerah transformasi Fourier, analisis termogravimetri, kaedah Brunauer-Emmett-Teller, dan analisis saiz zarah telah dijalankan untuk faktor pencirian mangkin. Untuk menyiasat kesan mangkin ke atas hasil glukosa daripada selulosa, pemuatan mangkin, berubah daripada 0.04-0.1g. Keputusan menunjukkan bahawa sehingga 23.6% glukosa dapat dihasilkan pada 200 °C selama 3 jam dengan mangkin dan pemuatan selulosa masing-masing, 0.06 g dan 0.3 g. Di samping itu, dalam keadaan ini ternyata penukaran selulosa berada pada tahap tertinggi, 78.7%. Kajian ini menunjukkan bahawa mangkin logam adi yang disokong berpotensi untuk meningkatkan langkah hidrolisis untuk penukaran selulosa kepada glukosa.

 

Kata kunci: glukosa, mangkin heterogen, selulosa hidrolisis, paladium disokong pada silika-alumina, mangkin logam adi disokong

 

References

1.       Robertson, G. P., Hamilton, S. K., Barham, B. L., Dale, B. E., Izaurralde, R. C., Jackson, R. D., Landis, D. A., Swinton, S. M., Thelen, K. D., and Tiedje, J. M. (2017). Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science, 356(6345): 1-9.

2.       Li, L., Zhou, W., Wu, H., Yu, Y., Liu, F., and Zhu, D. (2014). Relationship between crystallinity index and enzymatic hydrolysis performance of celluloses separated from aquatic and terrestrial plant materials. BioResources, 9(3): 3993-4005.

3.       Kamal, P.N., Mohamad, N., Serit, M.E., Rahim, N., Jimat, N.I., and Alikasturi, A.S. (2020). Study on the effect of reaction and calcination temperature towards glucose hydrolysis using solid acid catalyst. Materials Today: Proceedings, 31: 282-286.

4.       Pasquale, G., Vázquez, P., Romanelli, G., and Baronetti, G. (2012). Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catalysis Communications, 18: 115-120.

5.       Ganji, P., and Roy, S. (2020). Conversion of levulinic acid to ethyl levulinate using tin modified silicotungstic acid supported on Ta2O5. Catalysis Communications, 134: 105864.

6.       Mahdaly, M. A., Zhu, J. S., Nguyen, V., and Shon, Y.-S. (2019). Colloidal palladium nanoparticles for selective hydrogenation of styrene derivatives with reactive functional groups. ASC Omega, 4: 20819-20828.

7.       Parks, M. (2014). γ-alumina makes catalysis more accessible. Access from https://www.cpms.byu.edu/project/γ-alumina-makes-catalysis-more-accessible/. [Access online 1 September 2022].

8.       Zhang, B., Li, X., Wu, Q., Zhang, C., Yu, Y., Lan, M., Wei, X., Ying, Z., Liu, T., Liang, G., and Zhao, F. (2016). Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: Modulating the pore structure and acidic sites: Via a nanocrystalline cellulose template. Green Chemistry, 18(11): 3315-3323.

9.       Xu, S., Yan, X., Bu, Q., and Xia, H. (2017). Catalytic conversion of cellulose into polyols using carbon-nanotube-supported monometallic Pd and bimetallic Pd–Fe catalysts. Cellulose, 24(6): 2403-2413.

10.    Kobayashi, H., Matsuhashi, H., Komanoya, T., Hara, K., and Fukuoka, A. (2011). Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chemical Communications, 47(8): 2366-2368.

11.    Kamal, P. N. S. M. M., Sapawe, N., and Alikasturi, A. S. (2022). Catalytic conversion of cellulose to levulinic acid using supported noble metal palladium catalyst. Malaysian Journal of Analytical Sciences, 26(1): 119-129.

12.    Boonyakarn, T., Wataniyakul, P., Boonnoun, P., Quitain, A. T., Kida, T., Sasaki, M., Laosiripojana, N., Jongsomjit, B., and Shotipruk, A. (2019). Enhanced levulinic acid production from cellulose by combined Brønsted hydrothermal carbon and Lewis’s acid catalysts. Industrial and Engineering Chemistry Research, 58(8): 2697-2703.

13.    Joshi, S. S., Zodge, A. D., Pandare, K. V., and Kulkarni, B. D. (2014). Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Industrial and Engineering Chemistry Research, 53(49): 18796-18805.

