Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 251 - 260
PHYSICAL
AND CHEMICAL PROPERTIES ON REDUCTION BEHAVIOUR OF CHROMIUM DOPED TO MOLYBDENUM
OXIDE IN CARBON MONOXIDE ENVIRONMENT
(Sifat Fizikal
dan Kimia terhadap Tindak Balas Penurunan Kromium yang Didopkan kepada
Molibdenum Oksida di dalam Persekitaran Karbon Monoksida)
Nur Syakirah Abdul Rahim1, Alinda Samsuri2,3*,
Mohd Nor Latif 4,5, Maratun Najiha Abu Tahari6, Fairous
Salleh6, Tengku Shafazila Tengku Saharuddin7, Norliza
Dzakaria8, and Muhammad Rahimi Yusop6
1Faculty of Defence Science and
Technology, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi,
57000 Kuala Lumpur, Malaysia
2Centre for Tropicalization (CENTROP), Universiti Pertahanan
Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
3Department of Chemistry and Biology,
Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia,
Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
4GENIUS@Pintar National Gifted Centre,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
5Research Centre for Sustainable
Process Technology (CESPRO), Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
6Department of Chemical Sciences,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
7Faculty of Science and Technology,
Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri
Sembilan, Malaysia
8School of Chemistry and Environment,
Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri
Sembilan,
Kampus Kuala
Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
*Corresponding author: alinda@upnm.edu.my
Received:
7 September 2022; Accepted: 9 December 2022; Published: 19 April 2023
Abstract
This study aimed to
investigate the influence of added chromium on the physical and chemical
reduction behavior of molybdenum trioxide (MoO3) in a carbon
monoxide (CO) environment. The reduction behavior of the sample was evaluated
by using temperature-programmed reduction (TPR), and the phases produced by the
reduced samples were analyzed using X-ray diffraction spectroscopy (XRD) and
field emission scanning electron microscopy (FESEM). The TPR study was
conducted using two reduction modes: non-isothermal reduction at 700°C with 20
vol. % of CO in nitrogen (N2), followed by isothermal reduction at
700°C for an additional 60 min. The TPR profile showed that the reduction of
doped and undoped MoO3 was preceded by two reduction stages (MoO3 → Mo4O11 → MoO2), wherein, the reduction of doped MoO3 starting at a lower temperature
(380°C-500°C) than that of undoped MoO3 (550°C). Additionally, based
on XRD analysis, it was shown that the conversion of MoO3 to MoO2
under CO generated an intermediate product known as Mo4O11.
It is discovered that, increasing the concentration of chromium doped to MoO3
enhanced the reducibility of oxide due to the rapid production of MoO2
phases at T: 380ºC. Further heating under CO atmosphere, carbide species built
up in the form of Mo2C rather than metallic Mo which might be due to
excess of CO exposure to the surface layer of oxide.
Keywords: reduction, molybdenum oxide, carbon monoxide, chromium
Abstrak
Kajian ini bertujuan untuk menyiasat pengaruh penambahan
kromium terhadap sifat fizikal dan kimia semasa penurunan molibdenum trioksida
(MoO3) dalam persekitaran karbon monoksida (CO). Tingkah laku
penurunan sampel dinilai menggunakan teknik suhu penurunan berprogram (TPR),
dan fasa yang dihasilkan oleh sampel yang diturunkan dianalisis menggunakan
pembelauan sinar-X (XRD) dan pancaran medan mikroskopi elektron pengimbasan
(FESEM). Kajian TPR telah dijalankan menggunakan dua mod penurunan: penurunan
bukan isoterma pada 700°C dengan 20 vol. % CO dalam nitrogen (N2),
diikuti dengan pengurangan isoterma pada 700°C selama 60 minit. Keputusan TPR
menunjukkan bahawa penurunan MoO3 terdop dan tidak terdop didahului
oleh dua peringkat penurunan iaitu (MoO3 → Mo4O11
→ MoO2) dengan penurunan MoO3 terdop bermula
pada suhu yang lebih rendah (380°C-500°C) berbanding MoO3 tidak
terdop (550°C). Di samping itu, telah ditentukan bahawa penurunan MoO3
kepada MoO2 dengan CO telah menghasilkan produk perantaraan yang
dipanggil Mo4O11 berdasarkan analisis sampel yang
diturunkan menggunakan XRD. Telah didapati bahawa, peningkatan kepekatan
kromium yang didopkan kepada MoO3 telah meningkatkan penurunan
oksida dengan pembentukan fasa MoO2 yang lebih cepat pada T: 380ºC.
Pemanasan berpanjangan di dalam persekitaran CO menyebabkan pembentukan spesies
karbida dalam bentuk Mo2C dan bukannya logam Mo yang mungkin
disebabkan oleh pendedahan berlebihan CO pada lapisan permukaan oksida.
Kata kunci: Penurunan, molibdenum oksida, karbon monoksida, kromium
References
1.
Wang,
L., Bu, C. Y., Zhang, G. H., Wang, J. S., and Chou, K. C. (2017). Study of the
reduction of industrial grade MoO3 powders with CO or CO-CO2
gases to prepare MoO2. Metallurgical and Materials Transactions
B: Process Metallurgy and Materials Processing Science, 48(4): 2047-2056.
2.
Chen,
X. R., Zhai, Q. J., Dong, H., Dai, B. H., and Mohrbacher, H. (2020). Molybdenum alloying in cast iron and
steel. Advances in Manufacturing, 8(1): 3-14.
3.
