Malaysian Journal of Analytical
Sciences, Vol 27
No 2 (2023): 440 – 452
(Ciri-Ciri Mikroskopi, Spekroskopi dan Termoanalitik Minyak Kelapa
Sawit Dan Minyak Dedak Padi yang Diubahsuai Menjadi Biopolimer)
Hui
Ying Wong1, Radiah Ali1, and Sabiqah Tuan Anuar1,2*
1Faculty
of Science and Marine Environment,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Microplastic
Research Interest Group (MRIG),
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: sabiqahanuar@umt.edu.my
Received:
25 September 2022; Accepted: 30 March 2023; Published: xx April 2023
Abstract
Keywords: bioplastic, Malaysian crops, edible oil, plastic
pollution
Abstrak
Kajian ini melaporkan pendekatan untuk menghasilkan
bahan biopolimer daripada proses pengepoksidaan minyak sayuran seperti minyak kelapa
sawit dan minyak dedak padi. Pengepoksidaan minyak sayuran menukarkan daripada
ikatan berganda karbon kepada kumpulan oksirana dan dicapai dengan menggunakan
kaedah konvensional asid formik secara in situ selama 6 jam diikuti
dengan rawatan lanjut dengan asid sitrik. Kehadiran kumpulan oxirane telah
dibuktikan oleh Spektroskopi (FTIR) analisis, dan ditunjukkan pada nombor
gelombang 773 cm-1. Melalui pentitratan terus, kandungan oksigen
oksiran (OOC) untuk minyak kelapa sawit terepoksida (EPO) dan minyak dedak padi
terepoksida (ERBO) kedua-duanya ditentukan sebagai 2.89% dan 3.05%. Kajian
morfologi permukaan telah dijalankan untuk kedua-dua filem bioplastik EPO dan
ERBO dengan menggunakan Mikroskopi Pengimbas Elektron (SEM). Analisis lanjut
menggunakan spektroskopi X-ray Penyebaran Tenaga (EDX) masing-masing
menunjukkan 68.93% dan 78.80% peratusan jisim karbon untuk filem EPO dan ERBO.
Sementara itu, peratusan jisim oksigen dipamerkan dalam EPO dan ERBO sebagai
31.07% dan 21.20%. Filem EPO terdegradasi dianggarkan 50% pada 223 °C manakala
ERBO pada 225 °C daripada analisis termogravimetrik (TGA). Inisiatif untuk
mencipta filem bioplastik ini diingini untuk menjadi pengganti kepada produk
plastik semasa yang kebanyakannya tidak terdegradasi. Dalam prospek jangka
panjang, ia juga diharap dapat menjawab isu plastik global seperti tapak
pelupusan tanah dan pencemaran plastik lautan yang membawa kesan buruk kepada
organisma marin.
Kata kunci: bioplastik, tanaman Malaysia,
minyak makan, pencemaran plastik
References
1.
Plastic
Europe (2017). Plastics- the facts 2017: An analysis of European plastics
production, demand and waste data. Association
of Plastics Manufacturers, Brussels, Belgium.
2.
UNEP
(2018). UN Environment 2018 Annual Report. Pp 1-44.
3.
Chen,
H. L., Nath, T. K., Chong, S., Foo, V., Gibbins, C. and Lechner, A. M. (2021).
The plastic waste problem in Malaysia: management, recycling and disposal of
local and global plastic waste. SN Applied Sciences, 3: 437.
4.
Ibrahim,
Y. S., Hamzah, S. R., Khalik, W. M. A. W., Yusof, K. M. K. K. and Anuar, S. T. (2021). Spatiotemporal microplastic occurrence
study of Setiu Wetland, South China Sea. Science
of Total Environment, 788: 147809.
5.
Landrigan, P. J., Raps, H., Symeonides, C., Chiles, T., Cropper, M., Enck, J., Hahn, M. E., Hixson, R., Kumar, P., Mustapha, A., Park, Y., Spring, M., Stegeman, J.,
Thompson, R., Wan,g Z., Wolff, M., Yousuf, A. and Dunlop, S. (2022). Announcing the Minderoo – Monaco Commission on
Plastics and Human Health. Annals of Global Health, 88(1): 73.
6. Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F.,
Ahmad, M. A. and Ghani, A. A. (2021). Expanding policy for biodegradable plastic products and market dynamics
of bio-based plastics: Challenges and opportunities. Sustainability, 13(11): 6170.
