Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 242
- 250
RADIOLOGICAL RISKS RELATED TO
NATURAL RADIONUCLIDE IN SELECTED FISH FROM EAST COAST OF PENINSULAR, MALAYSIA
(Risiko
Radiologi Berkaitan Radionuklid Tabii Dalam Ikan Terpilih
Dari Pantai Timur Semenanjung, Malaysia)
Muhammad Nur Rashidi Rosli1*, Madihah Jafar Sidik2, Wahmisari Priharti3, and Nurashikin
Abd Azis4
1Preparatory
Centre for Science and Technology,
Universiti
Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
2Borneo Marine Research
Institute,
Universiti
Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
3Telkom University, J1.
Telekomunikasi No.1, Dayeuhkolot, Kab.
Bandung, Indonesia
4Faculty of Security
and Governance,
North Borneo University College, 88450 Kota Kinabalu,
Sabah
*Corresponding author: mnrashidirosli@ums.edu.my
Received:
12 July 2022; Accepted: 27 February 2023; Published: 19 April 2023
Abstract
Systematic investigations are essential in establishing the current water
quality because numerous industrial and anthropogenic sources are responsible
for polluting the ecosystem along Peninsular Malaysia's east coast. Since
aquatic stocks play a significant role in the daily diets of the surrounding
populations, the present study used the ICP-MS technique to measure the levels
of three natural radionuclides 232Th, 238U and 40K
in three fish species collected from three locations along the east coast of
Peninsular Malaysia. The activity concentration ranges from 23.13 ± 1.70 to
43.31 ± 2.10 Bq kg-1for 40K,
0.06 ± 0.01 to 0.33 ± 0.05 Bq kg-1 for 232Th
and 0.11 ± 0.08 to 0.48 ± 0.10 Bq kg-1 for
238U. The determined activity concentration of radionuclides was
used to estimate the annual effective dose and cancer risk. The findings showed
that the predicted yearly effective doses (µSv year-1)
for 232Th, 238U and 40K were 1.67, 0.70, and
11.92 correspondingly, which were much lower than the UNSCEAR recommendation
and considered to be safe. Based on the estimated annual effective dose and a
life expectancy of 70 years, the cancer risk factor for adults is predicted to
be 3.00 × 10-5. Compared to the UNSCEAR cancer risk factor of 8.4 ×
10-3 and ICRP cancer risk factor of 3.5 × 10-3, this
value is much lower. According to the current study, the dose that locals
consume from eating fish is safe for human consumption, relatively minimal, and
does not impair human health.
Keywords:
Bioaccumulation, natural radionuclide. activity concentration, ingestion dose, cancer risk
Abstrak
Penyiasatan sistematik adalah penting dalam menentukan kualiti air semasa kerana banyak sumber perindustrian
dan antropogenik bertanggungjawab
dalam mencemarkan ekosistem di sepanjang pantai timur Semenanjung
Malaysia. Memandangkan stok
akuatik memainkan peranan penting dalam diet harian populasi sekitar, kajian ini menggunakan
teknik ICP-MS untuk mengukur tahap tiga radionuklid semula jadi 232Th, 238U
dan 40K dalam tiga
spesies ikan yang dikumpulkan dari tiga lokasi di sepanjang pantai timur Semenanjung Malaysia. Kepekatan aktiviti berkisar antara 23.13 ± 1.70 hingga 43.31 ± 2.10 Bq kg-1untuk
40K, 0.06 ± 0.01 hingga 0.33 ± 0.05 Bq kg-1 untuk 232Th
dan 0.11 ± 0.08 hingga 0.48 ± 0.10 Bq kg-1 bagi 238U.
Kepekatan aktiviti radionuklid yang ditentukan telah digunakan untuk menganggarkan dos berkesan tahunan dan risiko kanser. Penemuan menunjukkan bahawa dos berkesan tahunan yang diramalkan (µSv tahun-1) untuk 232Th,
238U dan 40K adalah masing-masing 1.67, 0.70, dan 11.92, yang jauh lebih rendah
daripada pengesyoran
UNSCEAR. Berdasarkan anggaran
dos berkesan tahunan dan jangka hayat 70 tahun, faktor risiko
kanser untuk orang dewasa diramalkan ialah 3.00 × 10-5. Berbanding
dengan faktor risiko kanser UNSCEAR sebanyak 8.4 × 10-3 dan faktor
risiko kanser ICRP sebanyak 3.5 × 10-3, nilai
ini jauh lebih rendah dan selamat. Menurut kajian semasa, dos yang diambil oleh penduduk tempatan daripada memakan ikan adalah
selamat untuk dimakan manusia, agak minimum, dan tidak menjejaskan kesihatan manusia.
