Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 242 - 250

 

RADIOLOGICAL RISKS RELATED TO NATURAL RADIONUCLIDE IN SELECTED FISH FROM EAST COAST OF PENINSULAR, MALAYSIA

 

(Risiko Radiologi Berkaitan Radionuklid Tabii Dalam Ikan Terpilih Dari Pantai Timur Semenanjung, Malaysia)

 

Muhammad Nur Rashidi Rosli1*, Madihah Jafar Sidik2, Wahmisari Priharti3, and Nurashikin Abd Azis4

 

  1Preparatory Centre for Science and Technology,

 Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

2Borneo Marine Research Institute,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

3Telkom University, J1. Telekomunikasi No.1, Dayeuhkolot, Kab. Bandung, Indonesia

4Faculty of Security and Governance,

North Borneo University College, 88450 Kota Kinabalu, Sabah

 

*Corresponding author: mnrashidirosli@ums.edu.my

 

 

Received: 12 July 2022; Accepted: 27 February 2023; Published:  19 April 2023

 

 

Abstract

Systematic investigations are essential in establishing the current water quality because numerous industrial and anthropogenic sources are responsible for polluting the ecosystem along Peninsular Malaysia's east coast. Since aquatic stocks play a significant role in the daily diets of the surrounding populations, the present study used the ICP-MS technique to measure the levels of three natural radionuclides 232Th, 238U and 40K in three fish species collected from three locations along the east coast of Peninsular Malaysia. The activity concentration ranges from 23.13 ± 1.70 to 43.31 ± 2.10 Bq kg-1for 40K, 0.06 ± 0.01 to 0.33 ± 0.05 Bq kg-1 for 232Th and 0.11 ± 0.08 to 0.48 ± 0.10 Bq kg-1 for 238U. The determined activity concentration of radionuclides was used to estimate the annual effective dose and cancer risk. The findings showed that the predicted yearly effective doses (µSv year-1) for 232Th, 238U and 40K were 1.67, 0.70, and 11.92 correspondingly, which were much lower than the UNSCEAR recommendation and considered to be safe. Based on the estimated annual effective dose and a life expectancy of 70 years, the cancer risk factor for adults is predicted to be 3.00 × 10-5. Compared to the UNSCEAR cancer risk factor of 8.4 × 10-3 and ICRP cancer risk factor of 3.5 × 10-3, this value is much lower. According to the current study, the dose that locals consume from eating fish is safe for human consumption, relatively minimal, and does not impair human health.

 

Keywords: Bioaccumulation, natural radionuclide. activity concentration, ingestion dose, cancer risk

 

Abstrak

Penyiasatan sistematik adalah penting dalam menentukan kualiti air semasa kerana banyak sumber perindustrian dan antropogenik bertanggungjawab dalam mencemarkan ekosistem di sepanjang pantai timur Semenanjung Malaysia. Memandangkan stok akuatik memainkan peranan penting dalam diet harian populasi sekitar, kajian ini menggunakan teknik ICP-MS untuk mengukur tahap tiga radionuklid semula jadi 232Th, 238U dan 40K dalam tiga spesies ikan yang dikumpulkan dari tiga lokasi di sepanjang pantai timur Semenanjung Malaysia. Kepekatan aktiviti berkisar antara 23.13 ± 1.70 hingga 43.31 ± 2.10 Bq kg-1untuk 40K, 0.06 ± 0.01 hingga 0.33 ± 0.05 Bq kg-1 untuk 232Th dan 0.11 ± 0.08 hingga 0.48 ± 0.10 Bq kg-1 bagi 238U. Kepekatan aktiviti radionuklid yang ditentukan telah digunakan untuk menganggarkan dos berkesan tahunan dan risiko kanser. Penemuan menunjukkan bahawa dos berkesan tahunan yang diramalkanSv tahun-1) untuk 232Th, 238U dan 40K adalah masing-masing 1.67, 0.70, dan 11.92, yang jauh lebih rendah daripada pengesyoran UNSCEAR. Berdasarkan anggaran dos berkesan tahunan dan jangka hayat 70 tahun, faktor risiko kanser untuk orang dewasa diramalkan ialah 3.00 × 10-5. Berbanding dengan faktor risiko kanser UNSCEAR sebanyak 8.4 × 10-3 dan faktor risiko kanser ICRP sebanyak 3.5 × 10-3, nilai ini jauh lebih rendah dan selamat. Menurut kajian semasa, dos yang diambil oleh penduduk tempatan daripada memakan ikan adalah selamat untuk dimakan manusia, agak minimum, dan tidak menjejaskan kesihatan manusia.

