Malaysian Journal of Analytical Sciences, Vol 27 No 2 (2023): 440 – 452

 

MICROSCOPIC, SPECTROSCOPIC AND THERMOANALYTICAL CHARACTERIZATIONS OF MODIFIED PALM OIL AND RICE BRAN OIL INTO BIOPOLYMERS

 

(Ciri-Ciri Mikroskopi, Spekroskopi dan Termoanalitik Minyak Kelapa Sawit Dan Minyak Dedak Padi yang Diubahsuai Menjadi Biopolimer)

 

Hui Ying Wong1, Radiah Ali1, and Sabiqah Tuan Anuar1,2*

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Microplastic Research Interest Group (MRIG),

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: sabiqahanuar@umt.edu.my

 

 

Received: 25 September 2022; Accepted: 30 March 2023; Published:  xx April 2023

 

 

Abstract

This study reported an approach of producing biopolymer material from epoxidation of vegetable oils such as palm oil and rice bran oil. The epoxidation of vegetable oils converts from carbon double bonds into oxirane group and achieves by using the conventional method of in situ generated formic acid for 6 hours followed by further treatment with citric acid. The presence of oxirane group was proven by Spectroscopy (FTIR) analysis, and shown at the wavenumber of 773 cm-1. Through direct titration, oxirane oxygen content (OOC) for epoxidized palm oil (EPO) and epoxidized rice bran oil (ERBO) were both determined as 2.89% and 3.05% respectively. Surface morphological studies were carried out for both EPO and ERBO bioplastic films by using Scanning Electron Microscopy (SEM). Further analysis with Energy Dispersive X-ray (EDX) spectroscopy showed 68.93% and 78.80% of carbon mass percentages for EPO and ERBO films, respectively. Whilst oxygen mass percentages were exhibited in EPO and ERBO as 31.07% and 21.20%. EPO film is degraded to approximate 50% at 223 °C whereas ERBO at 225 °C from thermogravimetric analysis (TGA). This green initiative of creating bioplastic film is desired to be a substitution for current plastic product which is mostly non-degradable. In long term prospect, it is also hoped to answer to the global plastic issues such as land dumping site and ocean plastic pollution that brings adverse effect to the marine organisms.

 

Keywords: bioplastic, Malaysian crops, edible oil, plastic pollution

 

Abstrak

Kajian ini melaporkan pendekatan untuk menghasilkan bahan biopolimer daripada proses pengepoksidaan minyak sayuran seperti minyak kelapa sawit dan minyak dedak padi. Pengepoksidaan minyak sayuran menukarkan daripada ikatan berganda karbon kepada kumpulan oksirana dan dicapai dengan menggunakan kaedah konvensional asid formik secara in situ selama 6 jam diikuti dengan rawatan lanjut dengan asid sitrik. Kehadiran kumpulan oxirane telah dibuktikan oleh Spektroskopi (FTIR) analisis, dan ditunjukkan pada nombor gelombang 773 cm-1. Melalui pentitratan terus, kandungan oksigen oksiran (OOC) untuk minyak kelapa sawit terepoksida (EPO) dan minyak dedak padi terepoksida (ERBO) kedua-duanya ditentukan sebagai 2.89% dan 3.05%. Kajian morfologi permukaan telah dijalankan untuk kedua-dua filem bioplastik EPO dan ERBO dengan menggunakan Mikroskopi Pengimbas Elektron (SEM). Analisis lanjut menggunakan spektroskopi X-ray Penyebaran Tenaga (EDX) masing-masing menunjukkan 68.93% dan 78.80% peratusan jisim karbon untuk filem EPO dan ERBO. Sementara itu, peratusan jisim oksigen dipamerkan dalam EPO dan ERBO sebagai 31.07% dan 21.20%. Filem EPO terdegradasi dianggarkan 50% pada 223 °C manakala ERBO pada 225 °C daripada analisis termogravimetrik (TGA). Inisiatif untuk mencipta filem bioplastik ini diingini untuk menjadi pengganti kepada produk plastik semasa yang kebanyakannya tidak terdegradasi. Dalam prospek jangka panjang, ia juga diharap dapat menjawab isu plastik global seperti tapak pelupusan tanah dan pencemaran plastik lautan yang membawa kesan buruk kepada organisma marin.