Kata kunci: Bioakumulasi, radionuklid
semula jadi. kepekatan aktiviti, dos pengambilan, risiko kanser
References
1. Broecker,
W. S. (1981). Geochemical tracers and ocean circulation in evolution of
physical oceanography, B. A. Warren and C. Wunsch, eds. Cambridge, MA: MIT
Press.
2. UNSCEAR
(United Nations Scientific Committee on the effects of Atomic Radiation).
(2008). Sources and effects of Ionizing radiation. Exposures of the public and
workers from various sources of radiation. Report to the General Assembly with Scientific
Annexes, Annex-B.
3. Amin,
Y. M., Mahat, R. H., Nor, R. M., Khandaker,
M. U., Takleef, G. H., and Bradley, D. A. (2013). The
presence of natural radioactivity and 137Cs in the South China sea
bordering Peninsular Malaysia. Radiation Protection Dosimetry, 156:
475-480.
4. Khandaker,
M. U., Norfadira, B. W., Amin, Y. M., and Bradley, D.
A. (2013). Committed effective dose from naturally occurring radionuclides in
shellfish. Radiation Physics and Chemistry, 88: 1-6.
5. Khandaker,
M. U., Olatunji, M. A., Shuib, K. S. K., Hakimi, N.
A., Nasir, N. L. M., Asaduzzaman, K., and Bradley, D.
A. (2015). Natural radioactivity and effective dose due to the bottom sea and
estuaries marine animals in the coastal waters around Peninsular Malaysia. Radiation
Protection Dosimetry, pp. 1-5.
6. Abbasisiar,
F. T., Hosseini, A., and Heravi, F. G. (2004).
Determination of uranium isotopes (234U, 238U) and
natural uranium (U-nat) in water samples by alpha
spectrometry. Iranian Journal of Radiation Research, 2: 1-6.
7. Khan,
M. F., Benjamin, J., and Godwin, S. W. (2011). Radiotoxicity via intake of
marine organisms: exposure and risk assessment in South Indians. Toxicology
and Environmental Chemistry, 93: 549-564.
8. IAEA
(International Atomic Energy Agency). (1998). Inventory of radioactive waste
disposals at sea (TECDOC-1105). Access from
http://www-pub.iaea.org/books/iaeabooks/5786/Inventory-of-Radioactive-Waste-Disposals-at-Sea.
9. Bogatov,
S., Kisselev, V., Sorokovikova,
O., and Vysotsky, V. (2009). Radiation consequences
of hypothetical accidents associated with transportation of spent nuclear fuel
of nuclear submarines aboard floating technical base. Radioprotection,
44(5): 159-164.
10. UNSCEAR
(United Nations Scientific Committee on the effects of Atomic Radiation).
(2000). Source and effects of ionizing radiation. New York: United Nations.
11.
Carvalho, F. P.,
Oliveira, J. M., and Malta, M. M. (2011). Radionuclides in deep-sea fish and
other organisms from the North Atlantic Ocean. ICES Journal of Marine
Science, 68: 333-340.
12.
Iyengar, M. A. R.
(1990). The environmental behaviour of radium. Technical Report Series, 310,
International Atomic Energy Agency, Vienna; Vol. II, pp.59-128.
13.
Brown, J. E., Jones,
S. R., Saxen, R., Thorring,
H., Vives, I., and Battle, J. (2004). Radiation doses to organisms from natural
radionuclides. Journal of Radiological Protection, 24: A63-A77.
14.
Matta, J., Milad, M.,
Manger, R., and Tosteson, T. (1999). Heavy metals,
lipid peroxidation, and cigateratoxicity in the liver
of the Caribben barracuda (Sphyraena
barracuda). Biological Trace Element Research, 70: 69-79.
15.
Templeton, W.,
Harrison, F., Knezovich, J., Fisher, N., and Layton,
D. (2009). Bioconcentration of radionuclides in marine food-web organism.
Battelle Pacific Northwest Laboratories, Richland, WA, 49-61.
16.
Aarkrog, A., Baxter, M. S.,
Bettencourt, A. O., Bojanowski, R., Bologa, A., Charmasson, S., and Cunha, I. (1997). A comparison of doses
from 137Cs and 210Po in marine food: a major
international study. Journal of Environmental Radioactivity, 34(1):
69-90.
17.
Narayana, Y.,
Radhakrishna, A. P., Somashekarappa, H. M., Karunakara, N., Balakrishna, K. M., and Sidappa,
K. (1995). Distribution of some natural and artificial radionuclides in the
environment of Coastal Karnataka of South India. Journal of Environmental
Radioactivity, 28: 113-139.
18.
Young, A. K.,
McCubbin, D., and Camplin, W. C. (2002). Natural
radionuclides in seafood. Food Standard Agency Report, CEFAS, FSA Project 2002,
R 03010.
19.
Alam, L., and Mohamed, C.