 

Kata kunci: Bioakumulasi, radionuklid semula jadi. kepekatan aktiviti, dos pengambilan, risiko kanser


 

References

1.       Broecker, W. S. (1981). Geochemical tracers and ocean circulation in evolution of physical oceanography, B. A. Warren and C. Wunsch, eds. Cambridge, MA: MIT Press.

2.       UNSCEAR (United Nations Scientific Committee on the effects of Atomic Radiation). (2008). Sources and effects of Ionizing radiation. Exposures of the public and workers from various sources of radiation. Report to the General Assembly with Scientific Annexes, Annex-B.

3.       Amin, Y. M., Mahat, R. H., Nor, R. M., Khandaker, M. U., Takleef, G. H., and Bradley, D. A. (2013). The presence of natural radioactivity and 137Cs in the South China sea bordering Peninsular Malaysia. Radiation Protection Dosimetry, 156: 475-480.

4.       Khandaker, M. U., Norfadira, B. W., Amin, Y. M., and Bradley, D. A. (2013). Committed effective dose from naturally occurring radionuclides in shellfish. Radiation Physics and Chemistry, 88: 1-6.

5.       Khandaker, M. U., Olatunji, M. A., Shuib, K. S. K., Hakimi, N. A., Nasir, N. L. M., Asaduzzaman, K., and Bradley, D. A. (2015). Natural radioactivity and effective dose due to the bottom sea and estuaries marine animals in the coastal waters around Peninsular Malaysia. Radiation Protection Dosimetry, pp. 1-5.

6.       Abbasisiar, F. T., Hosseini, A., and Heravi, F. G. (2004). Determination of uranium isotopes (234U, 238U) and natural uranium (U-nat) in water samples by alpha spectrometry. Iranian Journal of Radiation Research, 2: 1-6.

7.       Khan, M. F., Benjamin, J., and Godwin, S. W. (2011). Radiotoxicity via intake of marine organisms: exposure and risk assessment in South Indians. Toxicology and Environmental Chemistry, 93: 549-564.

8.       IAEA (International Atomic Energy Agency). (1998). Inventory of radioactive waste disposals at sea (TECDOC-1105). Access from http://www-pub.iaea.org/books/iaeabooks/5786/Inventory-of-Radioactive-Waste-Disposals-at-Sea.

9.       Bogatov, S., Kisselev, V., Sorokovikova, O., and Vysotsky, V. (2009). Radiation consequences of hypothetical accidents associated with transportation of spent nuclear fuel of nuclear submarines aboard floating technical base. Radioprotection, 44(5): 159-164.

10.    UNSCEAR (United Nations Scientific Committee on the effects of Atomic Radiation). (2000). Source and effects of ionizing radiation. New York: United Nations.

11.    Carvalho, F. P., Oliveira, J. M., and Malta, M. M. (2011). Radionuclides in deep-sea fish and other organisms from the North Atlantic Ocean. ICES Journal of Marine Science, 68: 333-340.

12.    Iyengar, M. A. R. (1990). The environmental behaviour of radium. Technical Report Series, 310, International Atomic Energy Agency, Vienna; Vol. II, pp.59-128.

13.    Brown, J. E., Jones, S. R., Saxen, R., Thorring, H., Vives, I., and Battle, J. (2004). Radiation doses to organisms from natural radionuclides. Journal of Radiological Protection, 24: A63-A77.

14.    Matta, J., Milad, M., Manger, R., and Tosteson, T. (1999). Heavy metals, lipid peroxidation, and cigateratoxicity in the liver of the Caribben barracuda (Sphyraena barracuda). Biological Trace Element Research, 70: 69-79.

15.    Templeton, W., Harrison, F., Knezovich, J., Fisher, N., and Layton, D. (2009). Bioconcentration of radionuclides in marine food-web organism. Battelle Pacific Northwest Laboratories, Richland, WA, 49-61.

16.    Aarkrog, A., Baxter, M. S., Bettencourt, A. O., Bojanowski, R., Bologa, A., Charmasson, S., and Cunha, I. (1997). A comparison of doses from 137Cs and 210Po in marine food: a major international study. Journal of Environmental Radioactivity, 34(1): 69-90.

17.    Narayana, Y., Radhakrishna, A. P., Somashekarappa, H. M., Karunakara, N., Balakrishna, K. M., and Sidappa, K. (1995). Distribution of some natural and artificial radionuclides in the environment of Coastal Karnataka of South India. Journal of Environmental Radioactivity, 28: 113-139.

18.    Young, A. K., McCubbin, D., and Camplin, W. C. (2002). Natural radionuclides in seafood. Food Standard Agency Report, CEFAS, FSA Project 2002, R 03010.

19.    Alam, L., and Mohamed, C. A. R. (2011). Natural Radionclide of 210Po in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia. Environmental Health, 10: 43.