14.    Alayat, A., Echeverria, E., Sotoudehniakarani, F., Mcllroy, D. N., and McDonald, A. G. (2019). Alumina Coated Silica Nanosprings (NS) Support Based Cobalt Catalysts for Liquid Hydrocarbon Fuel Production from Syngas. Materials, 12(11): 1810.

15.    Shaker Ardakani, L., Alimardani, V., Tamaddon, A.M., Amani, A.M., and Taghizadeh, S. (2021). Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: Methyl orange dye degradation and antimicrobial properties. Heliyon, 7: e06159.

16.    Ashok, A., Kumar, A., Bhosale, R. R., Saleh, M. A. H., and Van Den Broeke, L. J. P. (2015). Cellulose assisted combustion synthesis of porous Cu-Ni nanopowders. RSC Advances, 5(36): 28703-28712.

17.    Mohammed, A.-H. A. K., Hussein, H. Q., and Mohammed, M. S. (2017). The effect of temperature on the synthesis of nano-gamma alumina using hydrothermal method. Iraqi Journal of Chemical and Petroleum Engineering, 18(1): 1-16.

18.    Machingauta, C. (2013). Synthesis, characterization and application of two-dimensional layered metal hydroxides for environmental remediation purposes, Dissertation, Marquette University.

19.    He, S., Zhang, L., He, S., Mo, L., Zheng, X., Wang, H., and Luo, Y. (2015). Ni/SiO2 catalyst prepared with nickel nitrate precursor for combination of CO2 reforming and partial oxidation of methane: Characterization and deactivation mechanism investigation. Journal of Nanomaterials, 2015: 48.

20.    Latypova, A. R., Lebedev, M. D., Rumyantsev, E. V., Filippov, D. V., Lefedova, O. V., Bykov, A. V., and Doluda, V. Y. (2020). Amino-modified silica as effective support of the palladium catalyst for 4-nitroaniline hydrogenation. Catalysts, 10(4): 22-25.

21.    Inmanee, T., Pinthong, P., and Jongsomjit, B. (2017). Effect of calcination temperatures and MO modification on nanocrystalline (γ-χ)-Al2O3 catalysts for catalytic ethanol dehydration. Journal of Nanomaterials, 2017: 10.

22.    Al-Fatesh, A. S. A., and Fakeeha, A. H. (2012). Effects of calcination and activation temperature on dry reforming catalysts. Journal of Saudi Chemical Society, 16(1): 55-61.

23.    Wang, Z., Pokhrel, S., Chen, M., Hunger, M., Mädler, L., and Huang, J. (2013). Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone. Journal of Catalysis, 302: 10-19.

24.    Sari, W. K., Supriatna, A., and Hendayana, S. (2019). Analysis of students difficulties based on respondents ability test on the topic of factors affecting reaction rate. Journal of Physics: Conference Series, 1157(4): 042032.

25.    Xie, W., Liang, D., Li, L., Qu, S., and Tao, W. (2019). Surface chemical properties and pore structure of the activated coke and their effects on the denitrification activity of selective catalytic reduction. International Journal of Coal Science and Technology, 6(4): 595-602.

26.    Klinghoffer, N. B., Castaldi, M. J., and Nzihou, A., (2012). Catalyst properties and catalytic performance of char from biomass gasification. Industrial and Engineering Chemistry Research, 51(40): 13113-13122.

27.    Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., and Biswas, P. (2011). Role of Surface Area, Primary Particle Size, and Crystal Phase on titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Research Letters, 6: 1-8.

28.    Yan, S., Wang, C., Hu, H., Gu, W., Wang, Q., Jiang, L., and Zhang, Q. (2020). Mechanochemical preparation of a H3PO4-based solid catalyst for heterogeneous hydrolysis of cellulose. ACS Omega, 5(46): 29971-29977.

29.    Zarin, M. A. A., Zainol, M. M., and Amin, N. A. S. (2020). Optimizing levulinic acid from cellulose catalyzed by HY-zeolite immobilized ionic liquid (HY-IL) using response surface methodology. Malaysian Journal of Fundamental and Applied Sciences, 16(6): 625-629.

30.    Weckhuysen, B. M., and Wachs, I. E. (2001). Catalysis by supported metal oxides. In Handbook of Surfaces and Interfaces of Materials, 1: pp. 613–648.