7.
Narine,
S. S. and Kong, X. (2005). Vegetable oils in production of polymers and
plastics. In F. Shahidi (Ed.), Bailey’s Industrial Oil and Fat Products 6th ed.
John Wiley & Sons Ltd, United Stated: pp. 279-306.
8.
Workman,
D. (2018). Palm oil exports by country. Retrieved from
http://www.worldstopexports.com/palm-oil-exports-by-country/
9.
Thomas, A., Matthäus, B. and Fiebig, H.-J. (2015). Fats
and fatty oils. In Ullmann’s Encyclopedia of Industrial Chemistry: pp.
1-84.
10.
Liu,
W., Qiu, J., Fei, M., Qiu,
R., Sakai, E. and Zhang, M. (2019). Balancing performance of epoxidized soybean
oil (ESO)/poly(lactic acid) composites: synergistic
effects of carbon nanotubes and tannic acid-induced crosslinking of ESO. Express Polymer Letters, 13(2): 109-122.
11.
Saremi, K., Tabarsa, T., Shakeri, A. and Babanalbandi.,
A. (2012). Epoxidation of soybean oil. Scholars Research Library Annals of
Biological Research, 3(9):
4254-4258.
12.
Samarth, N. B. and Mahanwar, P. A. (2015). Modified
vegetable oil based additives as a future polymeric material-review. Open
Journal of Organic Polymer Materials, 5: 1-22.
13.
Anuar, S. T., Zhao, Y. Y., Mugo, S. M. and Curtis, J.
M. (2012). Monitoring the epoxidation of canola oil by non-aqueous reversed
phase liquid chromatography/mass spectrometry for process optimization and
control. Journal of the American Oil Chemists’ Society, 89(11): 1951-1960.
14.
Holser, R. A. (2008). Transesterification of epoxidized
soybean oil to prepare epoxy methyl esters. Industrial Crops and Products, 27: 130-132.
15.
Gogoi, P., Boruah, M., Sharma, S. and Dolui, S. K.
(2015). Blends of epoxidized alkyd resins based on jatropha oil and the
epoxidized oil cured with aqueous citric acid solution: a green technology
approach. ACS Sustainable Chemistry & Engineering, 3(2): 261-268.
16.
Almeida, C. B. de, Corradini, E., Forato, L. A.,
Fujihara, R. and Lopes Filho, J. F. (2018). Microstructure and thermal and
functional properties of biodegradable films produced using zein. Polímeros,
28(1): 30-37.
17.
Nainggolan, M. and Sinaga, A. G. S. (2021). Characteristics of fatty acid
composition and minor constituents of red palm olein and palm kernel oil
combination. Journal of Advanced
Pharmaceutical Technology and Research, 12(1): 22-26.
18.
Mancini, A., Imperlini, E., Nigro, E., Montagnese, C.,
Daniele, A., Orrů, S. and Buono, P. (2015). Biological and nutritional
properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9): 17339-17361.
19.
Purwanto, E. (2010). The synthesis of polyol from rice
bran oil (RBO) through epoxidation and hydroxylation reactions. Thesis of
Master Degree, The University of Adelaide, South Australia, Australia.
20.
Punia, S., Kumar, M., Siroha, A. K. and Purewal, S. S.
(2021). Rice bran oil: Emerging trends
in extraction, health benefit, and its industrial application. Rice Science, 28(3): 217-232.
21.
Turco, R., Vitiello, R., Russo, V., Tesser, R.,
Santacesaria, E. and Di Serio, M. (2013). Selective epoxidation of soybean oil
with performic acid catalyzed by acidic ionic exchange resins. Green
Processing and Synthesis, 2(5):
427-435.
22.
Danov, S. M., Kazantsev, O. A., Esipovich, A. L.,
Belousov, A. S., Rogozhin, A. E. and Kanakov, E. A. (2017). Recent advances in
the field of selective epoxidation of vegetable oils and their derivatives: a
review and perspective. Catalysis Science
& Technology, 7(17): 3659-3675.
23.
Omonov, T. S., Kharraz, E. and Curtis, J. M. (2016).
The epoxidation of canola oil and its derivatives. RSC Advances, 6(95): 92874-92886.
24.