 

Kata kunci: bioplastik, tanaman Malaysia, minyak makan, pencemaran plastik


References

1.       Plastic Europe (2017). Plastics- the facts 2017: An analysis of European plastics production, demand and waste data. Association of Plastics Manufacturers, Brussels, Belgium.

2.       UNEP (2018). UN Environment 2018 Annual Report. Pp 1-44.

3.       Chen, H. L., Nath, T. K., Chong, S., Foo, V., Gibbins, C. and Lechner, A. M. (2021). The plastic waste problem in Malaysia: management, recycling and disposal of local and global plastic waste. SN Applied Sciences, 3: 437.

4.       Ibrahim, Y. S., Hamzah, S. R., Khalik, W. M. A. W., Yusof, K. M. K. K. and Anuar, S. T. (2021). Spatiotemporal microplastic occurrence study of Setiu Wetland, South China Sea. Science of Total Environment, 788: 147809.

5.       Landrigan, P. J., Raps, H., Symeonides, C., Chiles, T., Cropper, M., Enck, J., Hahn, M. E., Hixson, R., Kumar, P., Mustapha, A., Park, Y., Spring, M., Stegeman, J., Thompson, R., Wan,g Z., Wolff, M., Yousuf, A. and Dunlop, S. (2022). Announcing the Minderoo – Monaco Commission on Plastics and Human Health. Annals of Global Health, 88(1): 73.

6.       Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. A. and Ghani, A. A. (2021). Expanding policy for biodegradable plastic products and market dynamics of bio-based plastics: Challenges and opportunities. Sustainability, 13(11): 6170.

7.       Narine, S. S. and Kong, X. (2005). Vegetable oils in production of polymers and plastics. In F. Shahidi (Ed.), Bailey’s Industrial Oil and Fat Products 6th ed. John Wiley & Sons Ltd, United Stated: pp. 279-306.

8.       Workman, D. (2018). Palm oil exports by country. Retrieved from http://www.worldstopexports.com/palm-oil-exports-by-country/

9.       Thomas, A., Matthäus, B. and Fiebig, H.-J. (2015). Fats and fatty oils. In Ullmann’s Encyclopedia of Industrial Chemistry: pp. 1-84.

10.    Liu, W., Qiu, J., Fei, M., Qiu, R., Sakai, E. and Zhang, M. (2019). Balancing performance of epoxidized soybean oil (ESO)/poly(lactic acid) composites: synergistic effects of carbon nanotubes and tannic acid-induced crosslinking of ESO. Express Polymer Letters, 13(2): 109-122.

11.    Saremi, K., Tabarsa, T., Shakeri, A. and Babanalbandi., A. (2012). Epoxidation of soybean oil. Scholars Research Library Annals of Biological Research, 3(9): 4254-4258.

12.    Samarth, N. B. and Mahanwar, P. A. (2015). Modified vegetable oil based additives as a future polymeric material-review. Open Journal of Organic Polymer Materials, 5: 1-22.

13.    Anuar, S. T., Zhao, Y. Y., Mugo, S. M. and Curtis, J. M. (2012). Monitoring the epoxidation of canola oil by non-aqueous reversed phase liquid chromatography/mass spectrometry for process optimization and control. Journal of the American Oil Chemists’ Society, 89(11): 1951-1960.

14.    Holser, R. A. (2008). Transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Industrial Crops and Products, 27: 130-132.

15.    Gogoi, P., Boruah, M., Sharma, S. and Dolui, S. K. (2015). Blends of epoxidized alkyd resins based on jatropha oil and the epoxidized oil cured with aqueous citric acid solution: a green technology approach. ACS Sustainable Chemistry & Engineering, 3(2): 261-268.

16.    Almeida, C. B. de, Corradini, E., Forato, L. A., Fujihara, R. and Lopes Filho, J. F. (2018). Microstructure and thermal and functional properties of biodegradable films produced using zein. Polímeros, 28(1): 30-37.

17.    Nainggolan, M. and Sinaga, A. G. S. (2021). Characteristics of fatty acid composition and minor constituents of red palm olein and palm kernel oil combination. Journal of Advanced Pharmaceutical Technology and Research, 12(1): 22-26. 

18.    Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrů, S. and Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9): 17339-17361.

19.    Purwanto, E. (2010). The synthesis of polyol from rice bran oil (RBO) through epoxidation and hydroxylation reactions. Thesis of Master Degree, The University of Adelaide, South Australia, Australia.

20.    Punia, S., Kumar, M., Siroha, A. K. and Purewal, S. S. (2021). Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application. Rice Science, 28(3): 217-232.