20.    Connan, O., Germain, P., Solier, L., and Gouret, G. (2007). Variations of 210Po and 210Pb in various marine organisms from western English Channel: contribution of 210Po to the radiation dose. Journal of Environmental Radioactivity, 97: 168-188.

21.    Yasir, M. S., Ab. Majid, A., Ahmad Kabir, N., and Yahya, R. (2008). Kandungan logam berat dan radionuklid tabii dalam ikan, air, tumbuhan dan sedimen di bekas tapak lombong. Malaysian Journal of Analytical Sciences, 12(1): 172-178.

22.    Rosli, M. N. R., Samat, S. B., Yasir, M. S., and Yusof, M. F. M. (2018). Determination of concentration activity natural radionuclide 232Th, 238U and 40K in fish at the coastal area of Terengganu, Malaysia. Sains Malaysiana, 47(9): 2151-2156.

23.    Ruth, E. W. (2005). Introduction to ICP-MS. Crustal Geophysics and Geochemistry Science Center, U.S. Geological Survey, pp. 21-52.

24.    Warr, S., Rodriguez, G., and Penm, J. (2008). Changing food consumption and imports in Malaysia. Australian Government, Department of Agriculture, Fisheries and Forestry, Canberra, pp. 1-29.

25.    ICRP (2012). Compendium of dose coefficients based on ICRP Publication 60: ICRP Publication 119. Oxford: Pergamon Press.

26.    IAEA (2004). Radiation, people and the environment: a broad view of ionising radiation, its effects and uses as well as the measures in place to it safely. Vienna: IAEA.

27.    Hyde, E. K. (1960). The Radiochemistry of Thorium. Subcommittee on Radiochemistry, National Academy of Sciences-National Research Council. Retrieved from http://www.radiochemistry.org/periodictable/ pdf_books/pdf/rc000034.pdf

28.    Hong, G. H., Baskaran, M., and Molaroni, S. M. (2011). Anthropogenic and natural radionuclides in caribou and muskoxen in the Western Alaskan Arctic and marine fish in the Aleutian Islands in the first half of 2000. Science of Total Environment, 409: 3638-3648.

29.    Narayana, Y., Radhakrishna, A. P., Somashekarappa, H. M., Karunakara, N., Balakrishna, K. M., and Siddappa, K. (1995). Distribution of some natural and artificial radionuclides in the environment of coastal Karnataka of South India. Journal of Environmental Radioactivity, 28(2): 113-139.

30.    Ademola, J. A. and Ehiedu, S. I. (2010). Radiological analysis of 40K, 226Ra and 232Th in fish, crustaceans and sediment samples from fresh and marine water in oil exploration area of Ondo state, Nigeria. African Journal of Biomedical Research, 13: 99-106.

31.    Kılıç, Ö., Belivermiş, M., Çotuk, Y., and Topçuoğlu, S. (2014). Radioactivity concentrations in mussel (Mytilus galloprovincialis) of Turkish Sea coast and contribution of 210Po to the radiation dose. Marine Pollution Bulletin, 80(1-2): 325-329.

32.    Samat, S. B., Green, S., and Beddoe, A. H. (1997). The 40K activity of one gram of potassium. Physics in Medicine and Biology, 42(2): 407.

33.    Patra, A. C., Mohapatra, S., Sahoo, S. K., Lenka, P., Dubey, J. S., Thakur, V. K., ... and Tripathi, R. M. (2014). Assessment of ingestion dose due to radioactivity in selected food matrices and water near Vizag, India. Journal of Radioanalytical and Nuclear Chemistry, 300: 903-910.

34.    ICRP (1990). Recommendation of the international commission on radiological protection: ICRP Publication 60. Pergamon Press, Oxford.

35.    IAEA (2013). Certified reference material for radionuclides in fish flesh sample IAEA-414 (Mixed fish from the Irish Sea and North Sea). Vienna: IAEA.

36.    John, P., Margaret, M., Lynne, H., and Fred, M. (2009). Radiological and chemical fact sheets to support health risk analyses for contaminated areas. Argonne National Laboratory, Environmental Science Division: pp. 28-36.

37.    Awudu, A., Faanu, A., Darko, E., Emi-Reynolds, G., Adukpo, O., Kpeglo, D., ... and Agyeman, B. (2012). Preliminary studies on 226Ra, 228Ra, 228Th and 40K concentrations in foodstuffs consumed by inhabitants of Accra metropolitan area, Ghana. Journal of Radioanalytical and Nuclear Chemistry, 291(3): 635-641.

38.    UNSCEAR. (1993). Dose assessment methodologies. United Nations Scientific Committee on the Effects of Atomic Radiation. New York: United Nations, 121-126.