Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 251 - 260

 

PHYSICAL AND CHEMICAL PROPERTIES ON REDUCTION BEHAVIOUR OF CHROMIUM DOPED TO MOLYBDENUM OXIDE IN CARBON MONOXIDE ENVIRONMENT

 

(Sifat Fizikal dan Kimia terhadap Tindak Balas Penurunan Kromium yang Didopkan kepada Molibdenum Oksida di dalam Persekitaran Karbon Monoksida)

 

Nur Syakirah Abdul Rahim1, Alinda Samsuri2,3*, Mohd Nor Latif 4,5, Maratun Najiha Abu Tahari6, Fairous Salleh6, Tengku Shafazila Tengku Saharuddin7, Norliza Dzakaria8, and Muhammad Rahimi Yusop6

 

1Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia

2Centre for Tropicalization (CENTROP), Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia

3Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia

4GENIUS@Pintar National Gifted Centre, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

5Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

6Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

7Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

8School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan,

Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: alinda@upnm.edu.my

 

 

Received: 7 September 2022; Accepted: 9 December 2022; Published:  19 April 2023

 

 

Abstract

This study aimed to investigate the influence of added chromium on the physical and chemical reduction behavior of molybdenum trioxide (MoO3) in a carbon monoxide (CO) environment. The reduction behavior of the sample was evaluated by using temperature-programmed reduction (TPR), and the phases produced by the reduced samples were analyzed using X-ray diffraction spectroscopy (XRD) and field emission scanning electron microscopy (FESEM). The TPR study was conducted using two reduction modes: non-isothermal reduction at 700°C with 20 vol. % of CO in nitrogen (N2), followed by isothermal reduction at 700°C for an additional 60 min. The TPR profile showed that the reduction of doped and undoped MoO3 was preceded by two reduction stages (MoO3 → Mo4O11 → MoO2), wherein, the reduction of doped MoO3 starting at a lower temperature (380°C-500°C) than that of undoped MoO3 (550°C). Additionally, based on XRD analysis, it was shown that the conversion of MoO3 to MoO2 under CO generated an intermediate product known as Mo4O11. It is discovered that, increasing the concentration of chromium doped to MoO3 enhanced the reducibility of oxide due to the rapid production of MoO2 phases at T: 380ºC. Further heating under CO atmosphere, carbide species built up in the form of Mo2C rather than metallic Mo which might be due to excess of CO exposure to the surface layer of oxide.

 

Keywords: reduction, molybdenum oxide, carbon monoxide, chromium

 

Abstrak

Kajian ini bertujuan untuk menyiasat pengaruh penambahan kromium terhadap sifat fizikal dan kimia semasa penurunan molibdenum trioksida (MoO3) dalam persekitaran karbon monoksida (CO). Tingkah laku penurunan sampel dinilai menggunakan teknik suhu penurunan berprogram (TPR), dan fasa yang dihasilkan oleh sampel yang diturunkan dianalisis menggunakan pembelauan sinar-X (XRD) dan pancaran medan mikroskopi elektron pengimbasan (FESEM). Kajian TPR telah dijalankan menggunakan dua mod penurunan: penurunan bukan isoterma pada 700°C dengan 20 vol. % CO dalam nitrogen (N2), diikuti dengan pengurangan isoterma pada 700°C selama 60 minit. Keputusan TPR menunjukkan bahawa penurunan MoO3 terdop dan tidak terdop didahului oleh dua peringkat penurunan iaitu (MoO3 → Mo4O11 → MoO2) dengan penurunan MoO3 terdop bermula pada suhu yang lebih rendah (380°C-500°C) berbanding MoO3 tidak terdop (550°C). Di samping itu, telah ditentukan bahawa penurunan MoO3 kepada MoO2 dengan CO telah menghasilkan produk perantaraan yang dipanggil Mo4O11 berdasarkan analisis sampel yang diturunkan menggunakan XRD. Telah didapati bahawa, peningkatan kepekatan kromium yang didopkan kepada MoO3 telah meningkatkan penurunan oksida dengan pembentukan fasa MoO2 yang lebih cepat pada T: 380ºC. Pemanasan berpanjangan di dalam persekitaran CO menyebabkan pembentukan spesies karbida dalam bentuk Mo2C dan bukannya logam Mo yang mungkin disebabkan oleh pendedahan berlebihan CO pada lapisan permukaan oksida.

 

Kata kunci: Penurunan, molibdenum oksida, karbon monoksida, kromium

 

References

1.         Wang, L., Bu, C. Y., Zhang, G. H., Wang, J. S., and Chou, K. C. (2017). Study of the reduction of industrial grade MoO3 powders with CO or CO-CO2 gases to prepare MoO2. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 48(4): 2047-2056.

2.         Chen, X. R., Zhai, Q. J., Dong, H., Dai, B. H., and Mohrbacher, H. (2020). Molybdenum alloying in cast iron and steel. Advances in Manufacturing, 8(1): 3-14.