21.    Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E. and Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Processing and Synthesis, 2(5): 427-435.

22.    Danov, S. M., Kazantsev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E. and Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catalysis Science & Technology, 7(17): 3659-3675.

23.    Omonov, T. S., Kharraz, E. and Curtis, J. M. (2016). The epoxidation of canola oil and its derivatives. RSC Advances, 6(95): 92874-92886.

24.    Nihul, P. G., Mhaske, S. T. and Shertukde, V. V. (2014). Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC). Iranian Polymer Journal, 23(8): 599-608.

25.    Kin Hong, L., Yusop, R. M., Salih, N. and Salimon, J. (2015). Optimization of the in situ epoxidation of linoleic acid of Jatropha curcas oil with performic acid. Malaysian Journal of Analytical Sciences, 19(1): 144-154.

26.    Yunus, W. and Kuang Abdullah, D. (2009). Optimization of the epoxidation of methyl ester of palm fatty acid distillate. Journal of Oil Palm Research, 21: 675-682.

27.    Sahoo, S. K., Khandelwal, V. and Manik, G. (2018). Development of completely bio-based epoxy networks derived from epoxidized linseed and castor oil cured with citric acid. Polymers for Advanced Technologies, 29(7): 2080-2090.

28.    Pierucci, S., Klemeš, J. J., Piazza, L., Bakalis, S., Vianello, C., Piccolo, D. and Maschio, G. (2017). Preliminary study of epoxidation of soybean oil in stirred tank reactor: the effect of the mixing program. Chemical Engineering Transactions, 57: 1051-1056.

29.    Gupta, N. K., Yadav, P. K. S., Eadara, R. and Singh R. P. (2016). Synthesis of Epoxy Resin from Waste Ricebran Oil. Polymers from Renewable Resources, 7(1): 21-32.

30.     Nugrahani, R. A., Redjeki, A. S., Teresa, Y. and Hidayati, N. (2017). Synthesis of compound-containing sulphonic acid from epoxidized methyl oleic of rice bran oil and linear alkylbenzene sulphonic acid. Journal of Chemical Technology and Metallurgy, 52(5): 797-802.

31.    Tajulruddin, W. N. W., Rahmat, A. R., Yusof, Z. A. M. and Fakhari, A. (2015). Characterization of polyol synthesized from epoxidized palm oil using Fourier transform infra-red and nuclear magnetic resonance. Journal of Advanced Research in Applied Mechanics, 10(1): 30-35.

32.    Thakur, V. K., Thakur, M. K. and Kessler, M. R. (2017). Handbook of composites from renewable materials. Volume 6, Polymeric composites 6th ed. In: M. R. Kessler, V. K. Thakur and M. K. Thakur (Eds.), Wiley-Scrivener, Beverly, Massachusetts, USA.

33.    Awale, R., Ali, F., Azmi, A., Puad, N., Anuar, H. and Hassan, A. (2018). Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers, 10(9): 977.

34.    Kolanthai, E., Sarkar, K., Meka, S. R. K., Madras, G. and Chatterjee, K. (2015). Copolyesters from soybean oil for use as resorbable biomaterials. ACS Sustainable Chemistry & Engineering, 3(5): 880-891.

35.    Altuna, F. I., Pettarin, V. and Williams, R. J. J. (2013). Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chemistry, 15(12): 3360.

36.    Ouipanich, S., Kaisone, T., Hanthanon, P., Wiphanurat, C., Thongjun, Y. and Nampitch, T. (2017). Effect of the citric acid as blowing agent on the compressive properties and morphology of PLA/ENR blend foams. Applied Mechanics and Materials, 873: 95-100.

37.    Lei, B., Liang, Y., Feng, Y., He, H. and Yang, Z. (2018). Preparation and characteristics of biocomposites based on steam exploded sisal fiber modified with amphipathic epoxidized soybean oil resin. Materials, 11(9): 1731.

38.    Samper, M. D., Ferri, J. M., Carbonell-Verdu, A., Balart, R. and Fenollar, O. (2019). Properties of biobased epoxy resins from epoxidized linseed oil (ELO) crosslinked with a mixture of cyclic anhydride and maleinized linseed oil. Express Polymer Letters, 13(5): 407-418.

39.    Chieng, B., Ibrahim, N., Then, Y. and Loo, Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules, 19(10): 16024-16038.