Nihul, P. G., Mhaske, S. T. and Shertukde, V. V.
(2014). Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl
chloride) (PVC). Iranian Polymer Journal, 23(8): 599-608.
25.
Kin Hong, L., Yusop, R. M., Salih, N. and Salimon, J.
(2015). Optimization of the in situ epoxidation of linoleic acid of Jatropha curcas oil with performic acid.
Malaysian Journal of Analytical Sciences, 19(1): 144-154.
26.
Yunus, W. and Kuang Abdullah, D. (2009). Optimization
of the epoxidation of methyl ester of palm fatty acid distillate. Journal of
Oil Palm Research, 21:
675-682.
27.
Sahoo, S. K., Khandelwal, V. and Manik, G. (2018).
Development of completely bio-based epoxy networks derived from epoxidized
linseed and castor oil cured with citric acid. Polymers for Advanced
Technologies, 29(7):
2080-2090.
28.
Pierucci, S., Klemeš, J. J., Piazza, L., Bakalis, S.,
Vianello, C., Piccolo, D. and Maschio, G. (2017). Preliminary study of
epoxidation of soybean oil in stirred tank reactor: the effect of the mixing
program. Chemical Engineering
Transactions, 57: 1051-1056.
29.
Gupta, N. K., Yadav, P. K. S., Eadara, R. and Singh R.
P. (2016). Synthesis of Epoxy Resin from Waste Ricebran Oil. Polymers from Renewable Resources, 7(1): 21-32.
30.
Nugrahani, R.
A., Redjeki, A. S., Teresa, Y. and Hidayati, N. (2017). Synthesis of
compound-containing sulphonic acid from epoxidized methyl oleic of rice bran
oil and linear alkylbenzene sulphonic acid. Journal of Chemical Technology
and Metallurgy, 52(5):
797-802.
31.
Tajulruddin, W. N. W., Rahmat, A. R., Yusof, Z. A. M.
and Fakhari, A. (2015). Characterization of polyol synthesized from epoxidized
palm oil using Fourier transform infra-red and nuclear magnetic resonance. Journal
of Advanced Research in Applied Mechanics, 10(1): 30-35.
32.
Thakur, V. K., Thakur, M. K. and Kessler, M. R. (2017).
Handbook of composites from renewable
materials. Volume 6, Polymeric composites 6th ed. In:
M. R. Kessler, V. K. Thakur and M. K. Thakur (Eds.), Wiley-Scrivener, Beverly,
Massachusetts, USA.
33.
Awale, R., Ali, F., Azmi, A., Puad, N., Anuar, H. and
Hassan, A. (2018). Enhanced flexibility of biodegradable polylactic acid/starch
blends using epoxidized palm oil as plasticizer. Polymers, 10(9): 977.
34.
Kolanthai, E., Sarkar, K., Meka, S. R. K., Madras, G.
and Chatterjee, K. (2015). Copolyesters from soybean oil for use as resorbable
biomaterials. ACS Sustainable Chemistry & Engineering, 3(5): 880-891.
35.
Altuna, F. I., Pettarin, V. and Williams, R. J. J.
(2013). Self-healable polymer networks based on the cross-linking of epoxidised
soybean oil by an aqueous citric acid solution. Green Chemistry, 15(12): 3360.
36.
Ouipanich, S., Kaisone, T., Hanthanon, P., Wiphanurat,
C., Thongjun, Y. and Nampitch, T. (2017). Effect of the citric acid as blowing
agent on the compressive properties and morphology of PLA/ENR blend foams. Applied
Mechanics and Materials, 873:
95-100.
37.
Lei, B., Liang, Y., Feng, Y., He, H. and Yang, Z.
(2018). Preparation and characteristics of biocomposites based on steam
exploded sisal fiber modified with amphipathic epoxidized soybean oil resin. Materials,
11(9): 1731.
38.
Samper, M. D., Ferri, J. M., Carbonell-Verdu, A.,
Balart, R. and Fenollar, O. (2019). Properties of biobased epoxy resins from
epoxidized linseed oil (ELO) crosslinked with a mixture of cyclic anhydride and
maleinized linseed oil. Express Polymer Letters, 13(5): 407-418.
39. Chieng, B., Ibrahim, N., Then,
Y. and Loo, Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid)
biocomposites: mechanical, thermal and morphology properties. Molecules,
19(10): 16024-16038.