Jaf,
Z. N., Miran, H. A., Jiang, Z. T. and Altarawneh, M. (2021). Molybdenum nitrides from structures
to industrial applications. Reviews in Chemical Engineering, 2021:1015.
4.
Samsuri, A., Latif, M. N., Shamsuddin, M. R., Salleh, F.,
Abu Tahari, M. N., Tengku Saharuddin, T. S., Dzakaria, N.,
and Yarmo, M. A. (2021). Studies on influence of hydrogen
and carbon monoxide concentration on reduction progression behavior of
molybdenum oxide catalyst. International Journal of Hydrogen Energy,
46(48): 24831-24844.
5.
Dang,
J., Zhang, G. H., Chou, K. C., Reddy, R. G., He, Y., and Sun, Y. (2013).
Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2.
International Journal of Refractory Metals and Hard Materials, 41:
216-223.
6.
Saghafi, M., Heshmati-Manesh,
S., Ataie, A., and Khodadadi, A. A. (2012). Synthesis
of nanocrystalline molybdenum by hydrogen reduction of mechanically activated
MoO3. International Journal of Refractory Metals and Hard
Materials, 30(1): 128-132.
7.
Enneti, R. K., and Wolfe, T. A. (2012). Agglomeration
during reduction of MoO3. International Journal of Refractory
Metals and Hard Materials, 31: 47-50.
8.
Wang,
J., Ren, Z., Liu, W., Gao, F., and Zhou, M. (2009). Effects of RE2O3
doping on the reduction behavior of molybdenum oxide and properties of
molybdenum powder. International Journal of Refractory Metals and Hard
Materials, 27(1): 155-158.
9.
Saghafi, M., Ataie, A., and Heshmati-Manesh, S. (2011). Effects of mechanical activation of MoO3/C
powder mixture in the processing of nano-crystalline molybdenum. International
Journal of Refractory Metals and Hard Materials, 29(4): 419-423.
10.
Wu,
S., Zhou, C., Doroodchi, E., Nellore, R., and Moghtaderi, B. (2018). A review on high-temperature
thermochemical energy storage based on metal oxides redox cycle. Energy
Conversion and Management, 168: 421–453.
11.
Zhang,
G., Liu, J., Xu, Y., and Sun, Y. (2018). A review of CH4–CO2 reforming
to synthesis gas over Ni-based catalysts in recent years (2010–2017). International
Journal of Hydrogen Energy, 43(32): 15030-15054.
12.
Habib,
I. Y., Tajuddin, A. A., Noor, H. A., Lim, C. M., Mahadi,
A. H., and Kumara, N. T. R. N. (2019). Enhanced Carbon monoxide-sensing
properties of Chromium-doped ZnO nanostructures. Scientific
Reports, 9(1): 9207.
13.
Wang,
T., Chen, L. Q., and Liu, Z. K. (2007). Lattice parameters and local lattice
distortions in FCC-Ni solutions. Metallurgical and Materials Transactions A:
Physical Metallurgy and Materials Science, 38(3): 562-569.
14.
Samsuri, A., Tengku Saharuddin, T. S., Salleh, F., Othaman,
R., Mohamed Hisham, M. W., and Yarmo, M. A. (2016).
Temperature programmed reduction and x-ray diffractometry studies of MoO3
reduction by different concentrations of carbon monoxide. Malaysian Journal
of Analytical Sciences, 20: 382-387.
15.
Saharuddin, T. S. T., Samsuri, A.,
Salleh, F., Othaman, R., Kassim,
M. bin, Mohamed Hisham, M. W., and Yarmo, M. A.
(2017). Studies on reduction of chromium doped iron oxide catalyst using
hydrogen and various concentration of carbon monoxide. International Journal
of Hydrogen Energy, 42(14): 9077-9086.
16.
Samsuri, A., Tengku Saharuddin, T. S., Salleh, F., Mohamed Hisham, M. W., Othaman, R., and Yarmo, M. A.
(2015). Reduction of MoO2 to metallic molybdenum via carburization
and thermal process. Advanced Materials Research, 1087: 64-67.
17.
Sun,
T., Xu, L., Wei, S., Xiao, F., Li, Z., Fan, X., and Zhou, Y. (2020). Phase
evolution of hydrothermal synthesis oxide-doped molybdenum powders. International
Journal of Refractory Metals and Hard Materials, 86: 105085.
18.
Liu,
Q., Zhong, Z., Gu, F., Wang, X., Lu, X., Li, H., Xu, G., and Su, F. (2016). CO
methanation on ordered mesoporous Ni-Cr-Al catalysts: Effects of the catalyst
structure and Cr promoter on the catalytic properties. Journal of Catalysis,
337: 221-232.
19.
Samsuri, A., Salleh, F., Tengku Saharuddin, T. S., Othaman, R.,
Mohammad Hisham, M. W., and Yarmo, M. A. (2017).
Effect of noble metal silver on the reduction behaviour
of molybdenum oxide using carbon monoxide. Materials Science Forum, 888:
377-381.
20.
Latif,
M. N., Samsuri, A., Mohammad Hisham, M. W., and Yarmo, M. A. (2017). Reduction of molybdenum trioxide by
using hydrogen. Materials Science Forum, 888: 404-408.
21. Wang, L., Zhang, G. H., and Chou, K. C. (2018).
Preparation of Mo2C by reducing ultrafine spherical β-MoO3
powders with CO or CO-CO2 gases. Journal of the Australian
Ceramic Society, 54(1): 97-107.