3.         Jaf, Z. N., Miran, H. A., Jiang, Z. T. and Altarawneh, M. (2021). Molybdenum nitrides from structures to industrial applications. Reviews in Chemical Engineering, 2021:1015.

4.         Samsuri, A., Latif, M. N., Shamsuddin, M. R., Salleh, F., Abu Tahari, M. N., Tengku Saharuddin, T. S., Dzakaria, N., and Yarmo, M. A. (2021). Studies on influence of hydrogen and carbon monoxide concentration on reduction progression behavior of molybdenum oxide catalyst. International Journal of Hydrogen Energy, 46(48): 24831-24844.

5.         Dang, J., Zhang, G. H., Chou, K. C., Reddy, R. G., He, Y., and Sun, Y. (2013). Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. International Journal of Refractory Metals and Hard Materials, 41: 216-223.

6.         Saghafi, M., Heshmati-Manesh, S., Ataie, A., and Khodadadi, A. A. (2012). Synthesis of nanocrystalline molybdenum by hydrogen reduction of mechanically activated MoO3. International Journal of Refractory Metals and Hard Materials, 30(1): 128-132.

7.         Enneti, R. K., and Wolfe, T. A. (2012). Agglomeration during reduction of MoO3. International Journal of Refractory Metals and Hard Materials, 31: 47-50.

8.         Wang, J., Ren, Z., Liu, W., Gao, F., and Zhou, M. (2009). Effects of RE2O3 doping on the reduction behavior of molybdenum oxide and properties of molybdenum powder. International Journal of Refractory Metals and Hard Materials, 27(1): 155-158.

9.         Saghafi, M., Ataie, A., and Heshmati-Manesh, S. (2011). Effects of mechanical activation of MoO3/C powder mixture in the processing of nano-crystalline molybdenum. International Journal of Refractory Metals and Hard Materials, 29(4): 419-423.

10.      Wu, S., Zhou, C., Doroodchi, E., Nellore, R., and Moghtaderi, B. (2018). A review on high-temperature thermochemical energy storage based on metal oxides redox cycle. Energy Conversion and Management, 168: 421–453.

11.      Zhang, G., Liu, J., Xu, Y., and Sun, Y. (2018). A review of CH4–CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). International Journal of Hydrogen Energy, 43(32): 15030-15054.

12.      Habib, I. Y., Tajuddin, A. A., Noor, H. A., Lim, C. M., Mahadi, A. H., and Kumara, N. T. R. N. (2019). Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures. Scientific Reports, 9(1): 9207.

13.      Wang, T., Chen, L. Q., and Liu, Z. K. (2007). Lattice parameters and local lattice distortions in FCC-Ni solutions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38(3): 562-569.

14.      Samsuri, A., Tengku Saharuddin, T. S., Salleh, F., Othaman, R., Mohamed Hisham, M. W., and Yarmo, M. A. (2016). Temperature programmed reduction and x-ray diffractometry studies of MoO3 reduction by different concentrations of carbon monoxide. Malaysian Journal of Analytical Sciences, 20: 382-387.

15.      Saharuddin, T. S. T., Samsuri, A., Salleh, F., Othaman, R., Kassim, M. bin, Mohamed Hisham, M. W., and Yarmo, M. A. (2017). Studies on reduction of chromium doped iron oxide catalyst using hydrogen and various concentration of carbon monoxide. International Journal of Hydrogen Energy, 42(14): 9077-9086.

16.      Samsuri, A., Tengku Saharuddin, T. S., Salleh, F., Mohamed Hisham, M. W., Othaman, R., and Yarmo, M. A. (2015). Reduction of MoO2 to metallic molybdenum via carburization and thermal process. Advanced Materials Research, 1087: 64-67.

17.      Sun, T., Xu, L., Wei, S., Xiao, F., Li, Z., Fan, X., and Zhou, Y. (2020). Phase evolution of hydrothermal synthesis oxide-doped molybdenum powders. International Journal of Refractory Metals and Hard Materials, 86: 105085.

18.      Liu, Q., Zhong, Z., Gu, F., Wang, X., Lu, X., Li, H., Xu, G., and Su, F. (2016). CO methanation on ordered mesoporous Ni-Cr-Al catalysts: Effects of the catalyst structure and Cr promoter on the catalytic properties. Journal of Catalysis, 337: 221-232.

19.      Samsuri, A., Salleh, F., Tengku Saharuddin, T. S., Othaman, R., Mohammad Hisham, M. W., and Yarmo, M. A. (2017). Effect of noble metal silver on the reduction behaviour of molybdenum oxide using carbon monoxide. Materials Science Forum, 888: 377-381.

20.      Latif, M. N., Samsuri, A., Mohammad Hisham, M. W., and Yarmo, M. A. (2017). Reduction of molybdenum trioxide by using hydrogen. Materials Science Forum, 888: 404-408.

21.      Wang, L., Zhang, G. H., and Chou, K. C. (2018). Preparation of Mo2C by reducing ultrafine spherical β-MoO3 powders with CO or CO-CO2 gases. Journal of the Australian Ceramic Society, 54(1): 97-107.