A. R. (2011). Natural Radionclide of 210Po
in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia. Environmental Health,
10: 43.
20.
Connan, O., Germain, P., Solier, L., and Gouret, G.
(2007). Variations of 210Po and 210Pb in various marine
organisms from western English Channel: contribution of 210Po to the
radiation dose. Journal of Environmental Radioactivity, 97: 168-188.
21.
Yasir, M. S., Ab.
Majid, A., Ahmad Kabir, N., and Yahya, R. (2008). Kandungan
logam berat dan radionuklid tabii dalam ikan, air, tumbuhan dan sedimen di bekas tapak lombong.
Malaysian Journal of Analytical Sciences, 12(1): 172-178.
22.
Rosli, M. N. R., Samat, S. B., Yasir, M. S., and Yusof, M. F. M. (2018).
Determination of concentration activity natural radionuclide 232Th, 238U
and 40K in fish at the coastal area of Terengganu, Malaysia. Sains Malaysiana,
47(9): 2151-2156.
23.
Ruth, E. W. (2005).
Introduction to ICP-MS. Crustal Geophysics and Geochemistry Science Center, U.S. Geological Survey, pp. 21-52.
24.
Warr, S., Rodriguez,
G., and Penm, J. (2008). Changing food consumption
and imports in Malaysia. Australian Government, Department of Agriculture,
Fisheries and Forestry, Canberra, pp. 1-29.
25.
ICRP (2012).
Compendium of dose coefficients based on ICRP Publication 60: ICRP Publication
119. Oxford: Pergamon Press.
26.
IAEA (2004).
Radiation, people and the environment: a broad view of ionising radiation, its
effects and uses as well as the measures in place to it safely. Vienna: IAEA.
27.
Hyde, E. K. (1960).
The Radiochemistry of Thorium. Subcommittee on Radiochemistry, National Academy
of Sciences-National Research Council. Retrieved from
http://www.radiochemistry.org/periodictable/ pdf_books/pdf/rc000034.pdf
28.
Hong, G. H., Baskaran,
M., and Molaroni, S. M. (2011). Anthropogenic and
natural radionuclides in caribou and muskoxen in the Western Alaskan Arctic and
marine fish in the Aleutian Islands in the first half of 2000. Science of Total
Environment, 409: 3638-3648.
29.
Narayana, Y.,
Radhakrishna, A. P., Somashekarappa, H. M., Karunakara, N., Balakrishna, K. M., and Siddappa, K.
(1995). Distribution of some natural and artificial radionuclides in the
environment of coastal Karnataka of South India. Journal of Environmental
Radioactivity, 28(2): 113-139.
30.
Ademola, J. A. and Ehiedu, S. I. (2010). Radiological analysis of 40K,
226Ra and 232Th in fish, crustaceans and sediment samples
from fresh and marine water in oil exploration area of Ondo state, Nigeria. African
Journal of Biomedical Research, 13: 99-106.
31.
Kılıç,
Ö., Belivermiş, M., Çotuk,
Y., and Topçuoğlu, S. (2014). Radioactivity
concentrations in mussel (Mytilus galloprovincialis)
of Turkish Sea coast and contribution of 210Po to the radiation
dose. Marine Pollution Bulletin, 80(1-2): 325-329.
32.
Samat, S. B., Green, S.,
and Beddoe, A. H. (1997). The 40K activity
of one gram of potassium. Physics in Medicine and Biology, 42(2): 407.
33.
Patra, A. C.,
Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S.,
Thakur, V. K., ... and Tripathi, R. M. (2014). Assessment of ingestion dose due
to radioactivity in selected food matrices and water near Vizag, India. Journal
of Radioanalytical and Nuclear Chemistry, 300: 903-910.
34.
ICRP (1990).
Recommendation of the international commission on radiological protection: ICRP
Publication 60. Pergamon Press, Oxford.
35.
IAEA (2013). Certified
reference material for radionuclides in fish flesh sample IAEA-414 (Mixed fish
from the Irish Sea and North Sea). Vienna: IAEA.
36.
John, P., Margaret,
M., Lynne, H., and Fred, M. (2009). Radiological and chemical fact sheets to
support health risk analyses for contaminated areas. Argonne National
Laboratory, Environmental Science Division: pp. 28-36.
37.
Awudu, A., Faanu, A., Darko, E., Emi-Reynolds, G., Adukpo,
O., Kpeglo, D., ... and Agyeman, B. (2012).
Preliminary studies on 226Ra, 228Ra, 228Th and
40K concentrations in foodstuffs consumed by inhabitants of Accra
metropolitan area, Ghana. Journal of Radioanalytical and Nuclear Chemistry,
291(3): 635-641.
38. UNSCEAR. (1993). Dose assessment methodologies.
United Nations Scientific Committee on the Effects of Atomic Radiation. New
York: United Nations, 121-126.